用户名: 密码: 验证码:
芦丁对奶牛泌乳性能、瘤胃消化代谢和对大鼠乳腺发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芦丁是一种从植物中提取的黄酮类物质,广泛存在于自然界,现有研究证明,对于人类来说芦丁既可以作为治疗药物,又能够作为保健品使用。奶牛生产性能的发挥从消化生理和泌乳生理角度分析,在很大程度上依赖于瘤胃内营养物质的消化代谢和泌乳器官乳腺的发育。本研究以泌乳奶牛和Wistar大鼠为研究对象和试验动物,就芦丁对奶牛泌乳性能、瘤胃内环境和消化代谢以及动物乳腺发育及泌乳维持的作用展开试验研究,从营养学和生理学方面探索芦丁对奶牛生理营养作用及其调控乳腺发育的作用机制和使用效果。具体研究内容分为以下十个部分:
     试验一、芦丁对奶牛泌乳性能的影响
     研究芦丁对奶牛泌乳性能的影响,探索芦丁在日粮中的适宜添加剂量,为芦丁在奶牛营养与饲料中的科学使用提供依据。选用生理阶段相近的经产中国荷斯坦奶牛20头,随机分成4组,每组5头。分别在基础日粮中每日每头添加芦丁0.0(对照组)、1.5、3.0、4.5mg/kg。试验期11周,其中预饲期1周,正试期10周。隔日记录试验牛的产奶量,并于试验第5、35、65日采集乳样进行乳成分分析。结果显示,与对照组相比,3.0mg/kg·BW和4.5mg/kg·BW芦丁处理组都显著提高了奶牛的产奶量(P<0.05),而1.5 mg/kg·BW芦丁处理组与对照组奶牛产奶量差异不显著(P>0.05);1.5 mg/kg·BW芦丁处理和3.0mg/kg·BW处理乳脂率虽低于对照组(P<0.05),但仍在正常值范围内,4.5mg/kg·BW芦丁处理乳脂率同对照组差异不显著(P>0.05),各处理组间牛乳乳蛋白、乳糖、非脂固形物差异不显著(P>0.05)。试验表明:芦丁能够提高奶牛泌乳性能,同时保持主要乳成分不受影响,在本试验条件下,芦丁适宜添加量为3.0mg/kg·BW。
     试验二、芦丁在奶牛胃肠道不同部位出现的峰值研究
     研究芦丁在奶牛胃肠道不同部位出现的峰值及其特点。利用4头安装有永久性瘤胃瘘和十二指肠瘘的成年奶牛,采用自身配对设计,对照期饲喂基础全混合日粮(TMR),试验期每日每头在基础日粮中一次性投喂芦丁3.0mg/kg·BW,在投喂后1 ~ 8 h每小时采集瘤胃液、十二指肠液和血液,检测其中芦丁和槲皮素的含量。结果显示,芦丁和槲皮素在奶牛瘤胃液中分别于饲喂后1 h和2 h达到峰值3.017±0.153μg/ml和1.148±0.153μg/ml;十二指肠液中在6 h出现峰值2.133±0.057μg/ml和0.214±0.004μg/ml;在血液中芦丁和槲皮素均出现两个峰值,芦丁的峰值出现在1 h(0.180±0.029μg/ml)和8 h(0.229±0.014μg/ml),槲皮素的峰值在1h(0.064±0.002μg/ml)和8h(0.089±0.007μg/ml)。试验表明:芦丁及其代谢产物槲皮素在奶牛胃肠道中出现的峰值因饲喂时间和消化部位不同而有差异。
     试验三、芦丁对奶牛血液生化指标和激素水平的影响
     在奶牛日粮中添加芦丁,测定奶牛血液生化指标、免疫指标和激素水平的变化,旨在探索芦丁对奶牛血清学指标和泌乳相关激素水平的影响。选用生理状态等相近的经产中国荷斯坦泌乳牛10头,随机分成2组,每组5头。分别在基础日粮中每日每头添加芦丁0.0 mg/kg·BW(对照组)和3.0 mg/kg·BW(试验组)。试验期11周,其中预饲期1周,正试期10周,在试验第5、35、65日采集血样,检测其生化、免疫和激素指标。试验组与对照组相比,总蛋白、白蛋白、葡萄糖水平差异不显著(P>0.05),芦丁可以显著降低奶牛血液中尿素氮的含量(P<0.05);IgG、谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)、皮质醇(Cort)含量两组差异不显著(P>0.05),试验组溶菌酶(LZM)水平显著高于对照组(P<0.05);试验组和对照组奶牛血液中雌激素(E2)、孕激素(P)和催乳素(PRL)差异不显著(P>0.05),试验组催乳素水平由试验第5日12.19 ng/ml至第65日提高到13.94 ng/ml呈现上升趋势。试验显示:芦丁能够降低奶牛血液中尿素氮水平,提高溶菌酶含量。
     试验四、芦丁对奶牛瘤胃消化代谢的影响
     研究芦丁对奶牛瘤胃消化代谢的影响,旨在为探讨芦丁对奶牛瘤胃发酵的调控作用提供数据与参考。利用安装有永久性瘤胃瘘和十二指肠瘘的4头成年奶牛,采用自身配对设计,对照期饲喂TMR ,试验期每日每头在TMR中一次性投喂芦丁3.0mg.kg·BW,在投喂后1 h ~ 8 h每小时采集瘤胃液,检测瘤胃液中pH值、氨态氮(NH3-N)、挥发性脂肪酸(VFA)、瘤胃原虫数量、微生物蛋白的变化情况。结果显示,试验期瘤胃液pH值5.92低于对照期6.16(P<0.05),NH3-N浓度11.03 mg/100ml低于对照期20.07 mg/100ml(P<0.05),总挥发性脂肪酸(TVFA)试验期96.72 mmol/L高于对照期83.12 mmol/L(P<0.05),乙酸浓度61.00 mmol/L高于对照期51.47 mmol/L(P<0.05),丙酸浓度36.35 mmol/L高于对照期19.95 mmol/L(P<0.05),乙酸/丙酸的比例试验期与对照期差异不显著(P>0.05),乙酸、丙酸在TVFA中所占的比例试验期与对照期差异也不显著,试验期中瘤胃原虫数12.54(×105个/ml)低于对照期16.37(×105个/ml)(P<0.05),原虫蛋白含量试验期3.71 mg/ml低于对照期5.14 mg/m(lP<0.05),菌体蛋白含量试验期1.50 mg/ml高于对照期0.86 mg/ml(P<0.05)。试验表明:芦丁具有以下作用,降低瘤胃中NH3-N浓度,增加挥发性脂肪酸的总量,增加乙酸、丙酸的浓度,降低瘤胃pH值,抑制瘤胃原虫数量,降低原虫蛋白含量,增加瘤胃液中菌体蛋白的浓度。
     试验五、体外法研究芦丁对奶牛瘤胃主要消化酶活性的影响
     研究芦丁对奶牛瘤胃主要消化酶活性的影响。选择体况良好,体重600 kg左右,安装有永久性瘤胃瘘管的健康中国荷斯坦奶牛5头,采集瘤胃内容物制取固相和液相酶液,分别添加芦丁0.00 mg/ml(对照组)、0.02 mg/ml、0.04 mg/ml、0.06 mg/ml,混匀后检测其中淀粉酶、滤纸酶、β-葡萄糖苷酶、羧甲基纤维素酶、微晶纤维素酶、果胶酶、木聚糖酶的活性。结果显示,添加芦丁的试验组与对照组相比较,奶牛瘤胃内容物固相和液相总脱氢酶、滤纸酶、β-葡萄糖苷酶、羧甲基纤维素酶和微晶纤维素酶的活性均有显著差异(P<0.05),蛋白酶活性显著低于对照组(P<0.05),而淀粉酶、果胶酶与木聚糖酶与对照组相比较其酶活性差异不显著(P>0.05)。试验表明:芦丁能够提高奶牛瘤胃内容物固相和液相中总脱氢酶、滤纸酶、β-葡萄糖苷酶、羧甲基纤维素酶、微晶纤维素酶的活性。
     试验六、体外法研究芦丁对牛初乳酶活的影响
     利用奶牛分泌到初乳中的生物活性物质——酶作为指标,来分析和评价芦丁对奶牛乳腺细胞的作用。采集5头健康中国荷斯坦奶牛分娩后第二天的初乳,向初乳样品中添加5个芦丁浓度剂量梯度0 mol/L(对照)、10~(-7) mol/L、10~(-6) mol/L、10~(-5) mol/L、10~(-4) mol/L,混匀后检测初乳中β-N-乙酰氨基葡萄糖苷酶(NAG)、碱性磷酸酶(ALP)、乳过氧化物酶(LP)、γ-谷氨酰转肽酶(γ-GT)的活性。检测结果显示10~(-6) mol/L、10~(-5) mol/L、10~(-4) mol/L剂量组NAG酶比活力分别为7.61、6.92、6.43(U/L)显著低于对照组9.74(U/L)(P<0.05),10~(-7) mol/L剂量组NAG酶比活力为8.17 U/L与对照组相比差异不显著(P>0.05);各剂量组ALP酶活性差异不显著;10~(-7) mol/L、10~(-6) mol/L、10~(-5) mol/L、10~(-4) mol/L各剂量组LP酶比活力分别为58.30、65.00、72.94、77.03(U/ml)显著高于对照组48.89(U/ml)(P<0.05);10~(-7) mol/L、10~(-6) mol/L剂量组γ-GT酶比活力分别为11613.49、11371.1(6U/L),显著高于对照组10248.84(U/L)(P<0.05),10~(-5) mol/L、10~(-4) mol/L剂量组γ-GT酶比活力与对照组相比差异不显著(P>0.05)。本试验结果表明:在试验室条件下,芦丁能够提高奶牛初乳中LP和γ-GT酶活性,抑制NAG酶活性,对ALP影响差异不显著。
     试验七芦丁对大鼠泌乳性能的影响
     通过研究芦丁对大鼠泌乳性能、内分泌激素、乳腺器官指数的影响,考察芦丁调节大鼠乳腺泌乳和维持泌乳的作用。试验选择18只Wistar受孕母鼠,随机分为3组,每组6只,分别为对照组(每日每只灌胃生理盐水2ml)、芦丁组(每日每只灌服芦丁60 mg/kg·BW)、雌二醇组(每周每只肌注雌二醇60ug/kg·BW),从哺乳第4天开始连续给药2周,基础日粮相同。测定指标包括:大鼠泌乳量,仔鼠平均体增重,乳腺器官指数,血浆与乳腺组织中雌激素(E2)、孕激素(P)、催乳素(PRL)、生长激素(GH)的含量。试验结果显示,芦丁组大鼠泌乳量7.35(g/h)显著高于对照组5.73(g/h)(P<0.05),与雌二醇组8.22(g/h)差异不显著(P>0.05);芦丁组与雌二醇组相比,仔鼠体增重差异不显著(P>0.05),但芦丁组与雌二醇组仔鼠体增重显著大于对照组(P<0.05);芦丁组大鼠血浆与乳腺组织中E2、PRL、GH的水平显著高于对照组(P<0.05),低于雌二醇组(P<0.05),P水平各组间差异不显著(P>0.05);雌二醇组和芦丁组大鼠乳腺器官指数显著高于对照组(P<0.05)。试验结果表明:在本试验条件下,芦丁能够促进乳腺分泌乳汁,显著提高雌性大鼠泌乳量,对促进大鼠乳腺器官的发育有一定作用,能发挥类雌二醇样作用。
     试验八芦丁对雌性青春期大鼠乳腺发育及相关激素与受体水平的影响
     通过研究芦丁对雌性青春期大鼠内分泌激素水平、激素受体表达的影响和乳腺组织形态学变化的观察,探讨芦丁对乳腺发育的作用。选取24只雌性青春期Wistar大鼠,随机分为3组,对照组(Con):每日每只灌胃生理盐水2 ml;芦丁组(Rut):每日每只灌服芦丁60 mg/kg·BW;雌二醇组(Est):每周每只肌注雌二醇60μg/kg·BW。试验期2周,结束时检测大鼠血浆和乳腺组织中雌激素(E2)、孕激素(P)、催乳素(PRL)、生长激素(GH)含量及其受体表达,并进行乳腺组织形态学观察。研究结果显示,Est组、Rut组、Con组大鼠血浆与乳腺组织中E2、PRL水平分别依次降低,差异显著(P<0.05);Rut组P水平显著高于Con组(P<0.05),与Est组相比,差异不显著(P>0.05);Est组GH水平高于Rut组,Rut组GH水平高于Con组,差异均不显著(P>0.05)。雌激素受体(ER)、孕激素受体(PR)、催乳素受体(PRLR)、生长激素受体(GHR)在乳腺组织中的表达量依次为Est组>Rut组>Con组(P<0.05)。Rut组大鼠乳腺组织切片腺泡管腔直径大于Con组(P<0.05),小于Est组(P>0.05)。试验表明:在本试验条件下,芦丁能够提高雌性青春期大鼠E2、P水平,促进PRL分泌,上调乳腺组织中ER、PR、PRLR、GHR的表达量,促进乳腺发育,发挥类雌二醇样作用。
     试验九芦丁对去卵巢处女大鼠乳腺发育作用的影响
     研究芦丁对去卵巢处女大鼠内分泌激素水平、激素受体表达的影响以及乳腺组织形态变化,旨在了解和认识芦丁促进乳腺发育的类雌激素样作用功效。试验选择32只去卵巢处女Wistar大鼠,随机分为四个处理组,假手术组(Sham),每日每只灌胃2 mL生理盐水;卵巢切除组(Ova),每日每只灌胃2 mL生理盐水;去卵巢芦丁组(Ova+Rut),每日每只按60 mg/kg·BW剂量灌服芦丁;去卵巢雌二醇组(Ova+Est),每周每只肌注雌二醇(60 ug/kg·BW)一次。试验为期两周,试验结束后采集大鼠血液样品、乳腺组织样品进行测定分析。试验结果显示,Ova+Rut组和Ova+Est组大鼠血浆中雌激素(E2)的水平高于Ova组(P<0.05),该两组间差异不显著(P>0.05),Ova+Rut组水平低于Sham组(P<0.05),Ova+Est组与Sham组差异不显著(P>0.05),各处理组间乳腺组织中E2含量呈现相同规律;各处理组血浆与乳腺组织中催乳素(PRL)的含量变化趋势为Ova组0.05),Ova+Est组与Sham组差异不显著(P>0.05);Ova组、Ova+Rut组、Ova+Est组、Sham组各组间大鼠乳腺组织中雌激素受体(ER)、催乳素受体(PRLR)、生长激素受体(GHR)表达量依次增大(P<0.05),呈现相同变化趋势;乳腺组织形态学观察发现,Ova+Rut组、Ova+Est组、Sham组乳腺组织的发育显著好于Ova组(P<0.05)。结果表明:在本试验条件下,芦丁能够提高去卵巢处女大鼠E2水平,促进垂体分泌PRL、GH,上调乳腺组织中ER、PRLR、GHR的表达量。
     试验十芦丁对哺乳大鼠乳腺激素受体表达量的影响
     本试验目的是研究芦丁对哺乳期大鼠泌乳相关激素受体表达量的影响。试验选择18只Wistar哺乳母鼠,随机分为3组,每组6只,分别为对照组(Lac-Con组)每日每只灌胃生理盐水(2 mL)一次、芦丁组(Lac-Rut组)每日每只灌服芦丁(60 mg/kg·BW)一次、雌二醇组(Lac-Est组)每周每只肌注雌二醇(60μg/kg·BW)一次,从哺乳第4天开始连续给药2周,基础日粮相同。检测哺乳大鼠乳腺组织中雌激素受体(ER)、孕激素受体(PR)、催乳素受体(PRLR)、生长激素受体(GHR)的表达量,并对乳腺组织进行形态学观察。试验显示,ER、PR、PRLR、GHR在乳腺组织中的表达量Lac-Est组>Lac-Rut组>Lac-Con组(P<0.05);乳腺腺泡/管腔直径统计显示Lac-Est组和Lac-Rut组高于Lac-Con组(P<0.05),Lac-Est组与Lac-Rut组差异不显著(P>0.05)。试验结果表明:在本试验条件下,芦丁具有诱导ER、PR、PRLR和GHR表达的作用。
