用户名: 密码: 验证码:
海况变化时的船舶定点定位切换自适应控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋资源的不断开发和发现,目前越来越多的海洋作业向深海延伸,并且要求船舶可以全天候在海洋环境中不间断工作,可见研究全天候海洋环境下的船舶控制策略有着重要的意义。本文以国家高新技术船舶项目“船舶动力定位系统研制”为背景,重点研究海况变化时的船舶定点定位控制方法。
     船舶运动过程中普遍存在着不确定的外界扰动,可以说船舶操纵过程是一类典型的不确定非线性系统,尤其当船舶全天候工作在变化范围很大的海洋环境下,系统的不确定性更加突出。由于切换控制在解决非线性、时变和不确定性问题方面存在着优越性,本文为全天候定点定位作业的船舶研究了一种切换自适应控制策略,首先根据海况的有义波高把0~9级海况划分为普通海况、高海况和恶劣海况,然后分别研究了三种海况下切换控制系统对应的控制器、观测器以及估计器,论文的具体工作有:
     由于船舶高低频线性叠加数学模型只适合描述普通海况下的船舶运动,为了更精确的描述不同海况下的船舶运动,本文提出使用船舶统一数学模型作为船舶的过程对象模型,并结合该模型建立了6自由度的船舶统一数学模型、海浪载荷模型和风载荷模型,最后在MATLAB/SIMULINK环境下搭建了多海洋环境下的船舶运动仿真平台。
     当海况变化时观测器/滤波器的海浪滤波参数也是跟随海况变化的,为了解决观测器参数的自适应调整问题,本文为船舶切换控制系统提出了一种多模型自适应非线性观测器(Multiple ModelAdaptive nonlinear Observer, MMAO),它是由一组海浪滤波参数固定的非线性子观测器构成的。在MMAO子观测器的研究中,针对普通海况研究了一种能够进行高频滤波的具有位置、速度、加速度反馈(position, velocity, acceleration feedback,PVAF)的子观测器,该子观测器利用测量的位置、速度和加速度量去综合估计船舶所需要的低频位置、速度和加速度;针对恶劣海况下观测器很难分离高、低频运动的特点,提出了一种基于统一模型的PVAF子观测器;在高海况下提出了一种可以在普通海况和恶劣海况之间平滑过渡的加权形式的PVAF观测器。在估计器的研究中,为了让估计器能更精确地估计船舶的运动情况,提出使用基于统一模型的非线性无源观测器作为三种海况下的估计器。最后利用计算机仿真验证了所提出的观测器的性能。
     由于缓慢变化的环境干扰的存在,船舶控制对象模型中存在着未建模的环境干扰,为了克服这些不确定性因素对控制系统的影响,本文为普通海况下的动力定位船提出了一种非线性自适应反步控制方法;为了在高海况和恶劣海况下提高船舶抵抗环境干扰的能力,提出了一种具有加速度反馈补偿的自适应反步控制方法。最后针对三种海况分别验证了所提出的控制方法的优越性。
     针对非线性切换控制系统中滞后切换逻辑存在的切换迟钝问题,本文提出了一种滞后-停留时间切换逻辑,该切换逻辑可以避免因滞后参数选择不当而错失切换到最佳的控制器,并证明了提出的该切换逻辑能够保证切换控制系统的稳定性。最后通过仿真实例验证了该切换逻辑的有效性。
     由于研究的船舶切换控制系统包含多个控制器、多个子观测器以及多个估计器,在这些控制部分中存在着许多需要调整的参数,而参数的好坏将直接影响到系统的控制系能,因此本文提出使用混沌粒子群算法对控制器、观测器以及估计器的参数进行寻优。最后利用计算机仿真验证了混沌粒子群算法在参数寻优中的有效性。
     最后在持续变化的海况和风、海流环境下对所提出的船舶切换自适应控制系统进行仿真验证,仿真结果表明提出的滞后-停留时间切换逻辑能够根据海况变化及时准确的切换到对应的控制器,且切换动作没有导致切换系统出现不稳定现象;提出的船舶切换自适应控制方法比单自适应控制方法控制精度高,且切换自适应控制方法能够保证船舶在变化海况下可靠稳定的运行。
With the continuous development and discovery of marine resources, more and moremarine operations extend to the deep, and marine vessels are required to conduct continuously(such as drilling), so it is important to study the control problems of ship for all-year marineoperation. This thesis is derived from the National High Technology Ship Research Project ofChina: the research of dynamic positioning systems. The goal of this paper is to demonstratethe setpoint control of dynamic positioning vessels in varying sea conditions.
