用户名: 密码: 验证码:
基于激光测距技术的粮食数量检测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食安全和社会和谐、经济持续发展、政治稳定息息相关。我国储备粮粮库地域面积广、规模大、仓房容量大,粮食数量的智能稽核一直是储备粮自动监管和稽核的关键,但由于技术的局限性,目前国内外尚未有效解决这一难题。
     本文针对目前粮库稽核方法耗费大量的人力和财力的问题,提出了基于激光测距技术的粮食数量无损检测方法,重点研究了粮食边界识别、粮食表面上激光光斑所在位置的三维坐标计算方法和整体粮堆的体积计算方法,设计和开发了一套多线程数据采集及处理软件系统。主要工作如下:
     (1)提出了通过BP算法识别粮食种类来间接识别粮食边界的方法
     本系统是利用粮食表面上点的三维坐标进行体积计算,所以要识别出粮食边界。
     ①设计了能够识别粮食种类的双隐层BP网。在对BP网的结构及算法进行分析的基础上,结合本课题的需求,通过训练和测试确定了12-28-20-1的网络结构。针对本文的研究对象(粮堆)无法从谷物籽粒形状来识别粮食种类的问题,提出采用无背景仅有粮食的图像的颜色矩向量作为特征向量来训练和测试BP网,使之能够识别参与训练的粮食种类。实现了对玉米这种粮食的识别,实验表明正确识别率很高。
     ②实现了玉米粮堆的边界识别。从有背景(粮仓仓壁)的玉米图像的一角开始,逐行依次提取3*3窗口的颜色矩特征向量,依次输入BP网识别各3*3窗口是不是玉米,如果是则3*3窗口各像素灰度值设置为0,否则设置为255。最终得到玉米区域是黑色的,背景为白色的粮食边界二值灰度图像。粮食边界提取的结果表明:本文提出的粮食边界识别方法可行。
     (2)研究了粮食表面上激光光斑所在位置的三维坐标计算方法
     对粮食边界内部的激光光斑位置的三维坐标进行计算,否则不计算。
     ①为了确定光斑在粮食图像中的位置,采用平均背景模型法提取了含有光斑的粮食图像中的光斑。实验结果表明,利用平均背景模型法提取的光斑位置及形状与该光斑所在图像中的位置及形状一致,该方法正确。
     ②为了确定光斑是否在粮食边界内部及Delaunay分解等工作,采用基于重心的曲线拟合亚像素中心定位算法提取了光斑中心的亚像素坐标。实验结果表明,此方法定位精度较高。
     ③根据光斑中心亚像素坐标在已提取的粮食边界图像中相应位置的像素值判定光斑是否在粮食边界内部,像素值是0则在内部,保留该光斑并计算其位置的三维坐标;是255则在外部,舍弃该光斑。实验结果表明,光斑是否在粮食边界内部的判定结果准确。
     ④对光斑所在位置的三维坐标提出了原创性的计算方法。对设备进行标定后,利用激光测距仪测得的距离和云台的旋转角度,以及空间点在世界坐标系各个轴上的投影关系,推导出了云台垂直旋转角度在两种情况下的光斑所在位置的三维坐标计算公式。实验结果表明,本文推导出的光斑位置的三维坐标计算公式正确。
     (3)实现了粮食体积计算
     将二维Delaunay分解创新性地应用到了粮堆的三维体积计算中。对融合在一幅图像中的一组粮食表面上的光斑进行二维Delaunay分解,分解后得到多个不重叠的三角形,这些三角形的顶点为光斑中心,与粮食表面上的光斑点一一对应,从而粮食表面被这些三角形分割开,每个三角形下面为一个五面体,利用每个三角形顶点的三维坐标计算其下五面体体积,累加所有五面体的体积即可得到粮食总体积。在实验室内,对规则容器内的玉米体积进行了计算(玉米体积是已知的),实验结果表明,体积误差满足粮食监管需求。
     (4)设计和开发了一套多线程数据采集及处理系统
     以VS2008为开发平台,C++语言为开发工具,设计和开发了一套多线程数据采集及处理系统,系统软件包括:外设控制、数据采集、粮食边界识别、光斑提取、光斑中心的亚像素坐标提取、光斑所在位置的空间点的三维坐标计算、Delaunay分解、粮食体积计算、文件管理等内容。
     本系统从对各设备的控制到数据采集都是通过串口完成的,无需人工到达粮仓现场,实现了粮食实物数量的非接触无损检测,体积误差在3%左右,能够满足粮食监管部门的管理需求。系统设备少,实现成本较低,能够大幅降低监管和稽核成本,具有广阔的应用前景。
Grain security is closely related to social harmony, political stability, sustained economicdevelopment. In our country, the reserved grain warehouses are distributed in different regionsand have large scale and their capacity is large. Intelligent audit of grain quantity is the key ofthe automatic reserved grain supervision all the time. But due to the limitations of technology,present researchers have failed to solve this problem effectively at home and abroad.
