用户名: 密码: 验证码:
伊通盆地构造特征与构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伊通盆地是发育于郯庐断裂带东北段上的新生代含油气盆地,位于吉林省的长春市和吉林市之间,盆地西北侧隔大黑山地垒与松辽盆地相邻,东南侧为广阔的那丹哈达岭地体。盆地平面呈NE45°方向延伸的长条形,长140km,宽12~20km,总面积2400km~2。
     本论文以伊通盆地的构造特征与构造演化为主要研究内容,在运用地球动力学、走滑伸展盆地、反转构造、石油地质学等理论基础上,详细论述了伊通盆地的成盆背景、盆地性质、基本构造特征、成因、演化阶段及构造与沉积和油气成藏的关系。通过对伊通盆地构造地质特征综合分析,取得了以下主要成果认识。
     在对伊通盆地地球动力背景、深部地质作用、盆缘和盆内构造特征与变形历史分析基础上,揭示了盆地演化具有走滑、伸展、挤压、基底隆升及火山活动等多种地质作用的更迭。通过构造发育史的分析,明确了伊通盆地构造发生的主要时期和构造变形机制,确定了伊通盆地是一个受剪切走滑作用控制的具有复杂构造演化史的走滑伸展盆地,并建立了盆地演化模式,即主成盆期为右旋走滑背景下的斜向伸展+热隆升,晚期反转为右旋走滑背景下的侧向挤压+基底隆升。其构造演化主要经历了初始断陷期(K-E_1)、断陷发展期(E_(2s)-E_(2sh))、稳定沉降期(E_(2sh)-E_(2y))、差异沉降期(E_(3w)-E_(3q))、构造反转期(E_(3q)-N_c)以及挠曲凹陷期(N_c-Q)六个阶段,该演化过程与伊通盆地的区域构造背景及郯庐断裂的活动特征密切关联。
     通过精细构造解释揭示了伊通盆地基底形态复杂,高低起伏不均,基底断裂纵横交错,总体呈东南高、西北低,具有“三隆、四凹、两斜坡、一冲断带”的构造格局。进而在盆地次级构造单元划分上,根据盆地基底形态、断裂分布特征、地层构造特征、盆地构造演化、油气勘探现状等依据,划分了莫里青断陷、鹿乡断陷和岔路河断陷3个二级构造单元和西北缘断褶带、尖山构造带、五星构造带、万昌构造带等14个三级构造单元,并对盆地主要构造单元的特征、成因及油气地质条件进行了系统分析。
     通过对盆地断裂级别、规模及形成机制等分析,指出了断裂构造是伊通盆地最主要构造类型,包括控盆边界断裂、盆地发育过程中产生的次级断裂及反转期因走滑挤压改造形成的断裂。并将盆地断裂进一步划分为了三个级别:一级断裂为西北缘和东南缘控盆边界断裂;二级断裂为早期张扭作用形成的马鞍山断裂、2号、3号、4号断裂和晚期压扭作用形成的西北缘逆冲断裂;三级断裂是盆地演化过程中形成的次级断裂,其数量众多、演化复杂,对盆地的局部构造及油气运聚成藏起重要作用。进而对盆地的主要断裂特征及成因、演化等进行了系统分析,论述了西北缘边界断裂与东南缘边界断裂的差异性。阐明了西北缘边界断裂平直,具有典型走滑特征,为控盆主断裂,演化特征由早期张扭转换为晚期压扭,且后期遭受强烈反转挤压,发育西北缘逆冲断裂并使靠近西北缘的地层发生明显的破碎变形,形成盆地特殊的有利油气聚集单元-西北缘断褶带。而东南缘边界断裂弯曲展布,具应力调节作用和扭动特征,为白垩纪形成的断入岩石圈基底的左行走滑断裂;新生代以伸展作用为主,右行走滑为辅,并发育了马鞍山断裂、2号、3号、4号断裂等呈雁列展布的分支,盆地反转期发生侧向挤压和差异隆升。
     论文首次详细论述了伊通盆地的反转构造类型、特征、反转时期、形成机制及油气地质意义,创新性的划分出了盆地西北缘因反转而形成的三级构造单元-西北缘断褶带。阐明了反转期盆地总体表现为东南缘压扭拱张、西北缘压扭冲断的特征,从而在盆地东南缘的尖山、五星、万昌等构造高部位形成大量拱张性断裂,不利于油气保存;而在盆地西北缘因压扭冲断作用而形成的西北缘断褶带,具有良好的油气成藏条件和勘探潜力。并进一步探讨了反转构造的动力背景,即主要为新近纪以来西太平洋弧后扩张并向西推挤中国东部大陆,辅以印度板块向北的陆内俯冲造成的向东挤出作用。此外还与盆缘大黑山地垒隆升、侧向挤压作用有关,特别是大黑山地垒位于盆缘的刚性岩体的分布位置及隆升强度等对盆地反转构造的平面展布特征及反转强度具有重要影响。
     综合研究表明伊通盆地的沉积和油气成藏作用明显受构造所控制。无论在早期的走滑伸展构造体制下,还是在晚期的走滑挤压和正反转构造体制下,盆地沉积体系、沉积地层厚度变化及沉降中心迁移总是受断裂走滑、构造沉降或隆升的影响。始新世中期-渐新世末期为主成盆期,控盆主断裂活动特征具有南早北晚、由南向北迁移的规律,盆地沉积中心因此也从南西向北东迁移并靠近西北缘主断裂;中新世-第四纪为盆地反转期,控盆主断裂发生右行压扭和隆升,盆地东南缘发生拱张,使得尖山构造带等早期形成的构造高部位油气藏遭受破坏,而盆地西北缘受侧向挤压形成宽2-4km的西北缘断褶带。在此基础上,通过对伊通盆地的构造动力特征与盆地沉降与变形演化历史的系统研究,并结合油气成藏条件和构造对沉积和成藏控制作用的综合分析,提出了伊通盆地西北缘断褶带为最有利的油气富集区带,内部压扭性断裂及褶皱极其发育,圈闭条件及封闭性能良好,盆地西北缘发育近岸水下扇,物性好、地层厚度大且靠近生烃中心,具备良好的油气富集条件,并进一步指出了油气勘探应以寻找走滑冲断作用形成的雁列式背斜带、雁列断块和逆冲断层下盘为主。其次,盆地内部的梁家、万昌等构造带的围斜部位、基底潜山等也是有利的油气富集区带和勘探目标。
Yitong basin is a Cenozoic petroliferous basin which develops in the northeast part of the Tan-Lu fault belt and locates between the Changchun city and Jilin city of Jilin province. The northwest edge of the Yitong basin is Daheishan horst which adjacent by the Soliao basin and the southeast edge is the Nadanhadaling terra. The basin's form looks like a long belt (140km long and 12~20km wide)and extend for the direction of NE45°,The basin's total area is about 2400km~2.
