用户名: 密码: 验证码:
基于超声辐射力及力矩的非接触型微装配关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统(MEMS)作为在国防建设和国民经济等相关领域具有广阔应用前景的一类光机电一体化高新技术产品,经过30多年的发展历程,已从原先注重徽构件或单一功能部件的生产向多部件、多结构和多功能的混合复杂系统集成化方向迈进,其进一步发展必须借助微装配技术的进步和应用。特别是面对微机电系统应用对象尺度的微型化、制造技术追求高深宽比的三维化以及制造工艺和材料的多样化等所带来的诸多挑战,微装配技术更加体现出其重要性和迫切性。因此,探索新理论、新机理并发展这种技术,是目前微机电系统这个新兴技术领域内一个最基础的、关键的热点研究课题。
     根据微装配的技术特点,一种对微构件无损的非接触装配技术是当前研究和发展的主流方向,而超声波作为一种机械波,其力学效应特性在微颗粒的俘获、聚集及分拣等方面已证实了较好的应用潜力,显示出诸多的优点。因此,以超声辐射力及力矩作为驱动力源,发展一种非接触型微装配技术,必将有其自身的技术优势。但是,目前超声辐射力及辐射力矩的理论研究还局限于理想声场和规则散射体,针对微装配应用的相关理论研究还少有涉足,并且现有超声辐射力的各种应用都是在稳态和定性的基础上进行,而微装配过程中的微构件准备、定位、位姿调整及目标位置释放等都必须达到精确的定量控制效果,当前的相关技术和装置还远未能满足微装配技术的需求。为此,根据微机电系统的特点,本学位论文结合国家高技术研究发展计划项目“基于超声辐射力的微纳构件三维遥操纵关键技术研究(No.2006AA042329)”和浙江省自然科学基金重点项目“基于声操纵的三维自动微装配理论与实践研究(No.Z1110393)”,提出开展基于超声辐射力及力矩的非接触型徽装配关键技术的研究,通过对微装配各单元步骤的力学模型、装配环境下超声辐射力产生机理及影响因素的理论分析及实验研究,利用超声相控阵技术柔性和精确地合成满足各装配单元步骤所需的超声辐射力场,构建一种多模式非接触遥驱动力源,实现固壁面上微构件的拾取、空间大范围定量传输、位姿调整及目标位置释放等微装配单元技术,以应用于微机电系统的集成装配中,为微机电系统研究和制造提供一种的共性技术手段。具体的研究内容和创新点体现在:
     第一章,通过分析微装配技术在微机电系统等领域的作用与地位,说明开展微装配技术研究的重要意义,并在阐述微装配技术国内外研究现状及其发展趋势的基础上,提出了基于超声辐射力和力矩的微装配技术。同时,综述了超声辐射力及力矩理论和应用的研究成果,评述了超声辐射力及力矩应用于微装配技术中的可行性和先进性以及有待解决的问题,明确了本文研究方向,并对各章节的研究内容进行了安排。
     第二章,为有效实施微构件准备和释放于目标位置这两个微装配的单元步骤,本章开展基于超声辐射力的刚性壁面上微构件拾取和目标位置释放技术的研究。系统研究近壁面刚性球形Reyleigh散射体在多束平面入射波合成的声场中所受辐射力的理论模型,并使用两束交叉分布的超声波实现固壁面上微构件的拾取与目标位置的释放。同时,以不同尺寸和材料的微构件为对象进行实验研究,证实了上述拾取与释放技术的有效性。
     第三章,提出了一种“逐级递推全程定位”的微构件大范围定量传输方法。在精确合成声场的基础上,通过控制超声信号的相位动态调整声势阱的空间分布,带动俘获于声势阱内的微构件以不同速度和轨迹的逐级递推式运动,实现微构件大范围定量传输。理论数值仿真分析、水听器实测合成声场以及对50μm直径硅球的传输实验都证实了该方法的可行性和有效性。同时,还对实验过程中硅球运动状态及其影响因素进行分析。
     第四章,针对微构件大范围传输过程中出现位置波动及可能存在脱离声势阱束缚的现象,对微构件传输的稳定性进行了系统地研究。在分析声流现象对微构件传输性能影响的基础上,建立了声势阱特性与微构件俘获和传输稳定性的关系,提出了一种声势阱综合性能定量评价方法,给出了理想声势阱所需满足的基本条件。同时,还利用该方法对几种不同类型辐射力场中的声势阱特性进行了评价,并对第三章提出的微构件传输方法进行了优化。实验结果表明优化后声场内微构件大范围传输过程中的波动现象得到了明显地抑制。
     第五章,提出了一种基于辐射力矩的微构件二维位姿调整方法。在建立长条形微构件在合成声场中所受辐射力及力矩理论模型的同时,将环形分布的超声换能器阵列分组构成子阵列,利用其中一个子阵列合成基础声场俘获微构件的基础上,通过不同子阵列间的顺序交替切换激励产生声场旋转,以驱动微构件的旋转运动,从而实现微构件二维位姿调整。开展了基于超声辐射力矩的微构件姿态调整实验研究,取得了预期的位姿调整效果,并明确了通过增加换能器阵列数可有效提高位姿调整的分辨率。
     第六章,在确定系统功能目标及设计系统总体方案的基础上,重点开发了多通道程控超声信号发生器、线性功率放大器、数据采集处理卡和嵌入式CMOS相机等功能模块,并采用虚拟仪器体系结构和模块化的设计策略,集成开发了一套基于超声辐射力及力矩的微装配实验系统。同时,还利用该系统开展了相关实验研究,证实了本文方法的可行性和有效性。
     第七章,总结论文取得的成果和创新之处,并对以后的工作进行展望。
The Micro Electro-Mechanical System (MEMS) as a kind of optical-electronic-machinery integrated high technology has broad application prospects in the related fields of national defense and economy. After30years of development, MEMS has forward to the integration of the multi-functional complex hybrid system with multi-component and multi-structure from focusing on the production of micro components or a single feature in the past. The further development of this technology should rely on the improvement and application of the micro-assembly technology. Especially, with many challenges due to the dimension miniaturization of the application objects, the three-dimensional manufacture with high depth-to-width ratio, the diversity of manufacture process and material in MEMS, the micro-assembly technology becomes even more important and urgent. Hence, exploring new theories and mechanisms to develop this technology is the most basic and key research subject in MEMS area at present.