     In this paper, in view of the current grain audit method consuming a large amount ofmanpower and financial resources, the nondestructive measurement method of grain quantitybased on laser ranging technology is presented. The research designs and develops amultithreading data acquisition and processing software system and the research emphasisincludes grain boundary identification,3D coordinates computation method of the position of thelaser spot on the grain surface and grain volume calculation. The major work is as follows:
     (1) A indirect identification method of grain boundary by using the BP algorithm to identifythe categories of grain is proposed
     In this system, grain volume is calculated by use of the3D coordinates of the points on thegrain surface, so the grain boundary needs to be identified.
     ①Double hidden layers BP network is designed to recognize the categories of grain. Onthe base of analyzing the structure and algorithm of BP network, according to the requirementsof this project, the12-28-20-1network structure is determined by training and testing. To theresearch object (grain pile) of this thesis, the categories of grain cannot be identified by the shapeof the cereal kernel. In view of the problem, the color moment vectors of the grain image withoutbackground is used for the feature vectors to train and test BP network so that BP network canidentify the categories of grain participating in training. The recognition of corn was realized, theexperiment shows that the correct recognition rate is high.
     ②The boundary identification of corn pile is achieved. Extract line-by-line the colormoment feature vector of the3*3window beginning with the one corner of the corn image withthe background (granary wall) and input it into BP network in turns. BP network judge whether itis corn. If it is corn, the pixels’ gray values of the3*3window are set into0, otherwise255. In theend, binary gray grain boundary image is gotten in which corn region is black and the background is white. The result of grain boundary extraction shows that the grain boundary recognitionmethod proposed in this thesis is feasible.
     (2) The calculation method of the3D coordinates of laser spot location on the grain surfaceis studied
     The3D coordinates of the laser spot location in the grain boundary are calculated, otherwisenot.
     ①In order to determine the spot location in the grain image, the spot in the grain image isextracted by mean background model method. The experiment result shows that the location andshape of the spot extracted by mean background model method in the spot image are the same asthe location and shape of it in the grain image, so the method is correct.
     ②In order to determine whether the spot is in grain boundary and Delaunay triangulation,the sub-pixel coordinates of the spot center are extracted by curve fitting sub-pixel centerlocalization algorithm based on gravity. The experiment results show that the positioningprecision of this method is higher.
     ③Whether the spot is in grain boundary is judged according to the pixel value of thelocation of the spot center sub-pixel coordinates in the grain boundary image extracted. If thepixel value is0, the spot is in grain boundary and kept to compute the3D coordinates of itslocation; if the pixel value is255, the spot is outside grain boundary and is abandoned. Theexperiment result shows that the judgment that the spot is or not in grain boundary is accurate.
     ④The original calculation method of3D coordinates of the spot location is presented.After the devices are calibrated, by use of the distance measured by the laser rangefinder, therotation angle of the PTZ and the projection of the space point on each axis in the worldcoordinate system, the formulas were derived to calculate the3D coordinates of the spot locationwhen the head’s vertical rotation angle is under four circumstances. The experiment results showthat the calculation formulas of the3D coordinates of the spot position are correct.
     (3) The grain volume calculation is realized
     The two-dimension Delaunay triangulation is innovatively applied to the3D volumecalculation of grain pile. After a group of spots merged in an image and on the grain surface aredecomposed by two-dimensional Delaunay triangulation, multiple triangles that don’t overlapare gotten. The triangle vertices are spot centers that they correspond to the spots on the grain surface. So the surface of grain is segmented by the triangles, and it is a pentahedron under everytriangle. The volume of the pentahedron is calculated by use of the3D coordinates of the verticesof each triangle, and the sum of the pentahedrons is the total volume of grain. In the laboratory,the volume of corn in the regular container is calculated (the volume of corn is known), theexperiment result shows that the volume error meets the demand of grain supervision.