     On the base of the theories of geodynamics, strike-slip and extensional basin, inversion tectonics, petroleum geology and so on, this dissertation mainly discussed tectonic setting, structural characters, tectonic evolution and it's origin of Yitong graben, and analyzed the relationship between tectonic activities and oil-gas accumulation.
     Through the analyses of geodynamics setting, volcano activities, structural characters and evolution history of the structures around or inside Yitong basin.It shows the basin underwent various tectonic activities such as strike-slip, extension, compression, uplift and volcano activities in it's evolution history. The structure evolution profile indicates the Yitong basin's mainly period of tectonic evolution and the structural evolution mechanism, confirms that Yitong basin is a strike-slip and extensional basin which has a complex evolution history controlled by strike-slip faults system. The basin's evolution model can be divided into two stages: right-lateral extension and terra uplift period (middle Eocene to later Oligocene) and right-lateral extrusion and basin's base uplift activities period (Neogene to Quaternary).The evolution stage of Yitong basin include original faulted depression period (K-E_1) , faulted depression period (E_2s-E_2sh)、stable subside period(E_2sh-E_2y)、difference subside period(E_3w-E_3q)、tectonic inversion period (E_3q-Nc) and bend depression period (Nc-Q) . This evolution process has great correlation with the area tectonic setting and the movement character of the Tanlu fault.
     The basement hypsography of Yitong basin is very complex and change evidence, basement faults extend in difference directions, the southeast part of the basement hypsography is high and the northwest part is low. The total conformation has the characters of "three apophysises, four concaves, two slopes and one thrust fault belt. Based on the basement hypsography, faults distributing character, stratum character, tectonic evolution and petroleum exploration actuality, Yitong basin has been divided into three second-distinction units of Moliqing faulted depression, Luxiang faulted depression and Chaluhe faulted depression. The third-distinction units include 14 units such as northwest boundary fault- folds belt, Kaoshan subsag, Jianshan structure belt, Wuxing structure belt and Wanchang structure belt, and the character, origin, petroleum conditions of the mainly structure units has been analyzed in detail.