     According to the technical characteristics of the micro-assembly, a kind of non-destructive and noncontact micro-assembly technology should be the main trend in the current research and development. As a kind of mechanical wave, ultrasonic has shown good application potential and advantage in micro-particles trapping, agglomeration and separation by its characteristics of mechanical effects. Hence, using acoustic radiation force and torque as the driving force to develop a noncontact micro-assembly technology should has its own technical superiority. However, the theoretic research of this technology is still limited to ideal sound field and regular scatters, and there is little theoretical model for micro-assembly applications. Moreover, the existing application of acoustic radiation force and torque is based on the steady state and qualitative analysis. And because precise and quantitative control should be satisfied in preparing, locating, posture adjusting and releasing of the micro-component during micro-assembling process, the current related methodology and application failed to meet the needs of micro-assembly technology. Therefore, considering the characteristics of MEMS, the key technologies of non-contact micro-assembly based on acoustic radiation force and torque were studied in this dissertation, which is supported by National High Technology Research and Development Program " Research on Key technologies of3D tele-manipulation for micro and nano components based on ultrasonic radiation force (No.2006AA04Z329)" and Key Project of Natural Science Foundation of Zhejiang Province "Research on theory and application of automatic3D micro-assembly technology based on acoustic manipulation (No. Z1110393)". The mechanical model of the unit procedure in micro-assembly, the mechanism and influencing factors of the acoustic radiation force under assembling condition have been theoretically analyzed and experimentally studied. A multi-mode noncontact tele-driving source has been built by using ultrasonic phased array to flexibly and precisely synthesize the acoustic radiation force field which meets the needs of each unit procedure in micro-assembling process. The technology of detaching the micro-components on the rigid surface, quantitative transportation at a long range, adjusting the posture of the micro-components and releasing to the target position have been realized. This new technology can be applied in the micro-assembly of MEMS and provide a general solution for the research and manufacturing of MEMS. The detailed contents and innovative points of this dissertation are presented as below:
     In chapter one, the significance to conduct the research on the micro-assembly technology was described by discussing its role and status in MEMS and other fields. And through elaborating the present research status and development trends of micro-assembly technology at home and abroad, the technology of micro-assembly based on acoustic radiation force and torque was proposed. Meanwhile, the achievements of the theory and the applications of acoustic radiation force and torque were summarized to illustrate the feasibility and advantage of applying them to micro-assembly. And its problems were observed and the research direction was pointed out.
     In chapter two, the technologies of detaching the micro-components on a rigid surface and releasing it to the target position were studied in order to realize the unit procedures of preparing and releasing the micro-component. On the basis of the systemic study on the theoretical model of the acoustic radiation force acting on the rigid spherical Reyleigh scatter near a rigid surface in the sound field which was synthesized by several incident wave, detaching the particle from the surface and releasing it to the target position were realized by two ultrasonic wave with crossed wave vectors.
     In chapter three, the methodology of controllable and quantitative transporting micro-component at a long range was proposed. On the basis of precisely synthesizing the sound field, the micro-component trapped at the acoustic potential well can be transported at different velocity and trajectories by changing the phase of the ultrasonic wave to shift the distribution of the sound field. The feasibility and applicability of this method has been verified by numerical simulation of the theory, measurements of the sound field with a hydrophone and the results of transporting silica bead with50μm radius. Meanwhile, the status of the bead in the transporting process and the influence on it was analyzed.
     In chapter four, the stability of the micro-component in the long range transporting process was systematically studied aiming at the possible position fluctuation and the phenomenon of slipping off during the transporting course. On the basis of analyzing the influence of acoustic streaming on the performance of micro-component transporting, the relationship between the characteristics of the acoustic potential well and the stability of the transporting was developed. A method to quantitatively evaluate the performance of the acoustic potential well was proposed and the basis properties of an ideal acoustic potential well were also presented. Meanwhile, the characteristics of the acoustic potential well in several different sound field was analyzed using this method and the micro-component transporting method proposed in chapter three was optimized. The experimental results illustrate that the position fluctuation of the micro-component in the transporting process has been obviously suppressed after optimization.
     In chapter five, a stepless method to adjust the two-dimensional posture of the micro-component was proposed. While the theory on the acoustic radiation force and torque of the long-stripe shape micro-component in the sound field was studied, two-dimensional posture adjusting was realized using circular transducer array which was grouped to several sub-arrays. On the basis of trapping the micro-component in the sound field synthesized by one group, the sound field was rotated by alternately using different sub-arrays, and the micro-component was rotated with the sound field. The experiment on posture adjusting was conducted and the anticipated effect was achieved. And the experiment results showed that the accuracy of the posture adjusting can be improved by adding more transducers in the circular array.
     In chapter six, on the basis of confirming the function target and entire design of the system, the functional modules of the multi-channel ultrasonic signal generator, the linear power amplifier, the data acquisition card and the CMOS camera were developed, and an experiment setup is established using the architecture of the virtual instrument and the strategy of modular design. Meanwhile, the experiment was performed to verify the feasibility and applicability of the methodology proposed in this dissertation.
     In chapter seven, the research results and the innovative points of this dissertation were summarized, and the future research works were also forecasted.
引文
[1]王莹MEMS将迎来第三次发展浪潮[J].电子产品世界,2010,17(7):9-11.