     (4) A multithreading data acquisition and processing system is designed and developed
     Taking VS2008as the development platform, C++language as the development tool, amultithreading data acquisition and processing system is designed and developed. The softwaresystem includes: device control, data acquisition, grain boundary identification, spot extraction,spot center sub-pixel coordinate extraction, the calculation of3D coordinates of the space pointcorresponding to the spot location, Delaunay triangulation, grain volume calculation, filemanagementand so on.
     In this system, device control and data acquisition is achieved through the serial port, andworkers aren’t needed to go into the granary, so the non-contact nondestructive measurement ofgrain quantity is realized. The volume error is about3%and can meet the managementrequirement of the grain supervision department. This system demands less equipment and itscost is lower, so the cost of supervision and audit can be reduced greatly. This system has broadapplication prospects.
引文
[1]李冬岩,张兴昌,高照良,郭宝安.试论我国粮食安全问题及对策[J].产业与科技论坛,2009(8).4
    [2]范威.当前中央储备粮仓储工作需解决的几个问题[J].粮油仓储科技通讯,2005,6:52~53
    [3]杨光焰.我国粮食宏观调控面临的七大矛盾[J].粮食问题研究,2005,1:79
    [4]张昌彩.国外粮食储备管理及其对我国的启示[J].经济研究参考,2004,(24):33~43
    [5]唐为明.加拿大的粮食流通技术[J].粮油科技,2003,(3):2~7
    [6]汪志明,徐亚明,汪志良等. GPS RTK技术在武钢堆料场矿料体积测量中的应用[J].测绘信息与工程,2003,28(1):13~14
    [7]李集田,贾欣志,檀慧明.一种大面积煤堆体积自动检测系统[J].光学机械,1991,(5):39~45
    [8]曹鹏举,高燕,许平勇等.一种装载机自动称重方法[J].空军雷达学院学报,2006,20(3):216~218
    [9]樊勇,虞启凯,王开和.动态测量结合定量控制的一种称量方法[J].天津轻工业学院学报,2003,18(3):59~62
    [10]尤路,付永庆,王咏胜. USB摄像头平行双目视觉系统在面积测量中的应用[J].应用科技.2008,35(2):1~4,16
    [11]马延昭,吕乃光,邓文怡等.基于激光线扫描的双目立体视觉测量方法研究[J].北京机械工业学院学报.2007,22(4):1~5
    [12]张姚,王宝光,李亚标等.新型单摄像机镜像双目视觉传感器的研究[J].传感技术学报,2007,20(9):2007~2010
    [13]李德良,刘艳玉,张飞龙等.双目视觉测径仪的单CCD实现[J].军械工程学院学报,2007,19(5):55~57,63
    [14]林鹰.储备粮智能监管与稽核系统关键技术研究[D].天津大学博士学位论文.2008
    [15]刘继承,王春艳,赵磊等.基于P-M扩散和中值滤波的椒盐噪声去除方法[J].大庆石油学院学报,2008,32(1):77-79
    [16]唐毅,郑丽敏,任发政等.基于几何特征的图像感兴趣区域的自动定位研究[J].计算机工程,2007,33(1):200-202
    [17]邓玉华,冯运义.基于Visual c++矩形标尺智能识别[J].粮食储藏技术.2007,6(36):13~16
    [18] GONZALEZ R C, WOOD R E. Digital image processing [M]2nd ed. New York: PrenticeHall,2002:77-86.