     According to the analyses of faults' distinction, scale and their origin, this paper indicates that the fault characteristics is the mainly structure character in Yitong basin, the characters and evolution of the basin's faults are very complexity, the faults can be part into three distinction by their characters and sizes, the first distinction faults include the north-west boundary fault and the south-east boundary fault; the second distinction faults include the stretching faults such as Maanshan fault, No.2 fault, No.3 fault, No.4 fault and the thrust fault by the north-west edge; the third distinction faults include other faults of the whole basin. The mainly faults' character, origin and evolution has been analyzed in detail, especially the boundary fault in northwest margin of Yitong basin is quite different from that in southeast margin. The northwest boundary fault was a strike-slip fault and extend in beeline, which controls the basin's forming. It is a sinistral strike-slip and extensional fault in Eocene. In Neogene, it becomes a reverse fault under regional compression, which controlled the special structure belt's forming of the northwest boundary fault-folds belt. The southwestern boundary fault was an extensional fault and it extend in various direction, which served as an accommondating fault during basin's evolution.No.2 fault, No.3 fault, No.4 fault are the branching normal faults of southeast boundary fault. In Neogene, they suffer from compression and uplift.
     Through the analyses of the new data of seism, aeromagnetic, drilling, etc, this paper analyzes the character, origin and the significance of the inversion structures in Yitong basin. There is a great difference of the inversion structures between the northern-west edge and southern-east edge. In the northern-west edge, the tectonic stress shows compress, a fault- folds belt waged from 2 ~ 4km formed by the northern-west edge and it has good hydrocarbon pooling conditions, maybe it is a new area of oil and gas exploration, the shallow level of fault- folds and the footwall of thrust faults are important hydrocarbon exploration areas; in the southern-east edge, the tectonic stress shows uplift and compress, inversion structures such as extensional fault-uplifts mainly form at Jianshan and Wanchang structural belt, it destructs the preexisted hydrocarbon pool, the deep level and the slope of these structure belts such as Jianshan and Wanchang are important hydrocarbon exploration areas . The thrusting activity of the Tan-Lu fault zone since Neogene and the inversion structures of the Yitong basin take place in the regional dynamic setting that back-arc spreading caused by westward subduction of the Pacific plate, and the extrusion from the Indian plate collision plays a partial role in the E-W compression in East China. Besides this, the distribution and uplift strength of rigid plates also play a great role on the distribution and inversion strength of inversion structures of Yitong basin.
     Synthesize analysis indicates that Yitong basin's sediment character and oil-gas accumulation are mainly controlled by tectonic activities. Both in the right-lateral extension period (middle Eocene to later Oligocene) and right-lateral extrusion and uplift activities period (Neogene to Quaternary), basin's sediment system, thickness change of stratum and sediment center migration are all controlled by faults' strike-slip, tectonic subside and uplift. Middle Eocene to later Oligocene is the most important period for the basin's form, in this period the involution character of the Yitong part of the Tan-Lu fault zone shows the south part forms earlier than the north part and the fault's movement intension migrates northward through time, the sediment center of Yitong basin also migrates from southwest to northeast by the time and the sediment center close with the northwest boundary fault. Neogene to Quaternary is the basin's reversion period and the basin's two boundary faults begin right-lateral extrusion and uplift activities. In the southeast edge, the tectonic stress shows uplift and compress, inversion structures such as extensional fault-uplifts mainly form at Jianshan and Wanchang structural belt, it destructs the preexisted hydrocarbon pool; In the northwest edge, the tectonic stress shows compress, a fault-folds belt waged from 2 ~ 4km formed by the northern-west edge.
     Based on the tectonic analysis on Yitong basin together with other petroleum geology conditions, northwest boundary fault- folds belt is proposed to be the best fault tectonic zones benefit to oil-gas accumulation. It has good hydrocarbon pooling conditions and maybe is a new area of oil and gas exploration, the en-echelon anticline belts, en-echelon fault-block and the footwall of thrust faults formed by strike-slip-thrust movement are the important hydrocarbon exploration areas. Besides this, the slope area around structural belts (such as Liangjia and Wanchang structural belts) and ancient buried hills are also the benefit area for oil and gas exploration.