     综上所述,本文系统地研究了芦丁对奶牛生产性能的影响,对瘤胃消化代谢的调节作用,及对乳腺和机体免疫功能的影响,探讨了芦丁对乳腺发育和维持泌乳的影响及相关内分泌作用。根据试验结果与分析讨论,可以得出以下主要结论,在本研究条件下:芦丁及其代谢物槲皮素在瘤胃液中出现峰值的时间为饲喂后1 h和2 h,在十二指肠液中出峰时间为6 h,在血液中出双峰时间均为1 h和8 h。日粮中按3.0 mg/kg添加芦丁,可以显著提高奶牛产奶量;日粮中添加芦丁可以改善瘤胃发酵和氮代谢,促进氮的代谢和利用,在一定程度上可抑制瘤胃原虫数量,降低原虫蛋白含量,增加瘤胃液中菌体蛋白的浓度。日粮中添加芦丁能够提高奶牛瘤胃内容物固相和液相中总脱氢酶、滤纸酶、β-葡萄糖苷酶、羧甲基纤维素酶、微晶纤维素酶活性,对奶牛免疫功能和激素水平无调节作用,可在一定程度上提高血清中溶菌酶的浓度,降低血液中尿素氮水平。芦丁能够提高奶牛初乳中LP和γ-GT酶活性,抑制NAG酶活性,对ALP影响差异不显著。在Wistar大鼠试验中,芦丁能够促进哺乳大鼠乳腺分泌乳汁,对大鼠乳腺器官的发育有一定的促进作用,能发挥类雌二醇样作用;能够提高雌性青春期大鼠E2、P水平,促进PRL分泌,上调乳腺组织中ER、PR、PRLR、GHR的表达量,促进乳腺发育,有类雌二醇样作用的功效;能够提高去卵巢处女大鼠E2水平,促进垂体分泌PRL、GH,上调乳腺组织中ER、PRLR、GHR的表达量;具有诱导ER、PR、PRLR和GHR表达的作用。
Rutin is the flavonoids extracted from the plant, and is widely distributed in nature. Studies have shown that rutin can be used not only in treatments but also as health care products for humans. From perspectives of digestive physiology and the physiology of lactation, the performance of dairy cows depends to a large extent on the rumen digestion and metabolism of nutrients and the development of lactating mammary gland.
     In this series of researches, dairy cows and Wistar rats were used as animal models to study the effects of rutin supplementation on the production performance of diary cows, internal environment, digestion and metabolism of rumen, and the development and lactation maintenance of mammary gland. Besides, the action mechanisms and using effects of rutin on dairy cows physiological nutrition and mammary gland development were explored from aspects of nutriology and physiology. The present research consists of ten experiments which were listed as follows:
     EXP 1. Effect of Rutin Supplementation on Lactation Performance
     This study was designed to investigate the effects of rutin supplementation on milk yield in dairy cows, to find the optimum dosage of rutin and subsequently to offer the scientific basis for the usage of rutin in cows nutrition and feed. Twenty cows in their peak lactation were randomly divided into 4 groups and each was offered a basal diet supplemented with 0, 1.5, 3.0 or 4.5 mg rutin/kg·BW of diet. The trial lasted 11 weeks, including an adaption period of one week and a ten-week experimental period. Milk yields were recorded every other day, and milk compositions were analyzed on the 5th, 35th and 65th day. The experiment showed that, compared to the control group, the cows receiving 3.0 and 4.5 mg·rutin/kg·BW had significantly higher milk yield (P<0.05). No significant difference in milk yield was detected between the cows receiving 1.5 mg·rutin/kg·BW and the control group (P > 0.05). The milk fat content of the cows receiving 1.5 or 3.0 mg·rutin/kg·BW was lower than that of the control group (P<0.05). No significant difference in the milk fat content was observed between the cows offered 4.5 mg·rutin/kg·BW and the control group (P>0.05). The contents of milk protein, lactose and milk non-fat solid matter did not differ significantly among groups (P>0.05). Experiments indicated that dietary rutin improved the production performance of dairy cows,while the main milk compositions were not affected. Under this experimental conditions, the appropriate dosage for rutin supplementation was 3.0 mg/kg·BW diet.
     EXP 2. Study on the Peak of Rutin in Different Parts of the Gastrointestinal Tract in Dairy Cows
     4 adult cows with permanent rumen fistula and duodenal cannulae were attributed to a self control design and used to investigate the time and characteristics of peak occurrence in different parts of the gastrointestinal tract in dairy cows. Total mixed rations ( TMR ) were used as a basal diet in control period. Cows were fed with rutin one at a time per day in test period. The levels of rutin and quercetin in rumen fluid, duodenal content and blood were detected once per hour from 1 h to 8 h after feeding. The results showed that the concentration of rutin and quercetin in rumen fluid reached their peak levels at 1 h ( 3.017±0.153μg/ml ) and 2 h ( 1.148±0.153μg/ml ) respectively. The peak level in duodenal content occurred at 6h ( 2.133±0.057μg/ml and 0.214±0.004μg/ml ). Rutin had two peaks in blood at 1 h ( 0.180±0.029μg/ml )and 8 h(0.229±0.014μg/ml)respectively. So did quercetin at 1h(0.064±0.002μg/ml )and 8h(0.089±0.007μg/ml). These results indicated that feeding time and digest positions affected the peak occurrence of rutin and aglycone quercetin in the gastrointestinal tract in dairy cows.
     EXP 3. Effects of Rutin Supplementation on Blood Metabolites and Levels of Hormone in Dairy Cows
     By investigating the changes of blood metabolites and levels of hormone in dairy cows after rutin supplementation, we try to study the effects of rutin on immune function and milk-related hormones. Ten cows in their peak lactation were randomly divided into 2 groups and each was offered a basal diet supplemented with 0.0 and 3.0 mg rutin/kg·BW of diet. The trial was 11 weeks, including an adaption period of one week and a ten-week experimental period. The vein blood samples were analyzed on the 5th, 35th and 65th day. Test serum biochemical indexes, immune indexes and lactation-related hormones. Compared to the control group, no significant difference was observed in the serum concentration of TP, ALB and Cort (P>0.05). But rutin could reduce the content of urea nitrogen in blood (P<0.05).There was no significant difference in the serum concentration of IgG, ALT, AST, ALP and cortisol between the cows receiving 3.0 mg·rutin/kg·BW and the control group (P<0.05). The lysozyme content of the experimental group was higher than that of control group (P<0.05). The serum concentration of estrogen (E2) and progestin (P) did not differ significantly between the treatments (P>0.05), but the serum progesterone level which increased from 12.19 ng/ml on the 5th day to 13.94 ng/ml on the 65th day showed an upward trend in rutin-supplemented cows compared to control. It suggested that rutin could decrease blood urea nitrogen and increase serum lysozyme content.