    [2]李庆祥,李玉和.微装配与微操纵技术[M].北京:清华大学出版社,2004.
    [3]2012年MEMS产业现状.http://www.mems.me/MEMS-Sensors_201207/268.html.
    [4]S. Bargiel, K. Rabenorosoa, C. Clevy, et al. Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench[J]. Journal of Micromechanics and Microengineering,2010,20(4):1-12.
    [5]M. Probst, C. Hiirzeler, R. Borer, et al. A microassembly system for the flexible assembly of hybrid robotic mems devices[J]. International Journal of Optomechatronics,2009,3(2):69-90.
    [6]B. Kim, H. Kang, D.-H. Kim, et al. A flexible microassembly system based on hybrid manipulation scheme for manufacturing photonics components[J]. International Journal of Advanced Manufacturing Technology,2006,28(3-4):379-386.
    [7]H. V. Brussel, J. Peris, D. Reynaerts, et al. Assembly of Microsystems[J], Annals of the CIRP,2000, 49(2):451-472.
    [8]J. Cecil, D. Powell, D. Vasquez. Assembly and manipulation of micro devices—A state of the art survey[J].Robotics and Computer Integrated Manufacturing,2007,23(5):580-588.
    [9]Y. Qin, A. Brockett, Y. Ma, et al. Micro-manufacturing:research, technology outcomes and development issues [J]. International Journal of Advanced Manufacturing Technology,2010,47(9-12): 821-837.
    [10]K. Feldman, J. Frankea and F. Schlera. Development of micro assembly processes for further miniaturization in electronics production[J]. CIRP Annals-Manufacturing Technology,2010,59 (1): 1-4.
    [11]G. Yang, J. A. Gaines. A supervisory wafer-level 3d microassembly system for hybrid mems fabrication[J]. Journal of Intelligent and Robotic Systems,2003,37(1):43-68.
    [12]O. Tabata. Micro/nano assembly as a key to SENS (Synthetic Engineering for Nano Systems)[J]. ECS Transactions,2009,16 (15):49-64.
    [13]孙立宁,陈立国,荣伟彬,等.面向微机电系统组装与封装的微操作装备关键技术[J].机械工程学报,2008,44(11):13~19.
    [14]D. Haris. The nanomanufacturing program at the national science foundation [J]. Nanotechnnology, 2002,13(3):248-252.
    [15]中华人民共和国国务院.国家中长期科学和技术发展规划纲要[M].北京:中国法制出版社,2006.
    [16]席文明,姚斌.微装配与微操作[M].北京:国防工业出版社,2006:10~20.
    [17]P. Lambert, S. Regnier. Surface and contact forces models within the framework of micro assembly[J]. Journal of Micromechatronics,2006,3(2):123-157.
    [18]A. Menciassi, A. Eisinberg A, I. Izzo, et al. From "macro" to "micro" manipulation:models and experiments[J]. IEEE/ASME Transactions on Mechatronics,2004,9(2):311-320.
    [19]S. Bou, A. Almansa, N. Balabanava, et al. Handling processes in microsystems technology[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey,2005: 384-389.
    [20]M. Gauthier, S. Regnier. Robotic micro-assembly[M]. Hoboken:John Wiley & Sons, Inc.,2010.
    [21]M. Savia, H. Koivo. Contact micromanipulation-survey of strategies[J]. IEEE/ASME Transactions on Mechatronics,2009,14(4):504-514.
    [22]Bing Shuang, Jiapin Chen, Zhenbo Li. Microrobot based micro-assembly sequence planning with hybrid ant colony algorithm[J]. International Journal of Advanced Manufacturing Technology,2008, 38 (11-12):1227-1235.
    [23]A. Eisinberg, A. Menciassi, P. Dario, et al. Tele-operated assembly of a micro-lens system by means of a micro-manipulation workstation[J]. Assembly Automation,2007,27(2):123-133.
    [24]S. Martel. Fundamental principles and issues of high-speed piezoactuated three-legged motion for miniature robots designed for nanometer-scale operations [J]. The International Journal of Robotics Research.2005,24 (7):575-588.
    [25]M. Takeda. Applications of MEMS to industrial inspection[C]. The 14th IEEE International Conference on Micro Electro Mechanical Systems. Piscataway, NJ, USA:IEEE,2001:182-191
    [26]宋宇.面向微操作的微小型机器人视觉伺服技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2007.
    [27]刘静.操纵微小世界的工具——微/纳米镊的研究与应用[J].微纳电子技术,2005(3):97~106.
    [28]M. Tichem, D. Lang, B. Karpuschewski. A classification scheme for quantitative analysis of micro-grip principles[J]. Assembly Automation,2004,24(1):88-93.
    [29]K. L. Chen. Novel MEMS grippers for pick-place of micro and nano objects[D]. Toronto of Canada:University of Toronto,2009.
    [30]王晓东,刘冲,王立鼎.微型夹钳的最新研究[J].功能材料与器件学报,2004,10(1):1-8.
    [31]P. Lazarou, N. A. Aspragathos. An integrated mechatronic approach for the systematic design of force fields and programming of micro-actuator arrays for micro-part manipulation[J]. Mechatronics, 2009,19(3):287-303.
    [32]V. Vandaele, P. Lambert, A. Delchambre. Non-contact handling in microassembly:Acoustical levitation[J].Precision Engineering,2005,29(4):491-505.
    [33]A. Subramanian, B. Vikramaditya, L. X. Dong, et al. Micro and nanorobotic assembly using dielectrophrosis[C]. Proceedings of Robotics:Science and Systems, Cambridge, USA,2005.
    [34]R. Pethig. Review article—dielectrophoresis:status of the theory, technology, and applications[J]. Biomicrofluidcs,2010,4(2):1-35.