引文
[1]刘和甫,李晓清,刘立群.走滑构造体系盆山耦合与区带分析[J].现代地质,2004,18(2):139-150
    [2]程有义,李晓清,汪泽成,等.潍北拉分盆地形成演化及其对成油气条件的控制[J].石油勘探与开发,2004,31(6):32-35
    [3]李晓清,汪泽成,程有义,等著.拉分盆地分析与含油气性-以淮北盆地为例[M].石油大学出版社,2003
    [4]王彦,何将启.莺歌海盆地结构构造与天然气成藏机制[A].张功成,徐宏,王同和,等.中国含油气盆地构造[C].北京:石油工业出版社,1999,3-28
    [5]陆克政,漆家福.渤海湾新生代含油气盆地构造模式[M].北京:地质出版社,1997,1-251
    [6]孙家振,李兰斌,杨士恭等.转换-伸展盆地-莺歌海的演化[J].地球科学,1995,20(3):35-42
    [7]杨明慧,刘池阳,魏永佩.扭张盆地的特征研究,断块油气田[J].1999,6(4):1-5
    [8]陈建平著.合肥盆地中新生代构造演化与油气地质特征[M].北京:地质出版社,2005
    [9]Nilsen T H, Sylvester A G. Strike-slip basins: Part 1[J]..Geology, 1999,18:1146-1152
    [10]Sims D, Ferrill D A and Stamatakos J A. Role of a ductile decollement in the development of pull-apart basins: Experimental results and natural examples[J]. Journal of Structural Geology, 1999, 21:533-554
    [11] Brew G, Lupa J, Barazangi M, et al. Structure and tectonic development of the Ghab basin and -the Dead Sea fault system, Syria[J]. Journal of the Geological Society, 2001, 158:665-574
    [12] Brister B S, Stephens W C and Norman G A. Structure, stratigraphy, and hydrocarbon system of a Pennsylvanian pull-apart basin in north-central Texas [J]. AAPG Bulletin, 2002, 86(1):1-20
    [13] Bellot J P.Hydrothermal fluids assisted crustal-scale strike-slip on the Argentat fault zone[J].Tectonophysics, 2008,450:21-33
    [14] Petrunin A and Sobolev S V. What controls thickness of sediments and lithospheric deformation at a pull-apart basin? [J]. Geology, 2006, 34(5):389-392
    [15] Mouslopoulou V, Nicol A, Little T A, et al. Displacement transfer between intersecting regional strike-slip and extensional fault systems[J]. Journal of Structural Geology, 2007, 29:100-116
    [16] McDonnell A, Loucks R G and Dooley T. Quantifying the origin and geometry of circular sag structures in northern FortWorth Basin, Texas: Paleocave collapse, pull-apart fault systems, or hydrothermal alteration? [J]. AAPG Bulletin, 2007, 91 (9): 1295-1318
    [17] Ryan H F, Parsons T and Sliter R W. Vertical tectonic deformation associated with the San Andreas Fault zone offshore of San Francisco, California[J]. Tectonophysics, 2008, 457:209-223
    [18] Koyi H A, Ghasemi A, Hessami K, et al. The mechanical relationship between strike-slip faults and salt diapirs in the Zagros fold-thrust belt[J].Journal of the Geological Society, 2008, 165:1031-1044
    [19] Wu J E, McClay K, Whitehouse P, et al. 4D analogue modeling oftranstensional pull-apart basins [J].Marine and Petroleum Geology, doi: 10.1016/j. marpetgeo. 2008.06.007
    [20] Ventisette C D, Montanari D, Sani F, et al. Basin inversion and fault reactivation in laboratory experiments[J]. Journal of Structural Geology, 2006, 28:2067-2083
    [21] 刘池洋.后期改造强烈-中国沉积盆地的重要特征之一[J].石油与天然气地质,1996,17(4):255-261
    [22] 宋岩,王喜双.新构造运动对天然气晚期成藏的控制作用[J].天然气地球科学,2003,14(2):103-106.
    [23] 王庭斌.新近纪以来中国构造演化特征与天然气田的分布格局[J].地学前缘,2004,11(4):403-416.