     Uncertainty disturbances widely exist in the process of ship motion, and the shipmaneuvering process is a typical class of uncertain nonlinear systems, especially when theship works in the varying marine environment, the uncertainty of maneuvering process islikely to be significant. Since the switch control has advantages to solve the nonlinear,time-varying, uncertainty problems, this thesis proposed switching adaptive control strategyfor dynamic positioning ships which conduct all-year marine operation. Firstly, according tothe significant wave height,0to9sea conditions are divided into moderate sea conditions,high sea conditions and extreme sea conditions, and then corresponding controller, observerand estimator for three sea conditions are proposed, the specific work:
     The linear superposition of Low-frequency and Wave-frequency models can accuratelydescribe the ship motion in clam sea conditions, but the model is not applied to the extremesea conditions. In order to describe the ship motions for different sea states more accurately,this paper uses the unified seakeeping-manoeuvering model as the Control plant model of theship, and established the6DOF unified state-space model, wave load model, wind loadmodel. The models were programmed with MATLAB/SIMNLUNK software, and thesimulation verified the correctness of the models.
     Taking varying sea conditions into account, the wave frequency model parameters ofobserver/filter change as the varying sea conditions, a multiple model adaptive nonlinearobserver (MMAO) for ship switching control system is proposed in this thesis, which consistsof a bank of nonlinear sub-observers that are designed based on fixed waves filteringparameters. A sub-observer with position, velocity and acceleration feedback (PVAF) is givenfor multiple model adaptive nonlinear observer in moderate sea conditions, which can separatewave frequency motions and low frequency motions. A PVAF sub-observer is proposed basedon the unified ship model for extreme sea conditions. In high seas, an observer takingweighted form of an observer between moderate seas and extreme seas is designed. In orderto make the estimator model can be closer to the real control plant, three estimators based on unified ship mathematical model are given. And computer simulation illustrates theperformance of the observer.
     Considering the ship control plant model exists the unmodeled environment force due toslow-varying environmental disturbances, in order to overcome these uncertainties, Anadaptive backstepping controller of dynamic positioning vessel is given for moderate sea state;in high and extreme seas, an adaptive backstepping controller with acceleration feedback(AFB) to increase the performance of dynmic positioning seystems is proposed. Computersimulation illustrates the performance and robustness of the controller for three seas.
     Considering the sluggish switching problem of hysteresis switching logic, a newswitching algorithm composed of scale-independent hysteresis switching logic andstate-dependent dwell-time switching logic is presented in this paper. The proposed switchcontrol guarantees that all signals in the closed loop are bounded. Simulation results confirmthe validity of the proposed approach.
     Since the switching control system of ship contains three controllers, a number ofsub-observer and three estimators, there are many parameters of the control system to beadjusted, and these parameters are optimized using the chaotic particle swarm optimization.The simulation results show that the effectiveness of the chaotic particle swarm optimization.
     Finally, computer simulation is used to verify the ship switching adaptive control systemin a constantly varying of wave, wind and current load. Simulation results show that theswitching control system has better performance of the dynamic positioning system thansingle adaptive controller; switching system can accurately switch to the best controlleraccording to the varying sea conditions, and the switching process does not destroy thestability of system.
引文
[1]边信黔,付明玉,王元慧.船舶动力定位[M].科学出版社,2011.