    [19] Stephen prata. c++primer plus (The fourth version)[M].北京:人民邮电出版社.2002
    [20] DENG Ling, WANG Jun-an, YANG Yong-sheng. The design and implementation ofcomputer image recognition system [J].Computer Application,1999,6:79-80
    [21] ZHANG Yan, LI Feng-xia, ZHAN Shou-yi. New image recognition method based onrough-sets and fuzzy theory [J]. Journal of Beijing Institute of Technology,2003,12(3):255-259
    [22] FU K S, MUI J K. A survey of image segmentation.Pattern recognition[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1981,13(1):3-16
    [23] KITTLER J, HATEF M, DUIN R P W. On combining classifiers [J].IEEE Transactions onPattern Analysis and Machine Intelligence,1998,20(3):226-239
    [24] E.V.Baklanov, A.K.Dmitrivev. Realization of metre with femtosecond laser[J]. PrecisionElectromagetic Measurements,2002:482-483
    [25]齐炜胤,尤政,张高飞,等.激光测距技术在空间的应用[J].中国航天,2008,5:38-42
    [26]赵栋,刘立人,王吉明等.基于光子数目比较的激光测距法[J].光学学报,2006,26(7):1091~1096
    [27]魏彪,盛新志.激光原理及应用[M].重庆:重庆大学出版社,2007:1-2
    [28]贾方秀.多频调制的相位法激光测距中若干关键技术研究[D].哈尔滨工业大学博士学位论文.2010:7-8
    [29]田玉珍,赵帅,郭劲.非合作目标光子计数激光测距技术研究[J].光学学报,2011.5,31(5):0514002-1~2
    [30] John S. Massa, Gerald S. Buller, Andrew C. Walker. Time-of-flight optical ranging systembased on time-correlated single-photon counting[J]. Appl. Opt.,1998,37(31):7298~7304
    [31] Min Seok Oh, Hong Jin Kong. An improvement on accuracy of laser radar using aGeiger-mode avalanche photodiode by time-of-flight analysis with Poisson statistics [J].Laser Radar Technology and Applications,2010,7684:76841-1~10
    [32]杨馥,贺岩,周田华等.基于伪随机码调制和单光子计数的星载测高计仿真[J].光学学报,2009,29(1):21~26
    [33] Laurent Gatet,Hélène Tap-Béteille,Marc Lescure.Surface detection using a phase-shift laserrange finder and neural network[J].Optical Engineering,2007,46(7),073002:1-11
    [34]周俊召,郑书民,胡松等.地面三维激光扫描在石窟石刻文物保护测绘中的应用[J].测绘通报,2008,(11):68-69
    [35] Masamitsu Kurisu,Hiroki Muroi.Development of a laser range finder for3D map-buildingin rubble[C].Proceedings of the2007IEEE International Conference on Mechatronics andAutomation,August5-8,2007,Harbin,China:2054-2059
    [36] Ryo Kurazume,Yukihiro Tobata,Yumi Iwashita,et al..3D laser measurement system for largescale architectures using multiple mobile robots[C].IEEE Computer Society, SixthInternational Conference on3-D Digital Imaging and Modeling,2007,21-23August,2007:91-98
    [37]邵双运.光学三维测量技术与应用[J].现代仪器,2008(3):11-13
    [38]阿依江,米从波.三维测量在口腔正畸学中的应用[J].中国组织工程研究与临床康复,2011,15(26):4868-4871
    [39]李浩,花国梁.精密测量技术[M].北京:中国计量出版社,2001:2-5.
    [40]赵伟博.基于线激光扫描的三维测距系统[D].杭州:浙江大学,2008:3-5.
    [41]高岳.光电检测技术与系统[M].北京:电子工业出版社,2009:9-14.
    [42] Günter Wilkening. Measuring Methods for the Determination of Geometrical Quantities ofMicro Parts[A].精密工程中的纳米测量技术研讨论文集[C].香港:香港科技大学出版社,1998,68-75.
    [43]桑新柱.用于微型工件测量的微型测头系统[D].天津:天津大学精仪学院,1999
    [44]桑新柱,吕乃光.三维形状测量方法及发展趋势[J].北京机械工业学院学报,2001,16(2):32-38
    [45]吴立德.计算机视觉[M].上海:复旦大学出版社.1993.
    [46]刘传才.图像理解与计算机视觉[M].厦门:厦门大学出版社.2002.
    [47]郑南宁.计算机视觉与模式识别[M].北京:国防工业出版社.1998.
    [48]朱淼良.计算机视觉[M].杭州:浙江大学出版社.1997.
    [49]贾海峰,刘雪华等.环境遥感原理与应用[M].北京:清华大学出版社.2006.
    [50]汤国安,张友顺,刘咏梅等.遥感数字图像处理[M].北京:科技出版社,2003.
    [51]刘中合,王瑞雪,刘贤喜等.数字图像处理技术现状与展望[J].计算机时代,2005,9:6-8.
    [52]刘中合,李邦明,刘贤喜等.计算机视觉技术在农业机械中的应用[J].农业装备与车辆工程,2005,(4):37-39.
    [53]高华,周林.计算机视觉及模式识别技术在农业领域的应用[J].山东农业大学学报(自然科学版),2003,34(4):590-593.
    [54]杨涛.计算机视觉技术在杂交玉米种子纯度检验中的应用研究[D].沈阳农业大学博士学位论文.2001.