     EXP 4. Effects of Rutin on the Ruminal Digestibility and Metabolism of Dairy Cows
     The study was designed to investigate the role of rutin on the ruminal digestibility and metabolism of dairy cows, and subsequently to provide data and references to exploring the effect of rutin on ruminal fermentation. 4 adult cows with permanent rumen fistula and duodenal cannulae were attributed to a self control design and used in the investigation. TMR were used as basal diet in the control period. Cows were fed with rutin one at a time per day in the test period. The levels of pH, ammonia nitrogen ( NH3-N ), volatility fatty acid ( VFA ), the number of rumen protozoa and microbial protein ( MCP ) were detected once per hour from 1 h to 8 h after feeding. The results showed that the rumen fluid pH in the test period ( 5.92 ) was lower than that in the control period ( 6.16 ) (P<0.05). The concentration of NH3-N in the test period ( 11.03 mg/100ml ) was less than that in the control period ( 20.07 mg/100ml ) (P<0.05).Compared to the control period( 83.12 mmol/L ) , the concentration of TVFA in the test period ( 96.72 mmol/L ) was higher (P<0.05). Acetic acid in the test period ( 61.00 mmol/L ) was on a higher level compared to the control period ( 51.47 mmol/L ) (P<0.05) and so was propionic acid in the test period ( 36.35 mmol/L ) compared to the control period ( 19.95 mmol/L ) (P<0.05). There were no significant difference in both the proportion of acetic acid and propionic acid in TVFA (P<0.05). The number and protein content of rumen protozoa in the test period ( 12.54×10~5个/ml, 3.71 mg/ml ) were less than those in the control period ( 16.37×10~5个/ml , 5.14 mg/ml ) (P<0.05). In the test period the MCP ( 1.50 mg/ml ) was higher compared to the control period (0.86 mg/ml ) (P<0.05). Those results indicated that rutin could reduce the concentration of NH3-N , increase the TVFA and the concentration of acetic acid and propionic acid, lower pH level, bring down the number and the protein content of rumen protozoa, and increase MCP in the rumen.
     EXP 5. Study the Effect of Rutin on Activities of Digestive Enzymes in the Rumen in Vitro
     This study was conducted to investigate the effect of rutin on activities of digestive enzymes in the rumen of dairy cows. 5 healthy about 600 kg-weight China Holstein Cows with permanent rumen fistula were used in this study. Rutin was added into the enzyme ( solid and liquid fraction) extracted from rumen content on the dosage of 0.00 mg/ml (control group), 0.02 mg/ml, 0.04 mg/ml, 0.06 mg/ml respectively and. After mixing, the enzyme activities of protease, amylase, total dehydrogenase, filter paper enzyme,β-glucosidase, carboxymethyl cellulose (CMC), avicelase, pectinase, xylanase were measured. The results showed that compared to the control group, the enzyme activities total dehydrogenase, filter paper enzyme,β-glucosidase, CMC, avicelase in experimental groups significantly differed in both liquid and solid fraction ( P<0.05 ). The enzyme activities of protease were lower than control group ( P<0.05 ). There were no significant difference in the activities about amylase, pectinase and xylanase( P>0.05). In all groups, the enzyme activities of solid fraction were significantly higher than that of liquid faction. It suggested that rutin could enhance the enzyme activities of filter paper enzyme,β-glucosidase, CMC, avicelase in solid and liquid fraction in the rumen of dairy cows. The value of the enzyme activities in solid fraction was higher than that in liquid fraction.
     EXP 6. Study the Effect of Rutin on the Enzyme Activities of Bovine Colostrum in Vitro
     The enzyme ( the bioactive substances ) secreted into colostrum by dairy cows was used as an indicator to analyze and evaluate the action of rutin on cow mammary cells. The colostrum samples of five healthy Chinese Holstein cows was collected the day after delivery. Rutin was added into the samples on the dosage of 0(control)、10~(-7)、10~(-6)、10~(-5)、10-(4mol/L ). After mixing, the enzyme activities ofβ-N-acetylglucosaminidase ( NAG ), alkaline phosphatase ( ALP ), lactoperoxidase ( LP ),γ-glutamyl transpeptidase (γ-GT ) were measured. Results showed that the enzyme activites of NAG in 10~(-6)、10~(-5)、10~(-4)(mol/L )groups ( 7.61、6.92、6.43 U/L respectively)were lower than that in the control group 9.74(U/L)(P<0.05). No significant difference was observed between 10~(-7)(mol/L)group (8.17 U/L) and the control group (P>0.05). The enzyme activities of ALP did not differ significantly among the treatments (P>0.05). The enzyme activities of LP in 10~(-7)、10~(-6)、10~(-5)、10~(-4)(mol/L)groups ( 58.30、65.00、72.94、77.03 U/ml respectively) were higher than the control group ( 48.89 U/ml )(P<0.05). The enzyme activities ofγ-GT in 10~(-7)、10~(-6)(mol/L)groups (11613.49、11371.16U/L respectively)were higher than 0(mol/L)(10248.84U/L)(P<0.05), but there were no significant differences in 10~(-5)、10~(-4)(mol/L)groups 10036.74、9542.33U/L) ompared to the control group(P<0.05). This result suggested that, under such experimental conditions, rutin could improve the enzyme activities of LP andγ-GT, inhibit the enzyme activities of NAG, and exert no significant effect on the enzyme activities of ALP.
     EXP 7. Effect of dietary rutin on laction performance in rats
     The objective of this study was to investigate the regulatory effect of rutin on lactation of rats by examining the effects of rutin on milk yields, endocrine hormones and mammary organ indexes of rats. Eighteen pregnant Wistar rats were randomly assigned to 3 treatments: control, gastric infusion of rutin at 60 mg/kg·BW per day, and intramuscular injection of estradiol 60μg/kg·BW weekly from the fourth lactation day for two weeks with the same basal diet. The milk yield of rats, body weight gain of the neonatal rats, mammary gland index, the level of estrogen (E2), progesterone (P), prolactin (PRL) and growth hormone (GH) in plasma and gland tissues were measured. The results shown that the milk yield of the rats receiving rutin ( 7.35 g/h ) was higher than that of the control group ( 5.73 g/h ) (P<0.05), but no obvious difference was observed when compared to the estradiol group ( 8.22 g/h ) (P>0.05). The body weight gain of the neonatal rats in the rutin group had no distinct difference with that in the estradiol group (P<0.05), but these two groups were higher than the control group (P>0.05). The level of E2, PRL and GH in plasma and gland tissues of the rats in the rutin group was higher than that in the control group (P<0.05), but less than that in the estradiol group (P<0.05), and the differences of P level among groups were not distinct (P>0.05). The indexes of mammary gland of the rats in the estradiol and rutin group were higher than that in the control group (P<0.05). Those results indicated that, under such experimental conditions, dietary rutin could promote mammary gland to secrete milk , significantly improve the milk yield of female rats, affect to some extent the development of the thymus, and excert E2-like effects.
     EXP 8. Effects of Rutin on the Development of Mammary Gland and Levels of Relevant Hormones and Hormonal Receptors of Pubertal Female Rats
     The objective of this study was to investigate the regulatory effect of rutin on mammary glands of unmarried rats by studying the plasma level of endocrine hormones, the expression of hormonal receptors and the changes in the histomorphology of mammary tissues. Twenty four intact virgin rats were randomly assigned to three treatments: 1) gastric infusion of 2 ml normal saline per mouse per day (control (Con)); 2) gastric infusion of 60 mg rutin/kg·BW per day (Rutin (Rut)); and 3) intramuscular injection of 60μg estradiol/kg·BW weekly (Estradiol (Est)). The trial lasted two weeks. The concentration of estrogen (E2), progesterone (P), prolactin (PRL) and growth hormone (GH) in plasma and gland tissues was determined, and the expression of estrogen receptors (ER), progesterone receptors (PR), prolactin receptors (PRLR) and growth hormone receptors (GHR) in gland tissues was measured. The histomorphology of mammary tissues was also monitored. Results showed that the concentration of E2 and PRL in plasma and mammary tissues was ranked as Est>Rut>Con, and the differences were distinct (P<0.05), the concentration of P in plasma and mammary tissues in Rut group was higher than that in Con group(P<0.05), and there was no difference between Rut and Est groups(P>0.05).The concentration of GH in Est grouo was higher than that in Rut group, so was Rut group compared to Con group, and the difference was not significant(P>0.05). The expression of ER, PR, PRLR and GHR in mammary tissues was ranked as Est>Rut>Con (P<0.05). The diameter of mammary acinar cells and lumen was higher (P<0.05) in Rut group than that in Con group, but lower than that in Est group (P>0.05). These results suggested that, under such experimental conditions, rutin could improve the plasma concentration of E2 and P in pubertal female rats, promote PRL release, and up-regulate the expression of ER, PR, PRLE and GHR, exert E_2-like effects.
     EXP 9. Experiment Study of Rutin on Mammary Gland Development in Ovariectomized Virgin Rats
     The objective of this study was to realize the estrogen-like effect of rutin on promoting mammary gland development by examining the levels of endocrine hormones , the expression of hormonal receptor and the changes in the histomorphology of mammary tissues of ovariectomized virgin rats. Thirty-two ovariectomized virgin rats were randomly assigned to four treatments: sham, gastric infusion of 2 ml normal saline per mouse and per day; Ova, gastric infusion of 2 ml normal saline per mouse and per day; Ova+Rut, gastric infusion of 60 mg rutin/kg·BW per day; Ova+Est, intramuscular injection of 60μg estradiol/kg·BW weekly. The trial lasted two weeks. The samples of blood, gland tissues, thymuses and spleens were collected for quantitative analysis. The level of estrogen (E2), prolactin (PRL) and growth hormone (GH) in plasma and gland tissues were detected and the expression of estrogen receptor (ER), prolactin receptor (PRLR) and growth hormone receptor (GHR) in gland tissues were detected. Histomorphology of development about mammary gland were observed. The results showed that, the level of E2 in plasma in Ova+Rut and Ova+Est were higher than that in Ova (P<0.05),and the difference between these two groups was not significant (P> 0.05), Ova+Rut was lower than Sham (P<0.05), Ova+Est and Sham had no distinct difference(P>0.05). The level of E2 in gland tissues showed the same trend among different treatment groups. The order of the PRL in plasma and gland tissues was Ova0.05), the difference between Ova+Est and Sham was not significant either (P>0.05). The expression of ER, PRLR, GHR in gland tissues in Ova, Ova+Rut, Ova+Est and Sham increased in turn (P<0.05), and showed the same trend. The observation of histomorphology showed that the development of gland tissue in Ova+Rut, Ova+Est and Sham was better than that in Ova (P<0.05). The results suggested that under the experimental conditions, rutin could increase the level of E2 in ovariectomized virgin rats, promote pituitary PRL and GH release, up-regulated the expression level of ER, PRLE and GHR.
     EXP 10. Effect of Dietary Rutin on the Expression of Hormonal Receptor in Lactating Rats
     The objective of this study was to observe effects of rutin on mammary gland development, endocrine hormone level and hormonal receptor expression in lactation rats. Eighteen Wistar rats were randomly assigned to three treatments: control (Lac-Con), gastric infusion of 2 ml normal saline per mouse and per day. Rutin (Lac-Rut), gastric infusion of 60 mg rutin/kg·BW per day. Estradiol (Lac-Est), intramuscular injection of 60μg estradiol/kg·BW weekly. The experiment lasted for two weeks from the fourth lactation day with the same basal diet. The expression of estrogen receptor (ER), progesterone receptor (PR), prolactin receptor (PRLR) and growth hormone receptor (GHR) in gland tissues were measured. Histomorphology of mammary gland development were observed. The results showed that the expression of ER, PR, PRLR and GHR in gland tissues was Lac-Est > Lac-Rut > Lac-Con (P<0.05). The diameter of mammary gland alveolus showed that Lac-Est and Lac-Rut were higher than Lac-Con (P<0.05), there was no significant difference between Lac-Est and Lac-Rut (P>0.05). The results indicated that, under such experimental conditions, rutin had the function of inducing the expression of ER, PR, PRLE and GHR.