    [24] Jia C Z. The characteristics of intra-continental deformation and hydrocarbon distribution controlled by the Himalayan tectonic movements in China[J].Earth Science Frontiers, 2007, 14(4): 96-104
    [25] 宋廷光,于百莲,韩典杰,等.正反转构造的类型和特点[J].地球科学,1995,20(3):271-274
    [26] 张功成.松辽盆地反转构造与油气田分布[J].石油学报.1996.17(2):9-14
    [27] 刘和甫.伸展构造及其反转作用[J].地学前缘.1995.2(1-2):113-124
    [28] 胡望水,刘学锋,吕新华等.论正反转构造的分类[J],新疆石油地质,2000,21(1):5-8
    [29] 胡望水,吕炳全,毛治国等.中国东部中新生代含油气盆地的反转构造[J].同济大学学报,2004,32(2):182-186
    [30] 胡望水,李瑞升,李涛.正反转构造动力学成因探讨[J].石油天然气学报,2007,29(4):23-27
    [31] 陈发景,汪新文,陈昭年,等编著.伸展断陷盆地分析[M].北京:地质出版社,2004
    [32] 陈发景编著.板块构造及含油气盆地[M].武汉:地质大学出版社,1982
    [33] 周玉琦,周荔青,郭念发著.中国东部新生代盆地油气地质[M].石油工业出版社,2004
    [34] 徐嘉炜,马国锋.郯庐断裂带研究的十年回顾[J].地质论评,1992,38(4):316-324
    [35] 许志琴,曾令森,杨经绥,等.走滑断裂、“挤压性盆-山构造”与油气资源关系的探讨[J].地球科学,2004,29(6):631-643
    [36] 万天丰,朱鸿.郯庐断裂带的最大左行走滑距离及其形成时期[J].高校地质学报,1996,2(1):14-27
    [37] 朱光,刘国生,牛漫兰,等.郯庐断裂带晚第三纪以来的浅部挤压活动与深部过程[J].地震地质,2002,24(2):265-277
    [38] 漆家福,邓荣敬,周心怀,等.渤海海域新生代盆地中的郯庐断裂带构造[J].中国科学(D辑),2006,38(增刊I):19-29
    [39] Burchfiel, B.C., Stewart, J.H., Pull-apart origin of the central segment of Death Valley, California[J]. Geological Society of America Bulletin,1966.77:439-442
    [40] Crowell, J.C., Sedimentation along the San Andreas fault,California. In: Dott, R.H., Shaver, R.H. (Eds.), Modern and Ancient Geosynclinal Sedimentation.Society of Economic Paleontologists and Mineralogists Special Paper, 1974. vol. 19:292-303
    [41] Steel R. and Gloppen T. G.:Late Caledonian ( Devonian )Basin Formation, Western Norway, Signs of Strike-slip Tectonics during Infilling, Spec Pub int Ass Sediment, 1980 4:79-103
    [42] ZaK I. and Freund R: Asymmetry and Basin Migration in the Dead Sea Rift,1981 80:27-38
    [43] 林鹤鸣,夏邦栋.下扬子区中生代漂水南陵拉分盆地厘定[J].石油与天然气地质,1997,18(4):276-281
    [44] Reading H. G Sedimentary Basins and Global Tectonics Proceeding of the Geologists Association, 1982, 93:321-350
    [45] Mann P., Hempton M., Bradley D., et al.; Development of Pull-apart Basins[J].Journal of Geology,1983, 91:529-544
    [45] Lamplugh.G.W. Structure of the weald and analogues tracts[J].Quarterly Journal Geological Society 1920.75:LⅩⅩⅢ-XCT
    [47] Stille.H. Grundfragen der Vergleichenden Tektonik. Brontrager, Berlin, 1924.443-449
    [48] Prouvost P. Sedimentation et subsidence, centensire de La societe geologique defrance livre jubilaire, 1820-1990.Ⅴ.Ⅱ.Qaris. 1930. 545-564
    [49] 杜维良,李先平,肖阳等.二连盆地反转构造及其与油气的关系[J].科技导报2007,25(11):45-47
    [50] Bally.A.W. de. Seismic expression of Structural styles, 1983.3:13-18
    [51] Lowell.J.D. Structural styles in petroleum exploration. Oil and Gas Consultant International Inc, 1985.6:165-172