    [35]I. Ermolina, H. Morgan. The electrokinetic properties of latex particles:comparison of electrophoresis and dielectrophoresis [J]. Journal of Colloid and Interface Science,2005,285(1):419-428.
    [36]Z. T. Kuo, W. H. Hsieh. Single-bead-based consecutive biochemical assays using a dielectrophoretic microfluidic platform[J]. Sensors and Actuators B:Chemical,2009,141(1):293-300.
    [37]M. Khamesee, E. Shameli. Pole piece effect on improvement of magnetic controllability for noncontact micromanipulation[J]. IEEE Transactions on Magnetics,2007,43(2):533-542.
    [38]Hongke Ye, Zhiyong Gu, Thomas Yu, David H. Gracias. Integrating nanowires with substrates using directed assembly and nanoscale soldering[J]. IEEE Transactions on Nanotechnology,2006, 5(1):62-66.
    [39]M. Tanase, D. M. Silevitch, A. Hultgren, et al. Magnetic trapping and self-assembly of multicomponent nanowires[J]. Journal of Applied Physics,2002,91(10):8549-8551.
    [40]A. Ashkin. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules[J]. IEEE Journal on Selected Topics In Quantum Electronics,2000,6(6):841-856.
    [41]A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters,1986,11(5):288-290.
    [42]D. Sawaki, J. Ikeno, O. Horiuchj, T. Kasai. Three dimensional micro-assembling technique applying laser trapping[C]. Proceedings of SPIE-First International Symposium on Laser Precision Micro-fabrication, Omiya, Japan,2000.
    [43]D. G. Grier. A revoltion in optical manipulation[J]. Nature Photonics,2003,424:810-816.
    [44]L. Paterson, M. P. MacDonald, Arlt J, et al. Controlled rotation of optically trapped microscopic particles[J]. Science,2001,292:912-914.
    [45]A. D. Mehta. Single-Molecule biomechanics with optical methods[J]. Science,1999,283:1689-1695.
    [46]J. Plewa, E. Tanner, D. M. Mueth, D. G. Grier. Processing carbon nanotubes with holographic optical tweezers[J]. Optics Express,2004,12(9):1978-1981.
    [47]A. J. Sanchez-Salmeron, R. Lopez-Tarazon, R. Guzman-Diana. Recent development in micro handling systems for micro-manufacturing[J]. Journal of Meterials Processing Technology,2005, 167(2-3):499-507.
    [48]D. McGlion. Optical tweezers:20 years on[J]. Phil. Trans. R. Soc. A,2006,364(1849):3521-3537.
    [49]C. P. Lee, T. G. Wang. Acoustic radiation pressure[J]. Journal of Acoustical Society of America, 1989,94(2):1099-1109.
    [50]M. Groschl, W. Burger, B. Handl. Ultrasonic separation of suspended particles-part iii:application in biotechnology[j]. Acta acustica united with acustica,1998,84(5):815-822.
    [51]J. Svennebring, O. Manneberg, P. Skafte-Pedersen, et al. Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity[J]. Biotechnology and Bioengineering,2009,103(2):323-328.
    [52]Dong Qin, Younan Xia, Bing Xu, Hong Yang, et al. Fabrication of ordered two-dimensional arrays of micro-and nanoparticles using patterned self-assembled monolayers as templates[J]. Advanced Materials,1999,11(17):1433-1437.
    [53]C. H. Liu, Wenzhi Li, Hengde Li, Jianli He. Micro-assembling of carbide/metal by ion-beam sputtering process[J]. Surface and Coating technology,1996,64:420-424.
    [54]F. G. Tseng, S. C. Chien. Droplet movement induced by nano assembled molecules and micro textures[J]. NSTI-Nanotech,2004,1:304-307.
    [55]A. Turchanin, A. Tinazli, M. El-Desawy, et al. Molecular Self-Assembly, Chemical Lithography, and Biochemical Tweezers:A path for the fabrication of functional nanometer-scale protein arrays[J]. Advanced Materials,2008,20:471-477.
    [56]N. C. Seeman, Angela M. Belcher. Emulating biology:building nanostructures from the bottom up[J]. PNAS,2002,99:6451-6455.
    [57]C. L. Wang, Y. L. Liu, Z. Y. Ji, et al. Cruciforms:Assembling single crystal micro-and nanostructures from one to three dimensions and their applications in organic field-effect transistors[J]. Chemistry of Materials,2009,21:2840-2845.
    [58]X. L. Wang, H. L. Hu, G. C. Liu, H. Y. Lin, A. X. Tian. Self-assembly of nanometre-scale metallacalix[4]arene building blocks and Keggin units to a novel (3,4)-connected 3D self-penetrating framework[J]. Chemistry Communication,2010,46:6485-6487.
    [59]A.Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, J. A. Rogers. Transfer printing techniques for materials assembly and micro/nanodevice fabrication[J]. Advanced Materials,2012,24:5284-5318.
    [60]M. H. Qi, H. I. Smith. Achieving nanometer-scale, controllable pattern shifts in x-ray lithography using an assembly-tilting technique[J]. J. Vac. Sci. Technol. B,2002,20:2991-2994.
    [61]W. Driesen, T. Varidel, S. Mazerolle, et al. Flexible micromanipulation platform based on tethered cm3-sized mobile micro robots[C], IEEE International Conference on Robotics and Biomimetics, Hong Kong,2005:145-150.
    [62]H. Aoyama, F. Iwata, A. Sasaki. Desktop flexible manufacturing system by movable miniature robots-miniature robots with micro tool and sensor[C]. Proceedings of IEEE International Conference on Robotics and Automation. Nagoya, Japan,1995,1:660-665.
    [63]刘京诚.微小步行爬壁机器人驱动与位置检测技术及系统[D].重庆:重庆大学博士学位论文.2003.
    [64]P. Dario, M.C. Carrozza, C. Stefanini, et al. A mobile microrobot actuated by a new electromagnetic wobble micromotor[J]. IEEE/ASME Transactions on Mechatronics,1998,3(1):9-16.