     To sum up, in this dissertation, we systematically studied the effect of rutin on production performance of dairy cows, the regulating action of rutin on rumen digestion and metabolism, and the influence of rutin on the immune function of the mammary gland and the organism. We also explored the role of rutin on mammary gland development and the maintenance of lactating as well as the mechanisms of related endocrine system. The following main conclusions could be drawn according to the experimental results, analysis and discussions. Under the study conditions rutin had the functions as follows:
     The peak time of rutin and its metabolite– quercetin in the rumen fluid occurred at 1h and 2 h after feeding respectively, in the duodenal content the peak time both occurred at 6 h, and in the blood there were two peaks which both occurred at 1h and 8 h. Dietary rutin added on the dosage of 3.0 mg/kg·BW could obviously promote the milk yield and no significant difference was observed in the milk composition. Dietary rutin could improve rumen fermentation and the nitrogen metabolism, promote the nitrogen metabolism and utilization, bring down the number and the protein content of rumen protozoa to some extent, and increase MCP in the rumen. Dietary rutin could enhance the enzyme activities of total dehydrogenase, filter paper enzyme,β-glucosidase, CMC, avicelase in solid and liquid fraction in the rumen of dairy cows, but had no regulatory role on the immune function and hormone level. It could also increase serum lysozyme content to some degree, and decrease blood urea nitrogen level. Rutin could improve the enzyme activities of LP andγ-GT, inhibit the enzyme activities of NAG, and exert no significant effect on the enzyme activities of ALP in the colostrum of dairy cows. In the experiments using rats as animal model, rutin could promote mammary glands of pregnant rats to secrete milk, have some effect on the development of the rat’s thymus, and excert E2-like effects. Rutin could also increase the level of E2 and P in pubertal female rats, promote PRL release, and up-regulate the expression of ER, PR, PRLE and GHR, promote the development of mammary glands, and exert E2-like effects; Rutin could increase the level of E2 in ovariectomized virgin rats, promote pituitary PRL and GH release, up-regulated the expression level of ER, PRLE and GHR; It could also increase the level of E2 in ovariectomized virgin rats, promote pituitary PRL and GH release, up-regulated the expression level of ER, PRLE and GHR, and have the function of inducing the expression of ER, PR, PRLE and GHR.
引文
[1]艾晓杰,吴晓林,朱勇琪,吴忠贤,董德宽,韩正康.大豆黄酮对荷斯坦牛乳中蛋白质和脂肪含量的影响.中国奶牛,2005 (6):19-21.
    [2]白晓霞,陈亚琼.植物雌激素与传统的激素替代疗法[J].国外医学·妇幼保健分册, 2002, 13(3):113-115.
    [3]巴音吉日嘎拉,松元光春,西中川骏,等.穿山甲、王不留行对卵巢摘除小白鼠乳腺实质发育的影响研究[J].中兽医医药杂志,2007(1):7-9.
    [4]巴音吉日嘎拉,巴雅尔,石荷叶.中草药葛根素对小白鼠乳腺组织形态学结果的影响[J].畜牧与饲料科学,2007(1):30-31
    [5]陈华,乔伯英,李春梅,贺苏兰,岳修平. SPF、清洁及普通级大鼠部分生物学特性的比较[J].中国实验动物学杂志,1999,9(1):28-33.
    [6]陈慧,倪安民.植物雌激素与雌激素相关性疾病[J].国外医学内分泌分册, 2000, 20(4): 208-210.
    [7]陈杰,杨国宇,韩正康.大豆黄酮对反刍动物血清睾酮和瘤胃消化代谢的影响[J].江苏农业研究,1992,20(2):17-19.
    [8]催大鹏,吴群英,余晓星.电针对去势雌性大鼠激素及受体表达变化的调节机制[J].首都师范大学学报(自然科学版),2004,25(专辑):61-63.
    [9]陈竞春,石安静.贝类免疫生物学研究概况[J].水生生物学报,1996,20(1):74-78.
    [10]参木有,卢德勋,胡明,等.玉米秸秆处理方法与替换干草对绵羊瘤胃发酵与采食量的影响[J].畜牧兽医学报,2004,35(1):10-14.
    [11]曹香林,陈建军,李学梅,石灵.中草药饲料添加剂对大鼠泌乳及乳腺发育的影响.西北农业学报, 2007, 16(5): 41-44.
    [12]陈庶来,陈杰.用超临界CO2从槐花米中提取芦丁的试验研究[J].江苏理工大学学报,1996,17(4):7-9.
    [13]陈文梅,金鸣,吴伟,等.芦丁抑制家兔血小板激活因子诱导血小板活化作用的实验研究[J].中国中西医结合杂志,2002,22(4):283-285.
    [14]陈旭伟.不同皂苷对山羊瘤胃原虫和细菌种属变化以及纤维降解的影响[D].扬州大学,2009. 19-42.
    [15]曹永刚.芦丁提取工艺的研究[J].中国医药工业杂志,1993,24(2):51-52.
    [16]陈志武,宋必卫,方明,张于江,马传庚,徐叔云.芸香甙抗氧化作用的初步研究.中国药理学通报, 1995, 11(1): 75-77.
    [17]陈志武,宋必卫,方明,岑德意,马传庚,徐叔云.芸香甙的抗疲劳和耐缺氧作用.安徽医科大学学报, 1995, 30(3): 186-187.
    [18]邓静,贾旭,杨娟,刘雯,裘晓丹,刘克武.芦丁与胰蛋白酶相互作用的光谱性质研究[J].天然产物研究与开发,2006,(18):968-971.戴建子,容颖慈,伍玉甜,唐蕾.植物雌激素简介[J].中国药业,2003,12(4)41.
    [19]杜鹃,包金花.奶牛瘤胃微生物的调控[J].畜牧与饲料科学,2008,(4):72-73.
    [20]邓利,张为民,林浩然.生长激素受体的研究进展[J].动物学研究,2001,22(3):226-230.
    [21]戴建子,容颖慈,伍玉甜,等.植物雌激素简介[J].中国药业,2003,12(4):41.
    [22]董朝轩,关云谦,张愚.雌激素与神经系统发育[J].生理科学进展,2006,37(2):149-152.
    [23]邓露芳.日粮添加纳豆草芽孢杆菌对奶牛生产性能、瘤胃发酵及功能微生物的影响[D].中国农业科学院,2009.
    [24]刁其玉.饲料营养成分在瘤胃和小肠降解规律的研究[D].北京:中国农业科学院, 2000.
    [25]杜瑞平.绵羊瘤胃乙酸和丁酸的产生、吸收何利用规律及可代谢生脂物质MLS的测定[D].内蒙古农业大学,2006.
    [26]樊官伟,王虹,张琚,高秀梅.植物雌激素的临床价值[J].国外医药.植物药分册,2008, 23(3):127-130.
    [27]冯立明,潘华珍,张之南.麦芽醇对红细胞自氧化损伤的保护作用.中国药理学通报, 1990, 6(1): 26-29.
    [28]冯伟业,刘达程,卢得勋,等.不同品质粗饲料日粮及添加剂酵母培养物对绵羊瘤胃内主要纤维素酶及纤维物质降解的影响[J].动物营养学报,2008,20(1):108-114.
    [29]冯仰廉.反刍动物营养学[M].北京:科学出版社,2004:335-336.)
    [30]冯仰廉.雌激素对于乳腺发育和泌乳的作用.中国畜牧兽医, 1962, (5): 13-14.
    [31]樊官伟,何俊,王虹,高秀梅.雌激素及其受体信号途径的研究进展[J].中国临床药理学玉治疗学,2007,12(3):266-269.
    [32]高美,金邦荃,张祎,汤丹,周耀民,詹巍.大豆甙元对去卵巢大鼠雌二醇、维生素D和骨矿沉积的影响[J].中国老年学杂志,2009,29(12):1480-1482.
    [33]高怡,斐玲玲,李国星,等.多耐药性相关蛋白2与谷胱甘肽共转运体系对肝脏砷代谢的影响[J].中华劳动卫生职业病杂志,2006,24(5):278-280.
    [34]顾小卫.紫苏、陈皮和艾叶对奶牛乳风味、乳品质、瘤胃内环境及血液生化指标的影响[D].扬州大学,2009,55-74.
    [35]胡光民,张祖志,刘艳,王海颖,申国明,许浩.黑升麻提取物对去势大鼠下丘脑-垂体-性腺轴的影响[J].中国中医药科技,2009,16(4):286-287.
    [36]何利城,李茂言,白建新,等.荞秸中芦丁的提取分离及含量测定(一)[J].甘肃中医学院学报,1997,14(4):54-55.
    [37]韩立强,杨国宇,王月影,朱河水,鲁维飞.荷斯坦奶牛初乳中酶及激素的含量变化研究[J].中国乳品工业,2007,35(8):36-38.
    [38]韩书亮.大苞雪莲四种成分抗癌作用研究.癌变、畸变、突变, 1995, 7(2): 80-83.
    [39]何铭清.中草药有效成分理化与药理特性[M].长沙:湖南科学技术出版社,1979,2031.
    [40]何俏军,李润萍,方瑞英,杨波.麦当乳通颗粒对哺乳期大鼠的催乳作用[J].中药新药与临床药理,2006,17(4):245-247.
    [41]何文富,刘小康.罗红霉素对小鼠细胞免疫功能的影响[J].中国药房,2005,16(12):898-890.
    [42]贺显晶,和翀翼,王建发,张敏,欧海龙,杨颗粒,武瑞.鱼油对断奶大鼠脏器指数和肠道菌群影响的研究[J].中国微生态学杂志,2008,20(6):555-557.
    [43]胡子斌. TTC-脱氢酶活性常温萃取测定法及应用[J].工业水处理,2011,21(10):29-31.
    [44]韩正康.关于反刍家畜瘤胃消化代谢调控的一些认识[J].饲料工业,2010,反刍动物营养与饲料增刊,6-8.
    [45]韩正康.异黄酮植物雌激素——反刍动物营养生物学发展与应用前景[J].动物营养学报,1999,11(增刊):65-68.
    [46]韩正康.异黄酮植物雌激素—大豆黄酮对雄性动物生长及其内分泌的研究[J].畜牧与兽医. 1999,31(1):1-2.
    [47]韩正康,陈杰.反刍动物瘤胃的消化和代谢[M].北京:科学出版社,1988,141.
    [48]韩正康,王国杰.异黄酮植物雌激素:反刍动物营养生物学发展与应用前景[J].动物营养学报,1999,11(增刊):65-68.
    [49]霍继明,孙国志,赵伟,等.乳腺康口服液的药效研究[J].中国实验动物学杂志,2002,12:297-299.
    [50]郝振荣,朱志宁,郭玉琴等.大豆黄酮对产奶量和牛奶品质的影响[J].北京农学院学报,2009,24(4):26-27.
    [51]黄庆生,王加启.添加不同酵母培养物对瘤胃纤维分解菌群和纤维素酶活的影响[J].畜牧兽医学报,2005,36(2):144-148.
    [52]黄尚荣.药用芦丁化学成分提取方法及其药理学研究进展.现代农业科技, 2009, (23): 100-103.
    [53]季香,马月辉,叶绍辉,等.反刍动物生长激素受体基因的研究进展[J].草食家畜,2006,(2):27-31.
    [54]金鸣,藏宝霞,吴伟,等.芦丁拮抗血小板活化因子与受体结合的作用[J].中草药,2005,36(3):390-392.
    [55]江和源,台建祥,陈金标,吕飞杰,葛崇华,张卫,秦林林.大豆异黄酮对去卵巢大鼠血液生化指标的影响[J].中国现代应用药学杂志,2005,22(1):7-10.