    [2] Fossen T I. Marine Control Systems: Guidance, Navigation and Control of Ships,Rigsand Underwater Vecicles. lst ed. Trondheim, Norway: Marine Cybernetics,2002
    [3] S rensen A J. Marine Cybernetics: Modelling and Control.2nt ed. MarineTechnology Centre, Trondheim, Norway: Marine Cybernetics,2002
    [4] S rensen A J. Structural issues in the design and operation of marine control systems.Annual Reviews in Control,2005,29:125-149P
    [5]张桂兰.模糊神经网络在船舶动力定位系统中的应用.江苏科技大学硕士论文.2005
    [6]王丹丹.救助船相对受援船动力定位方法研究.哈尔滨工程大学硕士论文.2010
    [7] Balchen J G, Jenssen N A, Saelid S. Dynamic Positioning Using Kalman Filtering andOptimal Control Theory. IFAC/IFIP Symposium on Automation in Offshore Oil FieldOperation,1976:183-186P
    [8] Robertsson A, Johansson R. Nonlinear output feedback control of dynamicallypositioned ships using vectorial observer backstepping. IEEE TRANSACTIONS ONCONTROL SYSTEMS TECHNOLOGY,1998,6(3), MAY1998:439-441P
    [9] Fossen T I, Strand J P. Passive Nonlinear Observer Design for Ships Using LyapunovMethods: Full-scale experiments with a supply vessel. Automatica,1999,35(1):3-16P
    [10] Lindegaard K P, Fossen T I. A model based wave filter for surface vessels usingposition, velocity and partial acceleration feedback. Proceeding of the40th IEEEConference on Decision and Control, Orlando, Florida USA,2001:946-951P
    [11] Strand J P, Fossen T I. Nonlinear passive observer design for ships with adaptivewave filtering. New directions in nonlinear observer design, Springer-Verlag LondonLtd,1999:113-134P
    [12] Torsetnes G, Jouffroy J, Fossen T I. Nonlinear dynamic positioning of ships withgain-scheduled wave filtering. IEEE Conference on Decision and Control, ParadiseIsland, Bahamas,2004:5340-5347P
    [13] Hassani V, S rensen A J, Pascoal A M, et al. A Multiple Model Adaptive Wave Filterfor Dynamic Ship Positioning. Proceeding of the8th IFAC Conf. on Control Appl. inMarine Systems (CAMS10), Rostock, Germany, September2010
    [14] Hassani V, S rensen A J, Pascoal A M, et al. Multiple Model Adaptive Wave Filteringfor Dynamic Positioning of Marine Vessels. in Proc. the2012American ControlConference, Montreal, Canada,2012
    [15] Fossen T I, Berge S. P. Nonlinear vectorial backstepping design for global exponentialtracking of marine vessels in the presence of actuator dynamics. Proceedings of the36th IEEE conference on decision and control, San Diego, CA,1997:4237-4242P
    [16] Ihle I-A F, Skjetne R, Fossen T I. Output feedback control for maneuvering systemsusing observer backstepping. Proceedings of the2005IEEE International Symposiumon Intelligent Control, Mediterrean Conference on Control and Automation,2005:1512-1517P
    [17]夏国清.水面舰船动力定位系统智能控制技术研究.哈尔滨工程大学博士论文.2001
    [18] Tannuri E A, Agostinho A C, Morishita H M, etal. Dynamic positioning systems: Anexperimental analysis of sliding mode control. Control Engineering Practice,2010,18(10):1121-1132P
    [19] Godhavn J M, Fossen T I, Berge S P. Non-linear and adaptive backstepping designsfor tracking control of ships. Int. J. Adapt. Control Signal Process,1998,(12):649-670P