    [65]S. Dembele, K. Rochdi, P. Sandoz, et al. Development of a microrobot-based micropositioning station: the microrobot and its position and orientation measurement method[C]. Proceedings of SPIE Microrobotics and Microassembly Ⅲ,2001,4568:318-324.
    [66]秦昌骏,马培荪,姚沁.一种基于SMA的微小型蠕动机器人[J].机械工程师.2004,(1):23-26.
    [67]C. J. Qin, P. S. Ma, Q. Yao. A prototype micro-wheeled-robot using SMA actuator[J]. Sensors and Actuators.2004, Al 13:94-99.
    [68]P. Dario, R. Valleggi, M.C. Carrozza, et al. Microactuators for microrobots:a critical survey[J]. J. Micromech. Microeng.1992,2(3); 141-157.
    [69]华顺明,程光明,阚君武,等.压电型精密位移驱动器的研究进展[J].压电与声光.2004,26(3):192-195.
    [70]王代华,杨群.一种压电致动微夹钳及其开环位移特性[J].纳米技术与精密工程,2010,8(1):47~53.
    [71]B. E. Volland, H. Heerlein, I. W. Rangelow. Electrostatically driven microgripper[J]. MicroElectronic Engineering,2002,61-62:1015-1023.
    [72]I. Giouroudi, H. Hotzendorfer, J. Kosel. Development of a microgripping system for handling of microcomponents[J]. Precision Engineering,2008,32(2):148-152.
    [73]G. K. Lau, J.F. Goosen, F. Keulen, et al. Polymeric thermal microactuator with embedded silicon skeleton:part i design and analysis[J]. Journal of Microelectromechanical Systems,2008,17(4): 809-822.
    [74]T. C. Due, G. K. Lau, P. M. Sarro. Polymeric thermal microactuator with embedded silicon skeleton: part ii fabrication, characterization, and application for 2-dof microgripper[J]. Journal of Micro-electro-mechanical Systems,2008,17(4):823-831.
    [75]A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, et al. A practical microgripper by fine alignment, eutectic bonding and SMA actuation[J]. Sensors and Actuators A:Physical,1996,54(1-3):755-759.
    [76]B. Hoxhold, S. Biittgenbach. Easily manageable, electrothermally actuated silicon micro gripper[J]. Microsystem Technology,2010,16:1609-1617.
    [77]V. Seidemann, S. Butefisch, S. Biittgenbach. Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers[J]. Sensors and Actuators A:Physical,2002,97:457-461.
    [78]J. K. Luo, J. H. He, Y. Q. Fu, et al. Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages[J]. Journal of Micromechanics and Microengineering,2005, 15(8):1406-1413.
    [79]Xinhan Huang, Liu Chang, Wang Ming. An automatic vacuum microgripper[C]. IEEE Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China,2010:5528-5532.
    [80]H. Matsumura, M. Ishikawa, K. Kida, et al. Development of micro-assembling technology for fabrication of large size liquid crystal displays[J]. Japanese Journal of Applied Physics,2006,45(5B): 4413-4418.
    [81]王乐峰.微构件粘着接触模型和基于粘着力的微操作方法研究[D].哈尔滨:哈尔滨工业大学,2008.
    [82]D. S. Haliyo, Y. Rollot, S. Regnier. Manipulation of micro-objects using adhesion forces and dynamical effects[C]. International Conference on Robotics & Automation, Washington, DC,2002: 1949-1954.
    [83]P. Lambert. Capillary Forces in Microassembly[M]. New York:Springer,2007.
    [84]T. Eniko, L. L. Minkov, S. Clark. Microassembly experiments with transparent electrostatic gripper under optical and vision-based control[J]. IEEE Transactions on Industrial Electronics,2005, 52(4):1005-1012.
    [85]P. Lambert, A. Delchambre. Design rules for a capillary gripper in microassembly[C].6th IEEE International Syposium on Assembly ans Task Planning, Montreal,2005:67-73.
    [86]A. Vasudev, J. Zhe. A capillary microgripper based on electrowetting[J]. Applied Physics Letters, 2008,93(10):1-3.
    [87]J. T. Feddema, P. Xavier, R. Brown. Micro-Assembly planning with van der waals force[C]. Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning, Porto, Portugal:32-38.
    [88]A. O'Riordan, P. Delaney, G. Redmond. Field configured assembly:programmed manipulation and self-assembly at the mesoscale[J]. Nano Letters,2004,4(5):761-765.
    [89]A. Ashkin. Optical trapping and manipulation of neutral particles using lasers[M]. World Scientific Publishing Co. Pte. Ltd.,2006.
    [90]J. R. Moffitt, Y. R. Chemla, S. B. Smith, et al. Recent advances in optical tweezers[J]. Annual Review of Biochemistry,2008,77:205-228.
    [91]R. Eric. Dufresne, David G. Grier. Optical tweezer arrays and optical substrates created with diffractive optics[J]. Review of Scientific Instruments,1998,69(5):1974-1977.
    [92]M. W. Berns, H. Liang, W. H. Wright, I. A. Vorobjev. Manipulation of chromosomes with optical scissors and tweezers, Molecular Biology of the Cell,1992,3:345-350.
    [93]R. Agarwal, K. Ladavac, Y. Roichman, et al. Manipulation and assembly of nanowires with holographic optical traps[J]. Optics Express,2005,13(22):8906-8912.
    [94]A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, et al. Dynamic manipulation and separation of individual semiconducting and metallic nanowires[J]. Nature Photonics,2008,2:85-89.
    [95]朗道L D,栗弗席兹E M.连续媒质电动力学[M].北京:人民教育出版社,1963.
    [96]G. Maidanik. Torques due to acoustical radiation pressure[J].1958,30(7):620-623.