    [56]江纪武,肖庆祥.植物药有效成分手册.北京:人民卫生出版社, 1986: 902.
    [57]姜晶晶,王国杰,韩正康.亚麻籽木脂素对青春期雌性大鼠乳腺发育及相关内分泌的影响[J].畜牧与兽医,2009,41(1):79-82.
    [58]江青东.大鼠乳腺发育过程中雌激素、孕激素、催乳素及相应受体水平变化规律的研究[D].河南农业大学硕士论文,2006.
    [59]柯叶艳,王国杰,韩正康.日粮中添加大豆黄酮对鹌鹑生产性能和血液中激素水平的影响.畜牧兽医学报, 2002, 33(3): 243-246.
    [60]贾冬英,耿磊,姚开.苦荞麦茎及籽壳中黄酮类化合物(芦丁)的提取及鉴定[J].食品科学,1998,19(9):46-47.
    [61]李辉,刁其玉,张乃锋,屠艳,王吉峰.不同蛋白水平对犊牛消化代谢及血清生化指标的影响.中国农业科学, 2008, 41(4): 1219-1226.
    [62]李键.乳腺发育的内分泌调控[J].国外兽医学——畜禽疾病,1996,17:9-11.
    [63]李健,李庆章.小鼠乳腺发育、泌乳和退化的组织形态学(I)一般组织形态学变化[J].东北农业大学学报,2007,38:196-201.
    [64]李娜,张明艳,史小琴.雌激素受体及其信号转导的研究进展[J].河北职工医学院学报,2005,22:47-49.
    [65]梁松,刘仕军,王加启,等.日粮中添加鱼油和葵花油对肉牛瘤胃纤维素酶活性的影响[J].黑龙江畜牧兽医,2008,(11):25-26.
    [66]刘杰,王伯初,彭亮,张广求.黄酮类抗氧化剂的构-效关系[J].重庆大学学报,2004,27(2):120-124.冷晓莲,杨娟,苏波,刁家志,李政,刘克武.芦丁对胃蛋白酶部分性质的影响[J].天然产物研究与开发,2007,(19):270-273.
    [67]陆琪,林淼,张曙俭,等.瘤胃内丁酸钠灌注对山羊瘤胃发酵类型的影响[J].畜牧与兽医,2008,40 (7):30-33.
    [68]李忠,牛雯,陈龙.三羟异黄酮对人乳腺癌细胞增殖和细胞周期的影响[J]中国公共卫生,2003,19(5): 536-5371.
    [69]李国祥.日粮碳水化合物结构和添加丝兰皂甙对瘤胃发酵及甲烷产生机制的影响[D].扬州大学硕士论文,2009
    [70]李茂星,谢景文,葛欣.芦丁的药效学研究进展.华西药学杂志, 2001, 10(12): 892-896.
    [71]龙全江,杨韬.芦丁的研究概况及展望[J].中国中医药信息杂志,2002,9(4):39-42.
    [72]李娆娆,原思通,肖永庆.中药槐花化学成分、药理作用及炮制研究进展[J].中国中医药信息杂志,2002,9(6):77-82.
    [73]刘春玲,丁家桐,王建武,程文佳.雌激素受体的研究进展[J].动物科学与动物医学,2003,20(8):35-36.
    [74]刘春龙,李忠秋,孙海霞.丝兰皂甙对绵羊瘤胃酶活及日粮养分48h降解率的影响[J].西北农林科技大学学报(自然科学版),2006,34(4):28-31.
    [75]李世峰,周伟,刑燕,范晓棠.雌激素受体与疼痛调控的研究进展[J].生理科学进展,2010,41(2):121-124.
    [76]刘根桃,郑元林,陈伟华,陈杰,韩正康.妊娠后期母猪饲喂大豆黄酮对泌乳性能及初乳中激素水平的影响[J].南京农业大学学报,1999,22(1):69-72.李胜利.中国奶牛养殖产业发展现状及趋势[J].中国畜牧杂志,2008,44(10):45-49.
    [77]李胜利.中国原料奶状况调研报告[J].中国乳业,2008,(3):40-43.)(李胜利.提高奶牛养殖水平的方法[J].中国乳业,2008,(10):62-64.
    [78]李胜利,曹志军,张永根,杨敦启,周鑫宇.如何整顿我国乳品行业[J].中国畜牧杂志,2008,44(18):44-50.
    [79]李胜利,金鑫,范学珊,黄文明,曹志军.反刍动物生产与碳减排措施[J].动物营养学报,2010,22(1):2-9.
    [80]李胜利,张万金,刘玉满,周鑫宇,曹志军. 2009年中国奶业回顾与展望[J].中国畜牧杂志,2010,46(2):35-40.
    [81]李卫真,邹思湘.猪初乳中免疫细胞计数和N-乙酰-β-D-氨基葡萄糖苷酶活性观察[J].畜牧与兽医,1999,31(增刊):16-17.
    [82]李永健.催乳素、催乳素受体与乳腺癌[J].世界肿瘤杂志,2005,4(3):224-225.
    [83]李西融.乳腺疾病雌、孕激素受体检测与临床应用研究进展[J].华夏医学,2001,14(2):241-243.
    [84]李云峰,郭长江.槲皮素代谢的研究进展[J].生理科学进展,2002,33(1):53-55.
    [85]刘燕强,韩正康.异黄酮植物雌激素——大豆黄酮对产蛋鸡生产性能及其血液中几种激素水平的影响.中国畜牧杂志. 1998,34(3):9-10.
    [86]刘忠杰.中兽医学.北京:中国农业出版社, 2002: 1-3.
    [87]卢明珍,卢彦玲,王黎敏.芦丁对大鼠缺血再灌注心肌保护作用的研究.山西临床医药, 1999, 8(1): 10-12.
    [88]卢蓉蓉,许时婴,王璋.乳过氧化物酶的分离和美学性质研究[J].食品科学,2006,27(2):100-104.
    [89]龙全江,杨韬.芦丁的研究概况及展望.中国中医药信息杂志, 2002, 9(4): 39-42.
    [90]陆天水.生长激素(GH)和乳腺发育.草食家畜[J]. 1994,(2):32-33.
    [91]罗浩军,杨光伦,涂刚.雌激素受体GPR30研究进展[J].中国癌症杂志,2009,19(11):881-886.
    [92]马海田.异黄酮植物雌激素对动物生长及其吸收机理的研究[D].南京农业大学,2005,70-76.)
    [93]马海田,韩正康,邹思湘,王国杰.大豆异黄酮在大鼠离体小肠中吸收的研究[J].食品科学,2005,26(6):249-252.
    [94]苗培,杨国宇,惠永华.催乳素及其受体对乳腺发育研究进展[J].畜牧兽医组织,2007,26(1):36-38.
    [95]孟婷,韩正康.大豆黄酮对初产蛋鸡生产性能和血清生理生化指标的影响.中国家禽. 2003,24(13): 13-14.梅春霞,张吉强.雌激素受体[J].生命的化学,2010,30(4):590-594.
    [96]梅学华,曾雄.催乳素作用机制的研究进展[J].畜禽业,2008(4):16-19.
    [97]孟庆书,何平,朱晓燕,等.植物雌激素的作用机制[J].生命的化学,2007,27:141-143.
    [98]孟祥颖,郭良,李玉新,等.芦丁的来源、用途、及提取纯化方法[J].长春中医学院学报,2003,19(2):61-64.
    [99]么晓轶,李颖.植物雌激素对去势雌性大鼠缺血性脑损伤的神经保护作用[J].中国神经免疫学与神经病学杂志. 2005,12 (3):160-163.
    [100]聂芙蓉,王老七,王艳玲.大豆黄酮对山羊血液中几种内源性激素水平的影响[J].安徽农业科学,2007,35:6442-6530.
    [101]聂志荣.大豆黄酮和染料木素的RT-HPLC方法的建立及其在禽类体内蛋白含量的研究[D].南京农业大学,2003.
    [102]欧阳路,汪选斌,肖雨清,曹玫.补肾化瘀浸膏对去势大鼠血清ALP、E2、及IL-6水平的影响[J].中国药师,2009,12(10):1342-1344.
    [103]潘春方,林玉才,甘文平.大豆黄酮在奶牛养殖业上的应用.中国奶牛, 2009, (6): 17-19.
    [104]曲波,王学东,崔琳,等.奶山羊乳腺发育的超微结构研究[J].中国乳品工业,2008,35(11):33-36.
    [105]丘怀.黄牛改良是科教兴农振兴农村经济的重要手段[J].农村养殖技术,1999(7):1-5.
    [106]秦韬,王洪荣,朱素华,等.青蒿素对山羊瘤胃发酵参数、原虫数量及产气量的影响[J].上海畜牧兽医通讯,2010,(2):37-39.
    [107]戚本玲,戚本明.葛根提取物对正常及趋势大鼠血清雌激素水平的影响[J].中国中医药杂志,2002,27(11):850-851.
    [108]钱文熙,催慰贤.瘤胃发酵过程及其控制[J].宁夏农学院学报,2004,25(1):61-64.
    [109]齐智利.玉米不同加工处理对泌乳奶牛瘤胃发酵和小肠消化以及能氮同步代谢影响的研究[D].内蒙古农业大学,2004.
    [110]任慧波,肖兵南、彭小兰,刘海林,段洪峰,高帅,周菊香.奶牛瘤胃发酵及调控[J].饲料工业,2006,27(5):42-44.
    [111]施俊,魏品康.雌、孕激素受体与胃癌[J].医学综述,2010,16(17):2612-2615.
    [112]孙逊,朱尚权.生长激素受体的结构、功能及其信号途径[J].国外医学生理、病理科学与临床分册,1999,宋必卫,马传庚,田薇,陈志武,岑德意,程玉宝,吴会时,徐叔云.芦丁的镇痛作用.安徽医科大学学报, 1995, 30(3): 177-179.
    [113]宋必卫,田薇,陈志武,马传庚,刘颖雪,岑德意.芦丁镇痛作用部位和机制的研究.安徽医科大学学报, 1996, 31(3): 1-3.
    [114]孙国禄,赵强,董晓宁,王廷璞.槐花化学成分及药理作用研究[J].中兽医医药杂志,2009(6):24-27.
    [115]束婧婷,陈国宏,包文斌,吴信生.家禽催乳素及催乳素基因的研究进展[J].畜牧与兽医,2007,39(1):55-58.
    [116]苏俊锋,郭长江,韦京豫,杨继军,蒋与刚.不同肠段对槲皮素、芦丁吸收的比较研究[J].卫生研究,2002,31(1):55-57.
    [117]宋静荣.虎杖提取物对去势大鼠雌激素的影响[J].中国妇幼保健,2008,23:4029-4031.
    [118]任雪平,王洪元.植物雌激素[J].生物学通报,2005,40(4):9-10.
    [119]沈钦海,马臻,陈国民.芦丁对HepG2细胞生长的影响[J].第三军医大学学报,2006,28(18):1885-1887.19(1):9-14.
    [120]石书芳,俞超芹.植物雌激素及其作用靶点的研究进展[J].中西医结合学报,2005,3(5):408-410.
    [121]孙玉娟,张会玲,五慧娟.我国奶牛养殖发展中存在的几个问题[J].河北理工大学学报(社会科学版),2009,9(5):59-62.
    [122]萨燕平,彭永芳.超声波辐射提取槐花米中的芦丁[J].云南化工,1996(4):25-26.
    [123]宋丽华,晓洲生,周宏灏.植物雌激素的研究进展[J].国外医学药学分册,2003,30(1):25-29.
    [124]司振江,江成.瘤胃微生物对纤维素的降解及其应用[J].微生物学杂志,2003,23(6):61-64.