    [20]王定亚,丁莉萍.海洋钻井平台技术现状与发展趋势.石油机械,2010,38(4):69-72页
    [21]邵诗军,牟小军,娄来柱,等.半潜式钻井平台在恶劣海况下的一开技术.石油钻采工艺,2010,32(3):1-3页
    [22]栾苏,韩成才,王维旭,等.半潜式海洋钻井平台的发展.石油矿场机械,2008,37(11):90-93页
    [23] S rensen A J, Strand J P, Nyberg H. Dynamic Positioning of Ships and Floaters inExtreme Seas. In Proceedings of OCEANS’02MTS/IEEE, Biloxi, Mississippi, US,2002:1849-1854P
    [24] Nguyen D T, S rensen A J, Quek S T. Design of hybrid controller for dynamicpositioning from calm to extreme sea conditions. Automatica,2007,43(5):768-785P
    [25] Fossen T I. A nonlinear unified state-space model for ship maneuvering and control ina seaway. In International Journal of Bifurcation and Chaos,2005,15(9):2717-2746P
    [26] Perez T, S rensen A J, Blanke M. Marine vessel models in changing operationalconditions-a tutorial. In:14th IFAC Symposium on System Identification, NewCastle,Australia,2006:309-314P
    [27] Shih C H, Huang P H, Yamamura S, et al. Design optimal control of ship maneuverpatterns for collision avoidance a review. Journal of Marine Science and Technology,2012,20(2):111-121P
    [28] Fossen T I. Nonlinear time-domain strip theory formulation for low-speedmanoeuvering and station-keeping. Modelling, Id. Control,2004,25(4):201-221P
    [29] Taghipour R, Perez Tristan, Moan Torgeir. Hybrid frequency-time domain models fordynamic response analysis of marine structures. Ocean Engineering,2008,35(7):685-705P
    [30] Chen X T, Tan W W. Tracking Control of Surface Vessels via Adaptive Type-2FuzzyLogic Control.2011IEEE International Conference on Fuzzy Systems, Taipei,Taiwan,2011:1538-1545P
    [31]高锋.汽车纵向运动多模型分层切换控制.清华大学博士论文,2006
    [32] Lainiotis D G, Deshpande J G, Upadhyay T N. Optimal adaptive control: anon-linearseparation theorem. Int, J. Control,1972,15(5):877-888P
    [33] Morse A S, Mayne D Q, Goodwin G C. Applications of hysteresis switching inparameter adaptive control. IEEE Tram. Automat. Contr.,1992,37(9):1343-1354P
    [34] Narendra K S, Balakrishnan J. Improving transient response of adaptive control usingmultiple models and switching. IEEE Trans. Automat. Contr.,1994,39(9):1861-1866P
    [35] Chen L J, Narendra K S. Nonlinear adaptive control using neural networks andmultiple models. Automatica,2001,37(8):1245-1255P
    [36] Chen L J, Narendra K S. Intelligent control using neural networks and multiplemodels.Proceedings of the41st IEEE Conference on Decision and Control, Ins Vegas,Nevada USA,2002:1357-1362P
    [37] Narendra K S, George K. Adaptive control of simple nonlinear systems using multiplemodels. Proceedings of the American Control Conference, Anchorage, AK,2002:1779-1784P
    [38] Kalkkuhl J, Johansen T A, Ludemann J. Improved transient performance of nonlinearadaptive backstepping using estimator resetting based on multiple models. IEEETram.Automat. Contr.,2002,47(1):136-140P
    [39] Ippoliti G, Longhi S. Multiple models for adaptive control to improve theperformance of minimum variance regulators. IEEE Proceedings-Control Theory andApplications,2004,151(2):210-217P