    [97]L.V. King. On the acoustic radiation pressure on spheres[J]. Proceedings of Royal Society of London, Ser.A,1935,147:212-240.
    [98]L. Brillouin. Sur les tensions de radiation[J]. Ann Phys Fr 1925;4:528-586.
    [99]T. F. W. Embleton. Mean force on a sphere in a spherical sound field I(Theoretical)[J]. Journal of Acoustical Society of America,1954,26(1):40-45.
    [100]T. F. W.Embleton. The radiation force on a spherical obstacle in a cylindrical sound field[J]. Can. J. Phys.1956;34:276-287.
    [101]W. L. Nyborg. Radiation pressure on a small rigid sphere[J]. Journal of Acoustical Society of America 1967,42(5):947-952.
    [102]K. Yosioka, Y. Kawasima. Acoustic radiation pressure on a compressible sphere[J]. Acustica,1955, 5:167-173.
    [103]L. A. Crum. Acoustic force on a liquid droplet in an acoustic stationary wave[J]. Journal of Acoustical Society of America 1971,50(1):157-163.
    [104]T. Hasegawa, K. Yosioka. Acoustic radiation force on a solid elastic sphere[J]. Journal of Acoustic Society of America,1969,46(5B):1139-1143.
    [105]T. Hasegawa, K. Yosioka. Acoustic radiation force on fused silica spheres, and intensity determination [J]. Journal of Acoustic Society of America,1975,58(3):581-585.
    [106]T. Hasegawa, Y. Watanabe. Acoustic radiation pressure on an absorbing sphere[J]. Journal of Acoustic Society of America,1978,63(6):1733-1737.
    [107]T. Hasegawa. Acoustic radiation force on a sphere in a quasistationary wave field—theory [J]. Journal of Acoustic Society of America,1979,65(1):32-40.
    [108]T. Hasegawa, K. Saka, I. Naoki, et al. Acoustic radiation force experienced by a solid cylinder in a plane progressive sound field[J]. Journal of Acoustic Society of America,1988,83(5):1770-1775.
    [109]T. Hasegawa, Y. Hino, A. Annou, et al. Acoustic radiation pressure acting on spherical and cylindrical shells[J]. Journal of Acoustic Society of America,1993,93(1):154-161.
    [110]J. R. Wu, G. H. Du, S. S. Work, D. M. Warshaw. Acoustic radiation pressure on a rigid cylinder:An analytical theory and experiments[J]. Journal of Acoustic Society of America,1990,87(2):581-586.
    [111]W. Wei, D. B. Thiessen, P. L. Marston. Acoustic radiation force on a compressible cylinder in a standing wave[J]. Journal of Acoustic Society of America,2004,116(1):201-208.
    [112]F. G. Mitri. Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field[J], Ultrasonics,2005,43(8):681-691.
    [113]F. G. Mitri.Theoretical calculation of the acoustic radiation force acting on elastic and viscoelastic cylinders placed in a plane standing or quasistanding wave field[J]. The European Physical Journal B-Condensed Matter and Complex Systems,2005,44(1):71-78.
    [114]F. G. Mitri.Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a planestanding wave field[J]. Ultrasonics,2005,43(8):681-691.
    [115]F. G. Mitri. Acoustic radiation force acting on absorbing spherical shells[J]. Wave Motion,2005, 43(1):12-19.
    [116]J. R. Wu, G. H. Du. Acoustic radiation force on a small compressible sphere in a focused beam[J]. Journal of Acoustic Society of America,1990,116(1):997-1003.
    [117]B. T. Chu, R. E. Apfel. Acoustic radiation pressure produced by a beam of sound[J].1982,72(6): 1673-1687.
    [118]X. Chen, R. E. Apfel. Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers[J]. Journal of Acoustic Society of America,1996,99(2):713-724.
    [119]P. L. Marston. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force[J]. Journal of Acoustic Society of America,2006,120(6):3518-3524.
    [120]P. L. Marston. Negative axial radiation forces on solid spheres and shells in a Bessel beam [J]. Journal ofAcoustic Society of America,2007,122(6):3162-3165.
    [121]P. L. Marston.Radiation force of a helicoidal Bessel beam on a sphere[J]. Journal of Acoustic Society of America,2009,125(6):3539-3547.
    [122]S. D. Danilov, M. A. Mironov. Mean force on a small sphere in a sound field in a viscous fluid[J]. Journal ofAcoustic Society of America,2000,107(1):143-153.
    [123]A. A. Doinikov. Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula[J]. Journal of Acoustic Society of America,1997,101(2):713-721.
    [124]A. A. Doinikov. Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. II. Force on a rigid [J]. Journal of Acoustic Society of America,1997,101(2):722-730.
    [125]A. A. Doinikov.Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. III. Force on a liquid drop[J]. Journal of Acoustic Society of America,1997,101(2):731-740.
    [126]L. P. Gor' kov. On the forces acting on a small particle in an acoustical field in an ideal fluid[J]. Soviet Physical Doklady,1962,6(9):773-775.
    [127]M. Barmatz, P. Collas. Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields[J]. Journal of Acoustic Society of America,1985,77(3):928-945.
    [128]R. Lofstedt, S. Putterman. Theory of long wavelength acoustic radiation pressure[J]. Journal of Acoustic Society of America,1991,90(4):2027-2033.
    [129]L. V. King. On the acoustic radiation pressure on circular discs:inertia and diffraction corrections [J]. Proceedings of Royal Society of London, Ser. A,1935,147:212-240.
    [130]J. B. Keller. Acoustic torques and forces on disks[J]. Journal of Acoustic Society of America,1957, 29(10):1085-1090.
    [131]A. B. Wood. A correction to the theory of the rayleigh disc as applied to the measurement of sound-intensity in water[J]. The Proceedings of the Physical Society,1935,47(5):779-793.