    [52] Cooper M.A, Williams G.D, de Graciansky RC.et.al. Inversion tectonics (a) discussion.In: Cooper M.A, Willianms G.D.des. 1989; Inversion Tectonics.London: The Geological Society, 335-350
    [53] Mietra, S. Geometry and kinematic evolution of inversion structures[J]. AAPG Bull.1993 77(7): 1159-1191
    [54] 陈发景.伸展盆地分析[M].武汉:中国地质大学出版社.1992
    [55] 胡望水,卫拥军,张自其.辽河盆地反转期构造特征[J].西安石油学院学报,2002,17(5):5-14
    [56] 徐嘉炜.郯城-庐江平移断裂系统.见构造地质论丛(3),北京:地质出版社,1984,18-32
    [57] 王小凤,李中坚,陈柏林,等.郯庐断裂带[M].北京:地质出版社,2000:167-185
    [58] 胡望水,吕炳全,官大勇,等.郯庐断裂带及其周缘中新生代盆地发育特征[J].海洋地质与第四纪地质,2003,23(4):51-58
    [59]朱光,王道轩,刘国生等.郯庐断裂带的伸展活动及其动力学背景[J].地质科学,2001,36(3):269-278
    [60]朱光,王道轩,刘国生,等.郯庐断裂带的演化及其对西太平洋板块运动的响应[J].地质科学,2004,39(1):36-49
    [61]朱光,徐佑德,刘国生,等.郯庐断裂带中-南段走滑构造特征与变形规律[J].地质科学,2006,41(2):226-241
    [62]刘顺,沈忠民,司建涛.郯庐断裂带演化动力学多力源-多时期分段作用模式[J].成都理工大学学报(自然科学版),2006,33(5):473-477
    [63]许志琴.谈谈裂谷[J].地质评论,1980,26(3):260-264
    [64]许志琴,张巧大,赵民.郯庐断裂带中段古裂谷的基本特征[J].中国地质科学院报,1982,4:17-44
    [65]许志琴.郯庐断裂系概述[J].见构造地质论丛(3),北京:地质出版社,1984,39-46
    [66]Yin A, Nie S Y, An indentation model for the north and south China collision and development ofthe Tan2Lu and Honam fault systems, eastern Asia [J]. Tectonics,1993, 12(4) :801-813
    [67]汤加富,侯明金,高天山.郑庐断裂带的主要特征与性质讨论[J].安徽地质,1995,5(3):60-65
    [68]黄汲清.中国东部大地构造分区及其特点的新认识[J].地质学报,1959,39(2)
    [69]马杏垣.中国东部前寒武大地构造基本轮廓[J].科学通报,1960,(16)
    [70]黄汲清,任纪舜.中国大地构造及其演化.北京:地质出版社,1980
    [71]徐嘉炜.郯庐断裂带的巨大平移运动[J].合肥工业大学学报,1980,(1)
    [72]姚大全.密-抚断裂带西南段中生代早中期变位与变形研究[J].辽宁地质学报,1988,(1)
    [73]刘茂强,杨丙中,邓俊国,等.伊通-舒兰地堑地质构造特征及其演化[M].北京:地质出版社.1993
    [74]孙晓猛,龙胜祥,张梅生.佳木斯-伊通断裂带大型逆冲构造带的发现及形成时代[J].石油与天然气地质,2006,27(5):637-643
    [75]解习农.伊通地堑层序构造及层序地层格架样式[J].现代地质,1994,8(3):33-38
    [76]荆凤,申旭辉,洪顺英,等.基于遥感技术研究依兰--伊通断裂带[J].地震地质,2006,26(3):79-84
    [77]李本才,刘鸿友,杜怀旭,等.伊通盆地含油气系统与油气藏[J],中国石油勘探2003,8(3):38-44
    [78]任建业,陆永潮,李思田,等.伊舒地堑构造演化的沉积充填响应[J].地质科学,1999,34(2):196-203
    [79]陈丕基.郯庐断裂巨大平移的时代与格局[J].科学通报,1988,(4):289-293
    [80]张庆龙,王良书,谢国爱,等.郯庐断裂系北延及中生代构造体制转换问题的探讨[J].高校地质科学,2005.11(40):577-584
    [81]刘和甫,夏义平,殷进垠,等.走滑造山带与盆地耦合机制[J].地学前缘,1999,6(3):121-132
    [82]Rodgers D. A.: Analysis of Pull-apart Basin Development Produced by en Echelon Strike-slip Faults, In; Ballance R F.et al. eds, Sedimentation in Oblique-slip Mobile Zones, Int Pub.1980 4,27-41
    [83] Sengor A. M. C. , Gorur N. and Saroglu F. ; Strike-slip Faulting and Related Basin Formation in Zones of Tectonic Escape, Turkey as A Case Study, In; Biddle K. T. et al. eds, Strike-slip Deformation, Basin Formation, and Sedimentation, SEPM Spec Pub,1985 37,227-264
    [84] Aiming Lin, Takao Miyata and Tianfeng Wan. Tectonic characteristics of the central segment of the Tancheng-Lujiang fault zone, Shandong Peninsula, eastern China[J]. Tectonophysics, 1998, 293(1-2):85-104