    [55] Tao Y., Wen Z. An Adaptive Spherical Image Transform for High-speed Fruit DefectDetection [J]. Trans. ASAE,1999,42(1):0-6.
    [56] Luo X, etal. Comparision of Statistical and Neural Network Methods for ClassificationCereal Grains Using Machine Vision[J]. Trans of the ASAE,1999,42(2):413-419.
    [57] Majumders, etal. Classification of Bulk Samples of Cerea1Grain Using Machine Vision[J].Agric Eng Res,1999,73:35-47.
    [58] Barker D.A., Vuori T.A.,Hegedus M. R.,etal. The use of Chebychev coefficients for thediscrimination of Australian wheat varieties[J]. Plant Varieties and Seeds,1992,5:103-111.
    [59] Barker D. A., Vuori T.A., Myers D. G.. The use of Fourier descriptors for the discriminationof Australian wheat varieties[J]. Plant Varieties and Seeds,1992,5:93-102.
    [60] Barker D. A., Vuori T.A., Myers D. G..The use of slice and aspect ratio parameters for thediscrimination of Australian wheat varieties[J]. Plant Varieties and Seeds,1992,5(1):47-52.
    [61] Shyy Y.Y, Misra M.K. Color image analysis is for soybean quality determination[J]. ASAEpaper,1989, NO.89-3572.
    [62] Gao X, Tan J, Gerrard D.Image segmentation in dimensional color space[J]. ASAE,1995,No.95-3607.
    [63] Tao Y., Heinemann P.H., Varghese Z., Morrow C.T., etal. Machine Vision for ColorInspection of Potatoes and Apples[J]. Trans. ASAE,1995,38(5):1555-1561.
    [64] Tao Y., Morrow C.T., Heinemann P.H., etal. Fourier-Based Separation Technique for ShapeGrading of Potatoes Using Machine Vision[J]. Trans. ASAE,1995,38(3):949-957.
    [65] Tao Y. Closed-loop search method for on-line automatic calibration of multi-camerainspection systems[J].Trans. ASAE.1998.41(5):1549-1555.
    [66]成芳.稻种质量的机器视觉无损检测研究[D].浙江大学博士学位论文.2004.
    [67]王树文.计算机视觉在农产品自动检测与分级中的研究[D].东北农业大学硕士学位论文.2002.
    [68] Rehkugler G. E., Throop J.. Apple Sorting with Machine Vision[J]. Trans.ASAE,1999,29(5):1388-1397.
    [69] McDonald T., Y. R Chen.1990. Application of morphological image processing inagriculture[J].Trans. ASAE1990,33(4):1345-1352.
    [70] Zayas I,Pomeranz L Y, Lai F S. Discrimination between Arthur and Arkan wheats byimage analysis[J].Cereal Chemistry.1985,62:478.
    [71] Zayas.I, Converse.H, Steele.J. Discrimination of Whole from broken corn kernels withimage analysis[J]. Trans. ASAE.1990,33(5):1642-1646.
    [72] Zayas.I, Martin.C.R., Steele.J.,Katsevich.A. Wheat classification using image analysis andcrush-force parameters[J].Trans.ASAE.1996.39(6):2199-2204.
    [73] Zayas.I.Y, Flinn.P.W. Detection of insects in bulk wheat samples with machinevision[J].Trans.ASAE.1998.41(3):883-888.
    [74] Ding K., Gunasekaran S. Shape feature extraction and classification of food material usingcomputer vision[J]. Trans. ASAE,1994,37(5):1537-1545.
    [75] Liao K, Paulsen M R, Reid J F, etal. Corn kernel breakage classification by machine visionusing a neural network classifier[J]. Trans of the ASAE,1994,36(6):1949-1953.
    [76] Ni B, Paulsen M R, Reid J F. Corn Kernel Shape identification Using Image Processing[J].Trans of the ASAE,1997,40(3):833-838.
    [77] Ni B., Paulsen M R, Reid J F. Size grading of corn kernels with machine vision[J].Appl.eng.agric.,1998,14(5):567-571.
    [78] Wilkerson, Erin G., Robert L. Geneve, Richard S. Gates. Automation of image analysissoftware for evaluation of seed vigor [C].2000, ASAE Paper, No.3025.
    [79]凌云.基于机器视觉的谷物外观品质检测技术研究[D].中国农业大学博士学位论文.2004.