    [132]P. C. Lee, T. G. Wang. Near-boundary streaming around a small sphere due to two orthogonal standing waves[J]. Journal of Acoustic Society of America,1989,85(3):1081-1088.
    [133]S. Yamahira, S. Hatanaka, M. Kuwabara, et al. Orientation of fibers in liquid by ultrasonic standing waves[J].Jpn. J. Appl. Phys.,2000,39(6A):3683-3687.
    [134]K. Volke-Sepulveda, A. O. Santilla'n, R. R. Boullosa. Transfer of angular momentum to matter from acoustical vortices in free space[J]. Physical Review Letters,2008,100:024302.
    [135]P. J. Westervelt. The mean pressure and velocity in a plane acoustic wavein a gas[J]. Journal of Acoustic Society of America,1950,22(3):319-327.
    [136]P. J. Westervelt. Acoustic radiation pressure[J]. Journal of Acoustic Society of America 1957, 29(1):26-29.
    [137]Maidanik G. Torques due to acoustical radiation pressure[J]. Journal ofAcoustic Society of America, 1958,30(7):620-623.
    [138]Zongwei Fan, Keji Yang, Zichen Chen. Acoustic radiation torque on an irregularly shaped scatterer in an arbitrary sound field[J]. Journal of Acoustic Society of America,2008,124(5):2727-2732.
    [139]范宗尉,杨克己,陈子辰.任意声场中非规则形状Rayleigh散射体的声辐射力研究[J].声学学报,2008,33(6):491-497.
    [140]范宗尉.基于超声辐射力场的微构件非接触操纵关键技术的研究[D].杭州:浙江大学博士学位论文.2011.
    [141]解文军.声悬浮优化设计理论及其应用研究[D].西安:西北工业大学,1997.
    [142]W. J. Xie, C. D. Cao, Y. J. Lu, B. Wei. Levitation of iridium and liquid mercury by ultrasound[J]. Physical Review Letters,2002,89(10):104304.
    [143]W. J. Xie,B-Wei. Dependence of acoustic levitation capabilities on geometric parameters [J]. Physical Review E,2002,66(2):026605.
    [144]W. J. Xie, C. D. Cao, Y. J. Lu, Z. Y. Hong, B. Wei. Acoustic method for levitation of small living animals[J], Applied Physics Letters,89(21):214102.
    [145]Z. Y. Hong, W. J. Xie, B. Wei. Interaction of acoustic levitation field with liquid reflecting surface[J]. Journalof Applied Physics,2010,107(1):014901.
    [146]D. Foresti, N. Bjelobrk, M. Nabavi, D. Poulikakos. Investigation of a line-focused acoustic levitation for contactless transport of particles [J]. Joumalof Applied Physics,2011,109(9):093503.
    [147]K. Yasuda, S. S. Haupt, S. Umemura, et al. Using acoustic radiation force as a concentration method for erythrocytes[J]. Journal of Acoustic Society of America,1997,102(1):642-645.
    [148]H. M. Hertza. Standing-wave acoustic trap for nonintrusive positioning of microparticles[J]. Journalof Applied Physics,1995,78(5):4845-4849.
    [149]S. Radel, M. Brandstetter, B. Lendl. Observation of particles manipulated by ultrasound in close proximity to a cone-shaped infrared spectroscopy probe[J]. Ultrasonics,2010,50:240-246.
    [150]Y. Yamakoshi, Y. J. Noguchi. Micro particle trapping by opposite phases ultrasonic travelling waves[J]. Ultrasonics,1998,36:873-878.
    [151]J. J. Hawkes, D. Barrow, W. T. Coakley. Microparticle manipulation in millimetre scale ultrasonic standing wave chambers[J]. Ultrasonics,1998,36:925-931.
    [152]K. J. Yasuda. Non-destructive, non-contact handling method for biomaterials in micro-chamber by ultrasound[J]. Sensors and Actuators B,2000,64:128-135
    [153]M. Hill, Y. J. Shen, J. J. Hawkes. Modelling of layered resonators for ultrasonic separation[J]. Ultrasonics,2002,40:385-392.
    [154]D. Karpul, J. Tapson, et al. Limiting factors in acoustic separation of carbon particles in air[J]. Journal of Acoustic Society of America,2010,127(4):2153-2158.
    [155]M. Wiklund, O. Manneberg, S. M. Hagsaer, J. Svennebring, H. M. Hertz, et al. Spatial confinement of ultrasonic force fields in microfluidic channels[J]. Ultrasonics,2009,49:112-119.
    [156]J. R. Wu. Acoustical tweezers[J]. Journal of Acoustic Society of America,1991,89(5):2140-2143.
    [157]J. W. Lee, S.-Y Teh, A. Lee, et al. Single beam acoustic trapping[J]. Applied Physics Letters,2009, 95(7):073701.
    [158]P. Glynne-Jones, R. J. Boltryk, N. R. Harris, A. W. J. Cranny, M. Hill. Mode-switching:A new technique for electronically varying the agglomeration position in an acoustic particle manipulator[J]. Ultrasonics,2010,50:68-75.
    [159]T. Kozuka, T. Tuziuti, H. Mitome, T. Fukuda. Control of a standing wave field using a line-focused transducer for two-dimensional manipulation of particles[J]. Jpn J. Appl. Phys.,1998, 37(5B):2974-2978.
    [160]A. Haake, J. Dual. Micro-manipulation of small particles by node position control of an ultrasonic standing wave[J]. Ultrasonics,2002,40:317-322.
    [161]N. D. Orloff, J. R. Dennis, M. Cecchini, et al. Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics[J]. Biomicrofluidics,2011,5(4):044107.
    [162]J. Hesselbach, J. Wrege, A. Raatz. Micro handling devices[J]. CIRP Annals-Manufacturing Technology,2007,56(1):45-48.