    [125]史振民,张祝莲,杨文选,等.超声法提取芦丁操作条件的最佳选择[J].延安大学学报(自然科学版),1999,18(3):46-49.
    [126]田洁,宋少刚,陈志武,赵维中.芸香苷对实验性急性胰腺炎的保护作用与抗氧化的关系[J].中国临床药理学与治疗学,2004,9(4):455-458.
    [127]谈智,王庭櫆.雌激素作用分子机制研究进展[J].中国病理生理杂志,2003,19(10):1422-1426.
    [128]唐海翠,庞学东,庄苏,等.酵母培养物对山羊瘤胃纤维素酶活及挥发性脂肪酸的影响[J].中国畜牧杂志,2006,42(15):34-38.
    [129]田建坤,赵永和,时文中.芦丁及其衍生物应用研究进展[J].天中学刊,2007,22(5):18-21.
    [130]唐小惠.雌激素受体、孕激素受体在乳腺癌中的表达及临床意义[J].现代中西医结合杂志,2010, 19 (32):4132-4133.
    [131]汤永玖,孙碧,虞和永.乳泉冲剂对实验性泌乳不足大鼠泌乳量的影响[J].中国现代应用药学杂志,2004,21(4):324-326.
    [132]屠艳,刁其玉.新编奶牛饲料配方600例(第1版).北京,化学工业出版社, 2009: 2.
    [133]王尧,唐大轩,葛麟,熊静悦,牟道华,梁娅君,谭正怀.不同月龄SPF级SD雌性大鼠主要脏器参数的研究[J].四川生理科学杂志,2009,31(4):155-156.
    [134]王艳,霍翔,沈洪兵.雌激素受体和孕激素受体与乳腺癌关系的研究进展[J].中国肿瘤,2007,16(12):987-990.
    [135]万善霞,滑静,张淑萍.牛初乳中几个重要酶及其生物功能的研究进展[J].北京农学院学报,2006,21(3):77-80.
    [136]王海玲,刘宁,刘志强,刘忠英,张寒琦、周秋丽.利用Caco-2细胞模型模拟槲皮素和芦丁在小肠的吸收.吉林大学学报(医学版), 2007, 33(1): 33-36.
    [137]王改玲,周乐,梁冉,耿会玲.不同提取条件对苦荞籽粒中芦丁降解的影响[J].西北植物学报,2005,25(%):1035-1038.
    [138]王国杰,韩正康,陈伟华.大豆黄酮对大鼠肌肉生长和几种内源性激素水平的影响.动物学研究, 1995, 16 (1): 23-29.
    [139]王根林,陈杰.大豆黄酮对去卵巢猪LH分泌的影响.中国应用生理学杂志, 1998, 14(1): 70-73.
    [140]王洪荣,徐爱秋,王梦芝,等.氨基酸对体外培养瘤胃微生物生长及发酵的影响[J].畜牧兽医学报,2010,41(9):1109-1116.
    [141]王建辰.家畜生殖内分泌学第1版.北京,农业出版社, 1993: 36-37.
    [142]王加启.反刍家畜瘤胃内碳水化合物和氮代谢研究进展(上).国外畜牧科技.1992,19⑷:24-26.
    [143]魏克佳.我国当前奶业形势分析[J].中国乳业,2010,(8):10-11.
    [144]王根林等.大豆黄酮肌注仔猪对垂体GnRH受体水平的影响[J].江苏农业学报,2000,16(4): 233-236.
    [145]王根林,陈杰.大豆黄酮对去卵巢猪LH分泌的影响[J]中国应用生理学杂志. 1998,14(1):70-73.
    [146]王孟琳,张卫华,赵宗辽,应小平,方改英,党琳,马莉,赵小艳.针刺乳腺增生大鼠的乳腺形态学改变[J].陕西中医学院学报,2007,30(5):56-59.
    [147]王梦芝.山羊瘤胃原虫与细菌吞噬关系和微生物AA变化机制的研究[D].扬州大学,2008.
    [148]王全军.半光氨酸、大豆黄酮对山羊瘤胃代谢及瘤胃微生物体外发酵的影响[D].南京农业大学硕士论文,2001.
    [149]王天仕,薛愧玲,杨生玉.槐花煎液对麻醉家兔血流动力的影响[J].中药学学报,2001,29(1):40-43.
    [150]王玉枝,旷亚非,彭琳,朱洪彬.食疗食补功效的重要物质——芦丁[J].大学化学,2010,25(增刊):109-113.
    [151]王伟群.异黄酮植物雌激素——芒丙花素的提纯、测定及其对瘤胃消化酶活力和乳腺发育[D].南京农业大学,1990.
    [152]王伟群,韩正康,陈伟华,陈接.芒丙花素的促乳腺发育作用及其机理探讨[J].南京农业大学学报,1993,16(增刊):19-24.
    [153]韦学玉,阎宏,穆巍.反刍动物瘤胃功能调控措施的研究进展[J].饲料工业,2006,27(19):47-49.
    [154]王艳芳,王新华,朱宇同,孙汉董.芦丁对甲型流感病毒抑制作用的实验研究[J].中医药学刊,2005,23(5):827.
    [155]王艳红.日粮淀粉水平对山羊α-淀粉酶活性及消化道形态的影响[D].西北农林科技大学硕士论文,2007.)
    [156]王艳玲,韩正康.半胱胺对大鼠泌乳及血液、组织几种激素含量的影响[J].中国应用生理学杂志,1998,14(1):46-49.
    [157]王艳玲,韩正康.半胱胺对妊娠大鼠乳腺发育及血液生长抑素生长激素含量的影响[J].南京农业大学学报,1998,21(1):87-90.
    [158]王宇翎,赵维中,马传庚,李前进.芸香苷与银杏叶提取物对大鼠胃溃疡的治疗作用[J].基层中药杂志,2001,15(6):5-6.
    [159]王永梅.大豆异黄酮对山羊瘤胃代谢的影响[D].南京农业大学,2007,44-66.
    [160]王月影.异黄酮雌激素——大豆黄酮对山羊消化代谢和几种激素水平的影响[D].河南农业大学,2002.
    [170]王月影.生长抑素对大鼠乳腺发育的调节作用[D].西北农林大学博士论文,2006.
    [171]王月影,范光丽,杨国宇,王艳玲,张永德.不同发育期大鼠乳腺组织中雌激素受体α的表达[J].西北农林科技大学学报(自然科学版),2007,35(3):53-56.
    [172]王月影,李宏基,钟凯,王艳玲.生长抑素对泌乳大鼠乳腺发育的作用[J].江西农业学报,2008,20(8):77-79.
    [173]王月影,王艳玲,李和平,等.动物乳腺发育的调控[J].畜牧与兽医,2002,34(7):36-37.
    [174]乌永中,韩正康.黑白花奶牛初乳中三种养分与四种酶活性的动态变化[G].全国动物生理生化第二次学术会议论文摘要汇编,1990,山东烟台,中国畜牧兽医学会动物生理生化学会,77-88.
    [175]王贞贞,侯先志,王海荣,等.不同氮源对绵羊瘤胃内固液相纤维素酶活的影响[J].内蒙古农业大学学报,2008,29(1):4-9.
    [176]肖岚,李诚,辛松林.牛乳中乳过氧化物酶的分离纯化技术[J].中国乳业,2007,3:23-24.
    [177]徐明.反刍动物瘤胃健康和碳水化合物能量利用效率的营养调控[D].西北农林科技大学博士论文,2007.
    [178]徐霞.植物雌激素研究进展[J].镇江医学院学报,2001,11(3):406-408.
    [179]徐霞,贡沁燕,鲁映青,等.大豆异黄酮对去卵巢大鼠骨密度和雌激素活性的影响[J].中国新药与临床杂志,2002,21:321-325.
    [180]徐爱秋,郝青,李国祥,王洪荣.反刍动物瘤胃内环境的调控[J].畜牧兽医科技信息,2007,(11):52-54.
    [181]熊本海.生长育肥羊瘤胃内VFA产生、吸收规律和模型参数研究[D].中国农业科学院博士论文,1998.
    [182]熊本海,卢德勋,高俊.绵羊瘤胃VFA吸收效率及模型参数的研究.动物营养学. 1999,11:248~255.
    [183]徐国钧.生药学[M].北京:人民卫生出版社, 1995: 168.
    [184]徐任生.天然产物化学导论[M].北京:科学出版社,2005
    [185]夏维木,陈杞,张丽民,张士明.几种黄酮类化合物清除活性氧的实验研究.第二军医大学学报, 1997, 18(4): 363-365.
    [186]夏维木,陈杞,陈士明,等.应用ESR技术观察芦丁对O2-的清除作用[J].第二军医大学学报,1997,18(4):388-389.
    [187]夏维木,刘定益,陈杞.芦丁对肾脏缺血再灌注损伤保护作用的实验研究.中草药, 1998, 29(5): 319-321.
    [188]肖小华.复方芦丁的药代动力学研究[J].局解手术杂志,2004,13(6):367-369.
    [189]谢仲权.天然中草药作用机理.饲料与畜牧, 2004, (2): 26-28.
    [190]杨凤.动物营养学[M].第2版.北京:中国农业出版社,2001,65-75.
    [191]杨薇.大豆中植物雌激素的构效关系及药理作用.中国新药杂志, 2001, 10(12): 892-896.
    [192]杨威.戊糖对粕类蛋白质的保护作用及其对奶牛生产性能的影响[D].中国农业科学院,2007.
    [193]姚文,朱伟云,韩正康,等.应用变形梯度凝胶电泳和16srDNA序列分析对山羊瘤胃菌多样性的研究[J].中国农业科学,2004,37(9):1374-1378.
    [194]余斌,郭荣富,张素华.大豆黄酮在奶牛养殖中的应用研究.四川畜牧兽医, 2007, (7): 32-33.
    [195]于燕,颜虹,胡森科,张敬华.淫羊藿提取物的雌激素样作用研究[J].西安交通大学学报(医学版),2009,30(3):373-376.
    [196]杨德全,叶建阳,刘鸿云,邓岷权,张燕丽.从苦荞麦中提取芦丁的研究[J].延安大学学报(自然科学版),1997,16(4):67~71.
    [197]杨建英,王艳玲,郭永国,张勇法,兰尊海.大豆黄酮对奶牛免疫功能和血清及乳中激素水平的影响.中国畜牧, 2006, 42(7): 15-17.
    [198]杨建英,张勇法,王艳玲,郭永国,兰尊海.大豆黄酮对奶牛产奶量和乳中常规成分的影响.饲料研究, 2005, (6): 30-31.
    [199]杨龙圣,胡元亮,薛家宾,王芳,王德云,徐为中.中药成分复方对兔外周血淋巴细胞增殖、IFN-γ和IL-10的mRNA表达以及兔出血症疫苗免疫效果的影响[J].中国农业科学,2008,41(11):3809-3815.
    [200]叶日松,汪肇安,邹宗堂.奶牛瘤胃功能的调控技术[J].乳业科学与技术,2005,(6):272-273.
    [201]袁淑德,宋可钦,谢启文,吕伏英.氟中毒抑制大鼠泌乳的实验研究[J].生理学报,1991,(43):512-517.
    [202]姚卫康,包建荣,吴德明,等.乳腺癌C-erbB-2的表达及其与ER、PR的相关性研究[J].中国医师进修杂志:综合版,2007,30(6):7-9.
    [203]杨雪峰.奶牛初乳中的功能性组分[J].饲料工业,2004,25(5):14-16.
    [204]闫新林,朱卡琳,关彦.去势雌性大鼠激素替代治疗后垂体、子宫及乳腺形态学研究[J].四川省卫生管理干部学院学报,2001,20(1):3-4.