    [80] LayKin S., Alchanatis V., Fallik E., Edan Y. Image-Processing Algorithms for TomatoClassification[J]. Trans. ASAE,2002,45(3):851-858.
    [81] Churchill D.H., Bilsland D.M., Cooper T.M. Comparison of machine vision with humanmeasurement of seed dimensions[J]. Trans. ASAE,1992,35(1):61-64.
    [82] Shahin M.A., Tollner E. W., Gitaitis R.D. Summer D.R., Maw B.W.. Classification of sweetonions based on internal defects using image processing and neural network techniques[J].Trans. ASAE,2002,45(5):1613-1618.
    [83] Shahin M. A.,Tollner E. W.,McClendon R.W.,Arabnia H.R.. Apple classification based onsurface bruises using image processing and neural networks[J]. Trans. ASAE.2002.45(5):1619-1627.
    [84]宋韬,曾德超.基于人工神经网络的玉米籽粒形态识别方法的研究[J].农业工程学报.1996,12(1):177-181.
    [85]何东健,杨青等.果实表面颜色计算机视觉分级技术的研究[J].农业工程学报.1998,14(3):202-204.
    [86]应义斌,饶秀勤,赵匀,蒋亦元.机器视觉技术在农产品品质自动识别中的应用(I)[J].农业工程学报.2000,16(1):103-108.
    [87]应义斌,饶秀勤,赵匀等.机器视觉技术在农产品品质自动识别中的应用研究进展[J].农业工程学报,2000,16(3):4-8.
    [88]宁纪峰.玉米品种的计算机视觉识别研究[D].西北农林科技大学硕士学位论文.2002.
    [89]席章营.玉米种子纯度检验的方法与技术(下)[J].种子科技.1998,5:26-27.
    [90]闸建文,陈永艳.基于外部特征的玉米品种计算机识别系统[J].农业机械学报.2004,35(6):115-118.
    [91]黄星奕,吴守一,方如明,蔡健荣.计算机视觉在大米胚芽识别中的应用[J].农业机械学报.2000,31(1):62-65.
    [92]冯斌.计算机视觉信息处理方法与水果分级检测技术研究[D].中国农业大学博士学位论文.2002.
    [93]董璐.数字图像处理与识别系统的开发[D].东南大学硕士学位论文.2004
    [94]孙宗保.基于计算机视觉的粒度检测应用研究[D].江苏大学硕士学位论文.2003.
    [95] Lee D T, Sehaeher B J. Two algorithms for constructing a Delaunay triangulation[J].International Journal of Computer and Information Sciences,1980(9):219-242.
    [96] Brasse K E, Reif D. A procedure to generate thiessen polygons[J]. Geographical Analysis,1979,11:289-303.
    [97] Dwyer R A. A faster divide-and-conquer algorithm for constructing Delaunaytriangulations[J]. Algorithmica,1987(2):137-151.
    [98] Lawson C L. Generation of a triangular grid with application to contour plotting[C]. In:Technical Memorandum. Institute of Technology, Jet Pollution Laboratory, California,1972:294-299.
    [99]田晓东,周雄辉,阮雪榆.反求工程中基于Delaunay三角形的模型重构研究[J].上海交通大学学报,2001,35(10):1521一1525.
    [100] Hoppe H, DeRose T, MeDonald J, et al. Surface reconstruction from unorganizedpoints[J].Computer Graphics,1992,26:71一78.
    [101〕石教英,蔡文立.科学计算可视化算法与系统[M].北京:科学出版社,1996.
    [102]周儒荣,张丽艳,苏旭,等.海量散乱点的曲面重建算法研究[J].软件学报,2001,12(2):249-255.
    [103] Edelsbrunner H, Mueke E P. Three一dimensional alpha shapes[C]. Proeeedings of the1992workshop on Volume visualization, Boston,1992:75-82.
    [104] Bajaj C L, Bernardini F, Xu G L. Automatic reconstruction of surfaces and scalar fieldsfrom3D scans[C]. Proceedings of the22nd annual conference on Computer graphics andinteractive techniques,1995:109-118.
    [105] Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruetionalgorithm [C]. Proeeedings of25th annual conference on Computer graphics andinteractive techniques,1998:415-421.
    [106] Amenta N, Choi S, Dey T K. A simple algorithm for homeomorphic surface reconstruetion
    [C].Proeeedings of the sixteenth annual symposium on Computational geometry,HongKong,2000:213一222.