    [163]S. Floyd, C. Pawashe, M. Sitti. Two-dimensional contact and noncontact micro manipulation in Liquid using an untethered mobile magnetic microrobot[J]. IEEE Transactions on Robotics,2009, 25(6):1332-1342.
    [164]A. Jesacher, C. Maurer, A. Schwaighofer, et al. Full phase and amplitude control of holographic optical tweezers with high efficiency[J]. Optics Express,2008,16(7):4479-4486.
    [165]C. Gosse, V. Croquette. Magnetic tweezers:micromanipulation and force measurement at the molecularlevel[J]. Biophysical Journal,2002,82(6):3314-3329.
    [166]G. Vereecke, E. Rohr, M. M. Heyns. Laser-assisted removal of particles on silicon wafers[J]. Journal of Applied Physics,1999,85(7):3837.
    [167]D. Ganic, X. S. Gan, M. Gu. Trapping force and optical lifting under focused evanescent wave illumination[J]. Optics Express,2004,12(22):5533-5538.
    [168]R. A. Bowling. A theoretical review of particle adhesion in Particles on Surfaces 1:Detection, Adhesion and Removal[M]. New York:Plenum Press,1988.
    [169]R. L. Alley, G. J. Cuan, R. T. Howe, K. Komvopoulos. The effect of release-etch processing on surface microstructure stiction[C]. IEEE Solid-State Sensor and Actuator Workshop,7, Hilton Head Island, SC, USA,1992:202-207.
    [170]R. S. Fearing. Survey of sticking effects for micro parts handling [J]. Proc. of IEEE/RSJ Conf. on Intelligent Robots and Systems,1995:212-217.
    [171]M. Soltani, G. Ahmadi. On partiele removal mechanisms under base acceleration[J]. Journal of adhesion,1994,44:161-175.
    [172]S. Timoshenkoetal. Theory of Elasticity (the 3rd edition) [M].MeGraw-Hill, NewYork,1951
    [173]K. L. Johnson, K. Kendal, A. D. Roberts. Surface energy and the contact of elastic solids[J]. Proeeedings of the Royal Soeiety of London A,1971,324:301-313.
    [174]G. C. Gaunaurd, H. Huang. Sound scattering by a spherical object near a hard flat bottom[J]. Transaction on Ultrasonics,Ferroelectrics,and Fewquency control,1996,43 (4):690-700.
    [175]M. T. Cheng, J. A. Mann, A. Pate. Wave-number domain separation of the incident and scattered sound field in Cartesian and cylindrical coordinates[J]. Journal of Acoustic Society of America, 1995,97(4):2293-2303.
    [176]M. T. Cheng, J. A. Mann, A. Pate. Sensitivity of the wave-number domain field separation methods forscattering [J]. Journal of Acoustic Society of America,1996,99(6):3550-3557.
    [177]J. R. Driscoll, D. M. Healy. Computing fourier transforms and convolutions on the 2-sphere[j]. advances in applied mathematics,1994,15(2):202-250.
    [178]B. Rafaely. Plane-wave decomposition of the sound field on a sphere by spherical convolution[J]. Journal of Acoustic Society of America,2004,116(1):2149-2157.
    [179]C. R. P. Courtney, C.-K. Ong, B. W. Drinkwater, P. D. Wilcox, C. Demore, S. Cochran, P. Glynne-Jones, M. Hill. Manipulation of microparticles using phase-controllable ultrasonic standing waves[J]. Journal of Acoustic Society of America,2010,128(4):195-199.
    [180]C. R. P. Courtney, C. K. Ong, B. W. Drinkwater, A. L. Bemassau, P. D. Wilcox, D. R. S. Cumming. Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves[J]. Proceedings of Royal Society of London, Ser. A,2011,4683571-3586.
    [181]S. Baer, M. A. B. Andrade, C. Esen, J. C. Adamowski, G. Schweiger et al. Analysis of the particle stability in a new designed ultrasonic levitation device [J]. Review of Scientific Instruments, 2011,82(10):105-111
    [182]J. Li, P. K. Liu, H. Ding, W. Cao. Nonlinear restoring forces and geometry influence on stability in near-field acoustic levitation[J]. Journal of Applied Physics,2011,109(8):084518.
    [183]I. Gonzalez, T. E. Gomez, J. L. Fernandez. Acoustic particle manipulation in a microchannel narrower than half a wavelength:stability of the node of pressure[C]. IEEE International Ultrasonics Symposium (IUS),Roma, Italy,2009:2537-2540.
    [184]N. Bjelobrk, D. Foresti, M. Dorrestijn, M. Nabavi, D. Poulikakos. Contactless transport of acoustically levitated particles [J]. Applied Physics Letters,2010,97(16):161904.
    [185]J. F. Spengler, W. T. Coakley, K. T. Christensen. Microstreaming effects on particle concentration in an ultrasonic standing wave[J]. AIChE Journal,2003,49(11):2773-2782.
    [186]P. M. Morse, K. U. Ingard.理论声学[M].北京:科学出版社,1984.
    [187]M. D. M. Peri, C. Cetinkaya. Rotational motion of microsphere packs on acoustically excited surfaces[J]. Applied Physics Letters,2005,86(19):194103.
    [189]J. H. Hu, C. Tay, Y. Cai, J. L. Du. Controlled rotation of sound-trapped small particles by an acoustic needle[J]. Applied Physics Letters,2005,87(9):094104.
    [191]J. H. Hu, X. B. Zhu, Y. J. Zhou, N. Li. Principle of the rotation of small particles around a nodal point of strip in flexural vibration[J]. Sensors and Actuators A,2012,178:202-208.
    [192]Y. J. Zhou, H. Q. Li, J. H. Hu. An ultrasonic stage for controlled spin of micro particles[J]. Review of Scientific Instruments,2012,83(4):045004.
    [193]D. Koyama, K. Nakamura. Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2010,57(6):1434-1442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700