    [40]胡军格.基于驻留时间的切换系统分析.河北大学硕士论文.2009
    [41] Liberzon D, Morse A S. Basic problems in stability and design of switched systems.IEEE Control systems Magazine,1999,19(5):59-70P
    [42] Morse A S. Supervisory control of families of linear set-point controllers part1: exactmatching. IEEE Trans. Automat. Contr.,1996,41(10):1413-1431P
    [43] Morse A S. Supervisory control of families of linear set-point controllers part2:robustness. IEEE Trans. Automat. Contr.,1997,42:1500-1515P
    [44] Hespanha J P, Morse A S. Stability of switched systems with average dwell-time.Proceedings of the38th Conference on Decision&Control, Phoenix, Arizona:Omnipress,1999:2655-2660P
    [45] Persis C D, Santis R D, Morse A S. Supervisory control with state-dependentdwell-time logic and constraints. Automatica,2004,40(2):269-275P
    [46] Persis C D, Santis R D, Morse A S. Nonlinear Switched Systems with StateDependent Dwell-Time. Proceedings of the41st IEEE Conference on Decision andControl. Las Vegas, USA,2002:4419-4424P
    [47] Hespanha J P. Tutorial on supervisory control. Lecture notes for the workshop controlusing logic and switching for the40th conference on decision and control, Orlando,Florida,2001, http://www.ece.ucsb.edu/~hespanha/techreps.html
    [48] Hespanha J P, Liberzon D, Morse A S. Hysteresis-based switching algorithms forsupervisory control of uncertain systems. Automatica,2003,39(2):263-272P
    [49]穆向禹,周荻,段广仁. BTT导弹的抖动抑制多模型切换控制.航空学报.2002,23(3):268-271页
    [50]翟军勇.基于多模型切换的智能控制研究.东南大学博士论文.2006
    [51]赵景波.汽车EPS混杂控制系统理论、设计及实现研究.江苏大学博士论文.2004
    [52] Siahaan H B, Jin H Y, Safonov M G. An Adaptive PID Switching Controller forPressure Regulation in Drilling. Proceedings of the2012IFAC Workshop onAutomatic Control in Offshore Oil and Gas Production, Trondheim, Norway,2012:90-94P
    [53]刘丽梅,田彦涛,李建飞,等.被动行走机器人变路况切换控制.控制与决策.2011,26(8):1203-1208页
    [54] Smogeli N, S rensen A J, Fossen T I. Design of a hybrid power/torque thrustercontroller with loss estimation. In: IFAC Conference on Control Applications inMarine Systems,2004
    [55] Nguyen D T. Design of hybrid marine control systems for dynamic positioning. Phdthesis. Norwegian university of science and technology,2006
    [56] Morten S. Supervisory-switched Control for Dynamic Positioning Systems in ArcticAreas. Master thesis. Norwegian university of science and technology,2010
    [57]徐金龙.适应于变化海况的动力定位混合控制器的研究.哈尔滨工程大学硕士论文.2011
    [58] Hassan L H, Moghavvemi M, Almurib H A.F, et.al. Application of genetic algorithmin optimization of unified power flow controller parameters and its location in thepower system network. Electrical Power and Energy Systems.2013,46:89-97P
    [59]苏文海,姜继海,刘庆和.直驱式电液伺服转叶舵机退火蚁群寻优PD控制.电机与控制学报.2010,14(1):102-106页
    [60]邢娅浪,何鑫,孙世宇.基于改进蚁群算法的模糊控制器优化设计.2012,29(1):131-142页
    [61] Zeng C, Xu H. PID Controller Parameters Optimization Based on Artificial FishSwarm Algorithm.2012Fifth International Conference on Intelligent ComputationTechnology and Automation,2012:265-268P