    [107] Amenta N, Choi S, Kolluri R K. The power crust, unions of balls, and the medial axistransform [J]. Computing Geometry,2001,19:127一153.
    [108] Boissonnat J D, Cazals F, Smooth surface reconstruction via natural neighbor interpolationof distance functions[C].Rapport de reeherehe,2000.
    [109] Dey T K, Goswami S. Tight cocone: a water一tight surface reconstructor [J].Journal ofComputing and Information Seience in Engineering,2003,3(4):302-307.
    [110] Dey T K, Goswami S. Provable surface reconstruction from noisy samples[C]. Proeeedingof the Twentieth Annual Symposium on Computational Geometry, NewYork,2004:330-339.
    [111] Kolluri R, Shewchuk J R, o’Brein J F. Spectral surface reconstruction from noisy pointclouds[C]. Eurographics Symposium on Geometry Processing,2004:11-21.
    [112]裘宁.基于Voronoi图的曲面重建算法研究[D].杭州:浙江大学硕士论文,2003.
    [113]顾羡林,倪彤光.三维空间散乱点集快速曲面重建的研究与实现[J].计算机应用,2005(4):783-785.
    [114]荆其诚.色度学[M].北京.科学出版社,1979.
    [115] Richard W.Conners, Chairman A. Lynn About, D.Earline K, Feature Identification inWooden Boards Using Color Image Segmentation [J].(Thsis),1997,10(21)
    [116] Burks T F, Shearer S A, Payne F A. Classification of Weed Species Using Color TextureFeatures and Discriminant Analysis[J]. Transactions of the ASAE2000,43(2):441~448
    [117]张帆.基于内容的标准烟叶图像数据库检索[J].计算机工程与应用,2002(7):203-205.
    [118]王业琴,赵志国.基于直方图和颜色矩方法的木材表面颜色特征的表达[J].林业科技.2006,31(5):56~58
    [119]王业琴.基于融合彩色特征木材表面颜色分类的研究[J].林业机械与木工设备.2006,34(8):27~29
    [120]吴富宁,杨子彪,朱红等.基于颜色特征进行农作物图像分类识别的应用研究综述
    [N].中国农业科技导报,2003,5(2):76~79
    [121] Tian, L.F., and D. C. Slaughter.. Environmentally adaptive segmentation algorithm for outdoor images segmentation[J].Computer&Election in Agriculture.1998,21(3):161
    [122]王士同.人工智能教程[M].北京:电子工业出版社,2002.
    [123]郑丽敏.人工智能与专家系统原理及其应用[M].北京:中国农业大学出版社,2004.
    [124]边肇祺,张学工.模式识别(第二版)[M].北京:清华大学出版社,2004.
    [125]闻新,周露,李翔等. Matlab神经网络仿真与应用[M].北京:科技出版社,2003.
    [126] Martin T. Hagan, Howard B. Demuth著, Mark H.Beal,戴葵等译,神经网络设计[M].北京:机械工业出版社,201-205
    [127] Shu Te S, C Yung Yaw. Moving object segmentation using improved running gaussianaverage background model[C]. Proceedings of the2008Digial Image Com putting:Techniques and Applications,2008:24-31.
    [128]张磊,史金飞,罗翔.运动目标检测的差分图像法分析研究[J].工业仪表与自动化装置,2007:35-38.
    [129]潘波,杨根庆,刘勇.星点质心定位算法最优门限研究[J].光学精密工程,2008,16(9):1787-1792.
    [130]赵爱明.基于二次曲线拟合的图像亚像素边缘定位算法[J].哈尔滨理工大学学报,2006,11(3):68-70.
    [131]张军,金观昌,马少鹏,孟利波.基于微区统计特性的数字散斑相关测量亚像素位移梯度算法[J].光学技术,2003,29(4):467-472.
    [132]敖磊,谭久彬,崔继文,康文静.激光CCD二维自准直仪中圆目标中心精确定位算法[J].光学精密工程,2005,13(6):668-673.
    [133]刘兆蓉,王志乾,刘绍锦,沈铖武.激光光斑精确定位算法研究[J].计算机仿,2011,28(5):399-401,409.
    [134]张舜德,朱东波,卢秉恒.反求工程中三维几何形状测量及数据预处理[J].机电工程技术,2001,30(1):7-10.
    [135]周伟达.楔形的体积公式及应用[J].中等职业教育.2007,2:46-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700