    [85] Y. G. Xu, M. A. Menzies, D. P. Mattey, D. Lowry, B. Harte and R. W. Hinton. The nature of the lithospheric mantle near the Tancheng-Lujiang fault, China: an integration of texture, chemistry and O-isotopes[J].Chemical Geology, 1996,134(1-3):67-81
    [86] Chen Jianyu, Hao Fang, Ding Zhengyian and Liu Yianzong. Petroleum potential and history of Yitong Basin, China[J]. Organic Geochemistry, 1994, 22 (2) :331-341
    [87] Yasuto Itoh, Hiroyuki Tsutsumi, Hirofumi Yamamoto, Hiroyuki Arato. Active right-lateral strike-slip fault zone along the southern margin of the Japan Sea[J].Tectonophysics, 2002, 351:301-314
    [88] Georgios Maniatis, Andrea Hampel. Along-strike variations of the slip direction on normal faults: Insights from three-dimensional finite-element models[J].Journal of Structural Geology 2008,30:21-28
    [89] Kyaw Soe Win, Makoto Takeuchi, Tetsuya Tokiwa. Changes in detrital garnet assemblages related to transpressive uplifting associated with strike - slip faulting: An example from the Cretaceous System in Kii Peninsula, Southwest Japan[J].Sedimentary Geology 201 (2007) 412-431
    [90] Ghislain de Joussineau, Ovunc Mutlu, Atilla Aydin, David D. Pollard. Characterization of strike-slip fault-splay relationships in sandstone[J].Journal of Structural Geology 29 (2007) 1831-1842
    [91] Michael Lazar, Zvi Ben-Avraham, Uri Schattner. Formation of sequential basins along a strike - slip fault--Geophysical observations from the Dead Sea basin[J].Tectonophysics 421 (2006) 53-69
    [92] 王永春.伊通地堑含油气系统与油气成藏[M].北京:石油工业出版社,2001
    [93] 童亨茂.伊通地堑边界断裂的性质与演化[J].地质力学学报,2002,8(1):35-42
    [94] 童亨茂,纪洪勇,宋立忠等.伊通地堑构造样式及其油气分布规律[J],西安石油学院学报2002,17(5):9-14
    [95] 李献甫,陈全茂,张学海.伊通地堑走滑断陷盆地的构造特征及演化[J].石油实验地质,2002,24(1):19-30
    [96] 杨铭辉.伊通地堑构造特征与油气聚集[D].中国地质大学(北京).2007
    [97] Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific basin [J] .The Geological Society of America, Special Paper, 1985, 206: 53-59
    [98] Maruyama S, Isozaki Y, Kimura G, et al. Paleogeo graphic maps of the Japanese Islands: plate tectonic systhesis from 750 Ma to the present[J]. Island Arc,1997.6:121-142.
    [99] Zhou X M and Li X W. 2000. Origin of late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas [J]. Tectonophysics, 326: 269 -287.
    [100] Vanderhaeghe O and Teyssier C. 2001. Crustal2scale rheological transition during late-orogenic collapse[J].Tectonophysics, 335:211-228
    [101] Bowley D B. 1998. Minimum age of initiation of collision between Indian and Asia north of Everest based on the subsidence history of the Zhepure Mountain section[J].The Journal of Geology, 106:229-235.
    [102] Shen Z K, Zhao C and Yin A. Contemporary crustal deformation in East Asia constrained by Global Positioning System measurements[J]. Geophys. Res.2000, 105 (B3) :5721-5734.