    [62] Gaing Z L. A particle swarm optimization approach for optimum design of PIDcontroller in AVR system. IEEE TRANSACTIONS ON ENERGY CONVERSION,2004,19(2):384-391P
    [63] Wai R J, Chuang K L. Design of backstepping particle-swarm optimization controlfor maglev transportation system. IET Control Theory and Applications,2010,4(4):625-645P
    [64] Yang M, Wang X C, Zheng K. Nonlinear Controller design for Permanent MagnetSynchronous Motor Using Adaptive Weighted PSO. American Control Conference(ACC), Baltimore, MD,2010:1962-1966P
    [65]王介生,王金城,王伟.基于粒子群算法的PID控制器参数自整定.控制与决策,2005,20(1):73-81页
    [66]杨智,陈志堂,范正平,等.基于改进粒子群优化算法的PID控制器整定.控制理论与应用,2010,27(10):1345-1352页
    [67]王元慧.模型预测在动力定位系统中的应用.哈尔滨工程大学硕士论文.2006
    [68]孟浩.船舶航行的智能自适应控制研究.哈尔滨工程大学博士论文.2003
    [69]杨怀平,孙家广.基于海浪谱的波浪模拟.系统仿真学报.2002,14(9):1175-1178页
    [70]陈虹丽.基于π型舵船舶纵向多变量随机控制方法研究.哈尔滨工程大学博士论文.2004
    [71]聂卫东,康凤举,褚彦军,杨惠珍.基于线性海浪理论的海浪数值模拟.系统仿真学报,2005,17(5):1037-1044页
    [72]徐荣华.船舶动力定位系统建模与随机控制研究.广东工业大学博士论文.2011
    [73] Perez T. Ship Motion Control Course Keeping and Roll Stabilisation Using Rudderand Fins (Advances in Industrial Control). Norwegian University of Science andTechnology (NTNU), Trondheim, Norway:59-91P
    [74] Webster W, Sousa D. Optimum allocation for multiple thrusters. Proceedings of theISOPE’99, Brest, France,1999:672-680P
    [75] Peter S, Svend V A. Force allocation strategy for dynamic Positioning. Proceedings ofthe8th international offshore and polar engineering conference, Montreal, Canada,1997:346-353P
    [76] Berge S P, Fossen T I. Robust control allocation of overactuated ships: experimentswith a model ship. Proceedings of4th IFAC conference on maneuvering and controlfor marine craft,1997:166-171P
    [77] K-P Lindegaard. Acceleration feedback in dynamic positioning. PhD thesis.Department of Engineering Cybernetics, Norwegian University of Science andTechnology, Norway,2003
    [78] Hassani V, Aguiar A P, Athans M, et al. Multiple model adaptive estimation andmodel identification using a minimum energy criterion. Proceeding of the AmericanControl Conference, St. Louis, Missouri, USA,2009:518-523P
    [79] Hassani V, Aguiar A P, Athans M, et al. A performance based model-set designstrategy for multiple model adaptive estimation. In ECC’09-European ControlConference, Budapest, Hungary,2009
    [80] Aguiar A P, Hassani V, Pascoal A M, et al. Identifcation and convergence analysis of aclass of continuous-time multiple-model adaptive estimators. Proceeding of the17thIFAC World Congress, Seoul, Korea, Jul.2008
    [81] Aguiar A P, Athans M, Pascoal A M. Convergence properties of a continuous-timemultiple-model adaptive estimator. In Proc. Of ECC’07-European Control Conference,Kos, Greece, Jul.2007
    [82] KeIlIledy J, Eberhart R C. Particle swarm optimization. Proceedings of IEEEInternational Conference on Neural Network.Piscataway, NJ: IEEE Press,1995:1942-1948P
    [83]郜振华,梅莉,祝远鉴.复合策略惯性权重的粒子群优化算法.计算机应用,2012,32(8):2216-2218页
    [84]张鑫,王冬利,李琦,等.基于改进粒子群算法的坝体位移监控模型.水利与建筑工程学报,2012,10(1):155-159页
    [85]谭立静.粒子群算法及其在串联盘输送机控制系统中的应用研究.辽宁工程技术大学硕士论文.2006
    [86]高尚,杨静宇.混沌粒子群优化算法研究.模式识别与人工智能,2006,19(2):266-270.