    [205]殷中琼,喻印,贾仁勇,邓艳,陈瑞.青刺果种粕粉对鸡免疫器官发育的影响[J].动物营养学报,2007,19(2):245-252.
    [206]曾伶,曾劲,薛存宽,等.红车轴草异黄酮雌激素样作用的研究[J].医药导报,2007,26(11):1258-1260.
    [207]张倩,夏建民,李胜利,曹志军.不同比例压块秸秆与羊草组成粗饲料对奶牛瘤胃发酵和生产性能的影响[J].动物营养学报,2010,22(2):474-480.
    [208]张谦,王雪坤.浅谈奶牛瘤胃功能的调控[J].畜牧兽医科技信息,2008,(12):62.
    [209]张蕊,斐秋玲.人类MRP1和MRP2基因多态性与功能的研究进展.病理学杂志,2008,22(5):395-398.
    [210]张蓉,刁其玉,屠艳,张乃锋.能量水平对早期断奶犊牛消化代谢及血清指标的影响.中国农业科学,,2009,42(3):1024-1029.
    [211]张岚,郭豫杰,鲁维飞,李清风.雌激素受体研究进展[J].上海畜牧兽医通讯,2006,(5):10-11.
    [212]张敏,丛明柱.红曲霉合生素对延边黄牛瘤胃VFA浓度变化及饲料表观消化率的影响[J].饲料工业,2010,(S1):72-77.
    [213]周怿,刁其玉.反刍动物瘤胃甲烷气体生成的调控[J].草食家畜,2008,(4):21-24.
    [214]张耀,郭定宗.催乳素结构与功能研究进展[J].动物医学进展,2007,28(5):49-52.
    [215]张宝云,狄冉,储明星,等.孕酮受体基因的研究进展[J].遗传,2008,30:1536-1544.
    [216]张彩英,胡国良,曹华斌.反刍动物瘤胃内环境的特点及调控[J].中国畜牧兽医,2010,37(4):18-20.)
    [217]赵广永.反刍动物营养学[M].北京:中国农业大学,2003,43.
    [218]翟广玉,薛华珍,陈勤,翟连矿.芦丁配合物的合成研究进展.化学与黏合, 2008, 30(1): 53-58.
    [219]翟广玉,薛华珍,邹祺.芦丁金属配合物的研究进展[J].化学试剂,2007,29(8):463-468.
    [220]赵惠玲,王青,王蔚魁.人体及动物组织H.E染色石蜡切片法的技术改进[J].动物学杂志,2004,39(3):42-43.
    [221]赵惠玲.苏木精染色的改进和使用[J].动物学杂志,2005,40(4):66-68.
    [222]张华琦.瘤胃发酵及其调[J].饲料研究,2008(6):13-15
    [223]中华人民共和国专业标准.奶牛饲养标准.中华人民共和国农业部, 2004.
    [224]朱河水,王艳玲,杨国宇,高腾云,王月影,刘记强.大豆黄酮对奶牛相关产奶性能的影响.华北农学报, 2006, 21(6): 127-129.
    [225]张金合,韩敏,马茂荣,苏秀玲,何俊琴,王宁,苗广.绒山羊瘤胃内环境参数及血清中微量元素的测定[J].畜牧与饲料科学,2006,(6):24-26.
    [226]朱建林,黄忆明.芦丁对去势大鼠脂质过氧化的影响[J].实用预防兽医学,2002,9(6):628-629.
    [227]朱建明.奶牛散户养殖向规模化养殖转型探讨[J].中国乳业,2010,(9):20-21.
    [228]周联高,章世元,刘艳芬,吴蓉蓉,严钠昌,莫定妹,廖建财.谷氨酰胺对肉仔鸡生产性能及免疫机能的影响[J].动物营养学报,2008,20(3):305-310.
    [229]张丽敏,刘育英,何文娟,张淑珍.自制促乳剂对大鼠乳房微循环的影响及泌乳机理研究[J].微循环学杂志,2001,11(2):33-34.
    [230]张丽敏,刘育英,何文娟,张淑珍.在高温环境中分娩鼠的泌乳机理研究[J].微循环学杂志,2001,11(3):12-13.
    [231]张乃锋.蛋白质与氨基酸营养对早期断奶犊牛免疫相关指标的影响[D].中国农业科学院,2008.
    [232]赵毓梅,黄业宇,郑定仙,吴爱琴,韩健.给药方式对大鼠体重影响的研究[J].中国热带医学,2004,4(2):202-203.
    [233]张黎鑫,陈宏权,王力生.牛生长激素受体基因多态性及其研究进展[J].现代农业科技,2009,(11):212-213.
    [234]赵秀华,储明星,刘荣志,等.催乳素基因的研究进展[J].中国畜牧兽医,2007,34(10):28-33.
    [235]张晓晖,刘素香,徐敏.植物雌激素与中药研究[J].中药新药与临床药理,2002,13(4):261-264.
    [236]赵晓民,徐小明.雌激素受体及其作用机制[J].西北农林科技大学学报(自然科学版),2004,32(12):154-158.
    [237]战玉琴,尹德瑛.冷碱法从槐米中提取芦丁的试验研究[J].中成药,1994,16(7):10.
    [238]臧志和,曹丽萍,钟铃.芦丁药理作用及制剂的研究进展[J].医药导报,2007,26(7):758-760.
    [239]张宏志,管正学,王建立.荞麦中天然芦丁的提取方法研究[J].内蒙古农牧学院学报,1997,18(2):26-29.
    [240]郑秋珊,徐奇友.奶牛瘤胃调控激素的研究进展[J].饲料博览,2007,(21):17-20.
    [241]张荣庆.异黄酮植物雌激素对小鼠免疫功能的影响[J].南京农业大学学报,1993, 16(2): 64-68.
    [242]张荣庆.异黄酮植物雌激素对乳腺发育和免疫功能的作用及其神经内分泌的参与[D].南京农业大学,1993.
    [243]张荣庆,韩正康.芒丙花素槲皮素对奶牛初乳中4种酶活力的影响[J].南京农业大学学报,1992,15(3):131-132.
    [244]张荣庆,韩正康,陈杰,等.大豆黄酮对母猪油免疫功能和血清及初乳中GH、PRL、SS水平的影响[J].动物营养学报. 1995,41(2):201-206.
    [245]张荣庆,韩正康,陈杰,等.大豆黄酮对大鼠乳腺发育作用的实验研究[J].动物学报,1995,41(3):332-338.
    [246]张荣庆,韩正康,陈杰,等.大豆黄酮促进妊娠大鼠乳腺发育和泌乳的实验研究[J].动物学报,1995,41(4):414-419.
    [247]张荣庆,韩正康,陈杰,等.大豆黄酮对母猪免疫功能和血清及初乳中GH、PRL、SS水平的影响[J].动物学报,1995,41(2):201-206.
    [248]张少英.泌乳的激素调控.草食家畜, 1990, (1): 31-33.
    [249]朱伟云.半光氨酸、大豆黄酮对山羊瘤胃代谢及瘤胃微生物体外发酵的影响[D].南京农业大学硕士论文,2001,10.
    [250]张文瑜,王香桂.葛根素注射液对去卵巢大鼠雌激素样作用的研究[J].浙江中西医结合杂志,2009,19:465-467.
    [251]张闻宇,钱民章.植物雌激素及其抗动脉粥样硬化作用.江苏大学学报. 2004,14(2):168-171.
    [252]赵维中,岑德意,陈志武,等.芸香苷的胃粘膜保护作用与NO、P的关系[J].中国药理学通报,1999,15(4)360-362.
    [253]周新妹,姚慧,夏满莉,等.槲皮素与芦丁对离体大鼠主动脉环的舒张作用及机制[J].浙江大学学报(医学版),2006,35(1):29-33.
    [254]周鑫宇,杨君香,黄文明,李胜利.对我国规模奶牛养殖模式的思考[J].中国畜牧杂志,2010,46(12):35-41.
    [255]周玉传,赵茹茜等.大豆黄酮对产蛋初期和后期绍兴鸭产蛋性能及血清激素水平的影响.动物营养学报. 2002,14(2):14-18.
    [256]赵玉华.瘤胃微生物Real Time PCR定量方法的建立及其应用[D].中国农业科学院畜牧研究所,2005.
    [257]张玉梅.大豆异黄酮的生物利用度[J].国外医学卫生学分册,2001,28(2):104-107.
    [258]张响英,王根林.植物雌激素的免疫调节作用[J].畜牧与兽医,2000,32(3):40-42.
    [259]张响英,王根林,唐现文.异黄酮植物雌激素在动物中的作用[J].饲料研究,2000(11):12-14.
    [260]藏志和,曹丽萍,钟铃.芦丁药理作用及制剂的研究进展[J].医药导报,2007,26(7):759-760.
    [261] Adams N R. Detection of the effect s of p hytoestrogens on sheep and cattle. Journal of Animal Science, 1995, 73: 1509-1515.
    [262] Albertazzi P, Pan sin i F, Bonacco rsi G, et al.The effect of dietary soy supplem entation on hot flushes[J].Obstet Gynecol, 1998, 91 (1) : 6-11.
    [263] Anderson E. The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis[J]. Breast Cancer Research, 2002, 4 (5): 197-201.
    [264] Anderson J.J., Ambrose W.W, Garner S.C. Biphasic effects of genistein on bone tissue in the ovariectomized, lactating rat model [J]. Proc. Soc. Exp. Biol. Med, 1998, 217(3) :345-350.
    [265] Attwood G T, Reilly K. Identification of proteolytic rumen bacteria isolated from New Zealand cattle[J]. Appl. Bacteriol. 1995,79:22-29.
    [266] Aukema, H.M., Housini I. D ietary Soy Protein Effects on On gerited Polycystic Kidney D isease A re influenced by Gender and Protein level[J]. J. Am. Soc Nephrol, 1999, 10 (2):300-308.
    [267] Ayona T. SiLva, R. J. WaLLace Use of particLe-bound microbiaL enzyme activity to predict the rate and extent of fibre degradation the rumen[J]. Nutrition, 1987, 57: 407-415.
    [268] Baum J.A, Teng H, Erdman J.W.Jr, et al. Longterm intake of soy protein improves blood lipid profiles and increases mononuclear cell low density lipoprotein receptor messenger RNA in hypercholesterolemic, postmenopausal women[J].Am. J. Clin Nutr. 1998, 68(3) :545-551.
    [269] Birt, D.F., Hendrich. S, Wang. W.Q. Dietary agents in cancer prevention: flavonoids and isoflavonoids [J] Pharmacol Ther. 2001,90(2-3): 157-1771.
    [270] Bocchinfuso W P, Lindzey J K, Hewitt S C, et al. Induction of mammary gland development in estrogen receptor-alpha knockout mice[J]. eNDOCRINOLOGY, 2000, 141 (8): 2981-2994.
    [271] Bowey E, Adlercreutz H, Rowland I. Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats[J]. Food and Chemical Toxicology, 2002, 41 (2003): 631-636.
    [272] Campbell P G. Secretion of insulin-like growth factorⅠ(IGF-1) and IGF-binding proteins from bovine mammary tissue in vitro[J]. Endocr, 1991, 128: 219-228.
    [273] Chikhou F H, Moloney A P. Long-term rffects of cimaterol in friesian steers: I, Growth, feed efficiency, and selected carcass traits. Journal of Animal Science, 1993, 71: 906-913.
    [274] Clevenger C V, Furth P A, Hankinson S E, et al. The role of prolactin in mammary carcinoma, Endocr[J]. Rev, 2003, 24 (1): 1-27.