    [103] Otofuji Y, Hayashida A and Torii M. 1985. When was the Japan Sea opened ? Paleomagnetic evidence from southwest Japan. in : Nasu N , Uyeda S , Kushiro I , Kobayashi K and Kagami H. eds. Formation of Active Ocean Margins. Tokyo : Terra. 551-566.
    [104] Park J O, Tokyuama H, Shinohara M, et al. 1998. Seismic record of tectonic evolution and backarc rifting in the southern Ryukyu island arc system[J].Tectonophysics , 294:21-42.
    [105] 水谷伸治郎,邵济安,张庆龙.那丹哈达地体与东亚大陆边缘中生代构造的关系[J].地质学报,1989,63(3):204-216
    [106] 牛漫兰.郯庐断裂带中-南段岩浆活动与深部过程[D].合肥工业大学.2001.14-16
    [107] 万波,钟以章.东北地区的新构造运动特征分析及新构造运动分区[J].东北地震研究,1997,13(4):74-78
    [108] 张辉煌,徐义刚,葛文春,等.吉林伊通.大屯地区晚中生代-新生代玄武岩的地球化学特征及其意义[J].岩石学报,2006,22(6):1579-1596.
    [109] 孙万军,刘宝柱,李本才,等.伊通地堑断层系统与构造样式[J].现代地质,2004,18(4):505-510.
    [110] 李洪革,李本才,韩龙,等.伊通地堑二号断层几何学特征及其与油气关系[J].石油地球物理勘探,2004,39(5):614-618.
    [111] 江涛,邱玉超,王立武,等.伊通盆地二号断层与西拉木伦河断裂带及油气的关系[J].吉林大学学报(地球科学版),2008,38(3):411-416.
    [112] 姚超,焦贵浩,王同和,等.中国含油气构造样式[M].石油工业出版社,2004
    [113] Harding T P. Structures inversion at Rambutan oil field, South Sumatra Vasin, in Harding T P.Graben hydrocarbon occurrences and structural styles. [J]. AAPG Bullt, 1984. 68(3): 33-36
    [114]Harding T P. Seismic characteristics and identification of negative flower structures, positive flower structures and positive structural inversion [J]. AAPG, 1985. 63: 1016-1058
    [115]王燮培等 编著.石油勘探构造分析[M].北京:中国地质大学出版社,1990
    [116]刘国生,朱光,宋传中,等.郯庐断裂带新近纪以来的挤压构造与合肥盆地的反转[J].安徽地质,2002.12(2):81-84.
    [117]Xu J W (ed). The Tangcheng-Lujiang Wrench Fault System [M].Chichester: John Wiley & Sons. Ltd.UK, 1993:46-74.
    [118]陈全茂,李忠飞.辽河盆地东部凹陷构造及含油气性分析[M].北京:地质出版社.1998.141-148
    [119]陈义贤.辽河裂谷盆地断裂演化序次和油气藏形成模式[J].石油学报,1985.6(2):1-11.
    [120]刘万崧,周云轩,卢炎,等.基于位场信息的伊舒地堑莫里青断陷西北缘断裂性质[J].吉林大学学报(地球科学版),2005.35:42-46.
    [121]漆家福,张一伟,陆克政,等.渤海湾新生代裂陷盆地的伸展模式及其动力学过程[J].石油实验地质,1995.17(4):316-323.
    [122]陈发景,汪新文.含油气盆地地球动力学模式[J].地质论评,1996.42(4):304-310.
    [123]McKenzie D P.Some remarks on the development of sedimentary basins [J]. Earth Planetary Science Letters, 1978, 40:25-32.
    [124]Dahlstrom C D A. Balanced cross sections [J].Canadian Journal of Earth Sciences, 1969,6:743-757.
    [125]Depaor D G. Balanced section in thrust belts: Part 1, Construction [J]. AAPG Bulletin, 1988, 72 (1): 73-90.
    [126]周荔青,刘池阳 著.深大断裂与中国东部新生代盆地油气资源分布[M].北京:石油工业出版社,2006
    [127]Macgergor D S. Hydrocarbon habitat and classification of inverted rift basins. In: Buchanan J G &Buchanan P G (eds) , Basin Inversion . Geological Society Special Publication ,1995, (88) :83-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700