    [87]唐贤伦.混沌粒子群优化算法理论及应用研究.重庆大学博士论文.2007
    [88]盖兆梅.混沌优化算法在水文水资源中的应用研究.东北农业大学硕士论文.2009
    [89]黄美灵.群智能算法在智能交通中的研究与应用.重庆交通大学硕士论文.2010
    [90]唐美芹,马锴,魏新江,等.一种基于混沌粒子群优化的OFDM系统资源分配算法.控制与决策,2012,27(7):1098-1110页
    [91]李彩玲.改进PSO算法在综合负荷建模中的应用.长沙理工大学硕士论文.2010
    [92]李文磊,张智焕,井元伟,等.基于自适应Backstepping设计的TCSC非线性鲁棒控制器.控制理论与应用,2005,22(1):153-160页
    [93] Li C Y, Jing W X, Gao C S. Adaptive backstepping based flight control system usingintegral filters. Aerospace Science and Technology,2009,13:105-113P
    [94]许红珍.不确定混沌系统同步方法的研究.哈尔滨工程大学硕士论文.2009
    [95] Nomura T, Kitsuka Y, Suemitsu H, et,al. Adaptive Backstepping Control for aTwo-Wheeled Autonomous Robot. ICROS-SICE International Joint Conference2009,Fukuoka International Congress Center, Japan,2009:4687-4692P
    [96] Karimi A, Feliachi A. PSO-tuned Adaptive Backstepping Control of PowerSystems2006:1315-1320P
    [97] Yang J H, Hsu W H. Adaptive backstepping control for electrically driven unmannedhelicopter. Control Engineering Practice,2009,17:903-913P
    [98]张海鹏.鲁棒滑模反步控制法及其在减摇鳍中的应用.哈尔滨工程大学博士论文.2004
    [99]宗广灯.切换混合动态系统的分析与控制器设计.东南大学博士论文.2005
    [100] Fossen T I, Berge S. P. Nonlinear vectorial backstepping design for global exponentialtracking of marine vessels in the presence of actuator dynamics. Proceedings of the36th IEEE conference on decision and control, San Diego, CA,1997:4237-4242P
    [101]孙勇,章卫国,章萌.基于反步法的自适应滑模大机动飞行控制.控制与决策,2011,26(9):1378-1381页
    [102]周丽,姜长生,都延丽.一种基于反步法的鲁棒自适应终端滑模控制.控制理论与应用,2009,26(6):678-682页
    [103]向峥嵘,向伟铭.基于反步法的一类非线性切换系统控制器设计.控制与决策,2007,22(12):1373-1376页
    [104]朱齐丹,周芳,赵国良,等.基于反步法和滑模观测器的船舶航向控制.控制与决策,2009,37(4):122-125页
    [105] Fossen T I, Lindegaard K P, Skjetne R J. Inertia shaping techniques for marine vesselsusing acceleration feedback.15th Triennial World Congress, Barcelona, Spain,2002
    [106] Vuilmet C. A MIMO backstepping control with acceleration feedback for torpedo.Proceedings of the38th Southeastern Symposium on System. USA,2006:157-162P
    [107] Hespanha J P, Morse A S. Certainty equivalence implies detectability. Systems&Control Letters,1999,36(1):1-13P
    [108] Kim J S. Supervisory control of globally stabilizable nonlinear systems and itsapplication to input-constrained linear plants. PhD thesis. Department of ElectricalEngineering, Korea University.2004
    [109] Yoon T W, Kim J S, Morse A S. Supervisory control using a new control relevantswitching. Automatica.2007,43:1791-1798P
    [110] Hespanha J P, Liberzon D, Morse A S. Bounds on the number of switchings withscale-independent hysteresis: applications to supervisory control. In Proceedings ofthe39th IEEE conference on decision and control,2000,(4):3622-3627P
    [111] Kim J S, Yoon T W, Persis C D. Discrete-time supervisory control ofinput-constrained neutrally stable linear systems via state-dependent dwell-timeswitching. Systems&Control Letters,2007,56:484-492P
    [112] Kim J S, Yoon T W, Shim H, et al. Switching adaptive output feedback modelpredictive control for a class of input-constraine linear plants. IET Control Theory andApplications,2008,2(7):573-582P
    [113] Kim J S, Yoon T W, Jadbabaie A, et al. Input-to-state stable finite horizon MPC forneutrally stable linear discrete-time systems with input constraints. Systems&Control Letters,2006,55:293-303P
    [114] Hespanha J P, Liberzon D, Morse A S. Supervision of integral-input-to-statestabilizing controllers. Automatica,2002,38:1327-1335P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700