    [275] Couse J F, Yates M M, Walker V R, et al. Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) Null mice reveals hypergonadism and endocrine sex reversal in females lackong ER al[ha but not ER beta[J]. Mol Endocrinol, 2003, 17 (6): 1039-1053.
    [276] Cowie, A T. ed. Hormonal control of lactation[M]. springer-verlag, New York,1981,1-15.
    [277] Conneely O M,Jericevic B M,Lydon J P. Progesterone receptors in mammary gland development and tumorigenesis[J]. J Mammary Gland Biol Neoplasia,2003,8:205-214.
    [278] Constantinou, A.I., Krygier A.E, Mehta R.R.Genistein induces maturation of cultured human reast cancer cells and prevents tumor growth in nude mice [J]. Clin Nutr, 1998, 68 (6):1426s - 1430s.
    [279] Craing W M, Broderick G A. Quantification of microorganisms associated with the particulate phase of ruminal ingesta[J]. Nutr, 1987,117:56-62.
    [280] Crespy V, Morand C, Manach C. Part of quercetin absorbed in the small intestine is conjugated and further secreted in the intestinal lumen[J].American Journal of Physiolgy-Gastrointestinal and liver physiology, 1999, 277: 120-126.
    [281] Dami, A., Bufalino L, Cervetti R, et al. Ip riflavonep revents radial bone loss in postm enopausal women with low bone m ass over 2 years[J]. Osteoporos Int. 1997. 7 (2) :119-125.
    [282] Donna T G. Inside the Lactating Breast: The Latest Anatomy Research[J]. Elsevier Inc,2007,52:556-563.
    [283] Dickinson, J.M., et al. In vitro metabolism of formononetin and biochanin A in bovine rumon fluid[J]. Animal Science. 1988, 66:1969-1973.
    [284] Farmer C, Palin M F. Exogenous prolactin stimulates mammary development and alters expression of prolactin0related genes in prepubertal gilts[J]. journal of Anim Science, 2005, 83 (4): 825-832.
    [285] Fernandez V,Mukherjee R,Mulac-Jericevic A. Revealing Progesterone’s Role in Uterine and Mammary Gland Biology: Insights from the Mouse[J]. Sem Reproduct Med,2005,23 (1):22-37.
    [286] Feuerhaker F, Sigg W, Hofter EA, et al. Cell proliferation, apoptosis, and expression of Bcl-2 and Bax in non-lactating human breast epithelium in relation to the menstrual cycle and reproductive history[J]. Breast Cancer Res Treat,2003,77:37-48.
    [287] Fondevila M, Dehority B A. Interactions Between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the Digestion of Cellulose from Forage. Journal of Animal Science, 1996, 74: 678-684.
    [288] Fournier, D.B., Erdman, J.W.J, Gordon, G.B. Soy, it’s component, and cancer prevention: a review of the in vitro ,animal and human beta[J]1Cancer Epidemiot Biomarkers Prev, 1998, 7 (11):10551.
    [289] Fox L K. N-acety-β-D-glucosaminidase activity in whole milk and milk fraction[J]. Journalof Dairy Science, 1998, 71: 2915-2922.
    [290] Freeman M E, Kanyicska B, Lerant A, et al. Prolactin: structure, function, and regulation of secretion[J]. Physiol Rev, 2000, 80 (4): 1523-1631.
    [291] Gamo, Y., Mii, M., Zhou, X.G., Sar, C., Santoso, B., Arai, I., Kimura, K., Takahashi, J. Effects of lactic acid bacteria, yeasts and galactooligosaccharide supplementation on in vitro rumen methane production[J]. Anim Sci.2002, 14:201-204.
    [292] Girgis E S, Ismil A A. Isolation, purification and characterisation of buffaloes’and cow’milk lactoperoxidase[J]. Egyptian Journal of Food Science, 2001, 29 ( 2 ): 215-232.
    [293] Goodman G T, Akers R M, Friderici K H, et al. Hormonnal regulation of alpha-lactalbumin secretion feom bovine mammary tissue cultured in vitrol[J]. Endocrinology, 1983, 112 (4): 1324-1330.
    [294] Greenwood R H, Momill J L, Titgemeyer E C, et al. A new method of measuring diet abrasion and its effecton the development of the forestomach[J]. Dairy Science, 1997, 80 ( 10 ): 2534-2541.
    [295] Habito R C, MontaltoJ, Leslie E, et al. Effacts of Replacing Meat with Soyabean in the Diet on Sex Hormone Concentrations in Healthy Adult Males[J]. Br J Nutr, 2000, 84: 557-563.
    [296] Haslam S Z, Woodward T L. Host microenvironment in breast cancer development: epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland[J]. Breast Cancer Res, 2003, 5: 208-215.
    [297] Harris J,Stanford PM,Oakes SR. Prolactin and the Prolactin Receptor:New Targets of an Old Hormone[J]. Ann Med,2004,36(6):414-425.
    [298] Haslam S Z. Progesterone effects on deoxyribonucleic acid synthesis in normal mouse mammary glands[J]. Endocrinology, 1988, 122: 464-470.
    [299] HE M Q. Chinese Herbal Medicine Effective Composition and the Characteristics of Physical-Chemical and Pharmacological[M]. Changsa:Hunan Science and Technology Publishing House,1979,2031.
    [300] HE W F,LIU X K. Effect of Roxithromycin on Cellular Immune Function of Mice[J]. China Pharmacy,2005, 16(12):898-890.
    [301] Hollman PCH, de Vires JHM, van Leewen SD, et al. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers[J]. American Journal of Clinical Nutrition, 1995,62: 1276-1282.
    [302] Hungate R E. A roll-tube method for cultivation of strict anaerobes [J]. Methods Microbiol,1969, 3B:117-132.
    [303] Hurley W L. Effect of relaxin on mammary development in ovariectomized pregnant gilts[J]. Endocr,1991, 128 (3): 1258-1290.
    [304] Huriey W L. Lactation Biology Website[J/OL]. Department of Animal Science at the University of Illinois,(2007).http://classes.ansci.uiuc.edu/ansc-438.
    [305] Jounay J P. Effect of rumen protozoa on nitrogen utiliztion by ruminants[J]. Journal ofNutrition, 1996, 126: 1335S-1336S.
    [306] Kang K, Lee S B, Jung S H, et al. Tectoridin, a poor ligand of estrogen receptor alpha, exerts its estrogenic effects via anERK-dependent pathway[J]. Mol Cells, 2009, 27 (3): 351-357.
    [307] Kelly P A, Bachelot A, Kedzia C, et al. The role prolactin and growth hormone in mammary gland gevelopment[J]. Mol Cell Endocrinol, 2002, 197 (1~1): 127-131.
    [308] Khalil M A K, Rasmussen R A. The global sources of mitrous oxide[J]. Journal of Geophysical Research, 1992, 97 : 14561-14660.
    [309] Kitchen B J. Enzymatic method for the esimation of the somatic cell count in bovine milk. N-acetyl-β-D-glucosaminiclase test for rotine estimation of the somatic cell count in milk[J]. Journal of Dairy Research, 1976, 43: 491.
    [310] Kitchen B J. Bovine milk N-acetyl-β-D-glucosaminidase and its significance in the detection of abnormal udder secretions[J]. Journal Dairy Research, 1978, 45: 15.
    [311] Kosikowski F V. Enzyme behavior and utilization in dairy technology[J]. Journal Dairy Science, 1998, 71: 557.
    [312] Kuiper, G.G., Carlsson. B, Granden. K., et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptor alpha and beta [J] . Endocrinology .1997, 138: 863-870.
    [313] Lamartiniere CA,Holland M. Neonatal Genistein Chemoprevents Mammary Cancer[J]. Proc Soc Exp Biol Med,1995,208(1):44-50.
    [314] Lamnert N, Kroon P A, Faulds C B, et al. Purification of cytosolic beta-glucosidase from pig liver and lts reactivity towards flavonoid glyucosides[J]. Biochim iophys Acta, 1999, 1435: 110-116.
    [315] Larson B R.ed. Lactation[M]. The Iowa State University Press/Ames,1985,229-262,39-79.
    [316] Leng R A. Dynamics of protozoa in the rumen of sheep. British Jounary of Nutrition, 1982, 48: 399-415.
    [317] Leondires MP,Hu ZZ,Dong J,et al. Esteadiol Stimulates Expression of Tow Human Prolactin Receptor Isoforms with Alternative Exons-1 in T47D Breast Cancer Cell[J]. J Steroid Biochem Mol Biol,2002,82(2-3):263-268.
    [318] Lephart, E.D., West T.W, Weber K.S, et al. Neuro behavioral effects of dietary soy phytoestrogens[J ]. Neuro toxicol Terato l, 2002, 24 (1): 4-16.
    [319] Lesmeister K E, Heinrichs A J. Effects of adding extra molasses to a texurized calf starter on rumen development, growth characteristics, and blood parameters in neonatal dairy calves[J]. Dairy Sciense, 2005, 88 ( 1 ): 411-418.
    [320] Lundh. T. Metabolism of estrogenic isoflavones in domestic animals [J].Proc. Soc. Exp. Bio. Med. 1995, 208 (1): 33~391.
    [321] Manach C, Morand C, Texier O, et al. Quercetin metabolites in plasma of rats fed diets containing rutin or querecetin[J]. Journal of Nutrition, 1995, 125: 1911-1922.
    [322] Mehlen, P., S.O.K, Arrigc,A.P. Small stress proteins as novel regulators of apoptosis, Heatshock protein 27 blocks Fas/ APO1and staurosporine induced cell death [J]. J Bilo. Chem, 1996. 271(28) :16510-16514.
    [323] Mepham T B. Effect of exogenous growth hormone on mammary function in lactating goats. Hormone and Metabolic Research, 1988, 16: 248-253.
    [324] Morton. Biological Effects of Resveratrol [J]. Life Sci. 2000, 66(8): 663-673.
    [325] Mueller S O, Clark J A, Myers pH, et al. Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha[J]. Endocrinology, 2002, 143: 2357-2365.
    [326] Noteboorn HPJM, Jansen E, Benito S, et al. Oral absorption and metabolism of quercetin and sugar conjugated derivatives in specific transport systems[J]. Cancer Let, 1997, 114: 175-177.
    [327] NRC. Nutrient Requirements of Dairy Cattle. Washington: Seventh Revised Edition National Academy Press, 2001.
    [328] Obara Y. Relationship between N-acetyl-β-D-glucosaminidase activity and cell count, lactose, chlorider or lactoferrin in cow milk[J]. Jpurnal Dairy Science, 1984, 67: 1043-1046.
    [329] Pan, J. , Suzzki, T. Effect of urea infused in to the rumen on Liquid– and particle– associated fibrolytic enzyme activities in steers fed Low quality grass hay[J]. Animal Feed Sci. Technol, 2003,104: 13-27.
    [330] Patricia A M,Kathleen M. A Developmental Atlas of Rat Mammary Gland Histology[J]. J Mammary Gland Biol Neoplasia,2000,5(2):165-185.
    [331] Peaker M,Taylor E. Relaxin detected by immunocytochemistry and northern analysis in the mammary gland of the guinea pig[J]. Endocr,1989,125:693-698.
    [332] Peach K,Webb P, Kuip G M, et al. Differential ligand activation of estrogen receptors Eralpha and Erbeta at API sites[J]. Science, 1997, 277: 1508-1510.
    [333] Piskula M K, Yamakoshi J, Head R J. Daidzein and genistein but not their glucosides are absorbed from the rat stomach[J]. FEBS Lett, 1999,447-452.
    [334] Potter, S.M., Baum S.A, Teng H, et al. Soy protein and isoflavones.their effects on blood lipids and bone density in postmenopausal women[J]. Am.J Clin Nutr,1998,68 (supp.):1375s.
    [335] Ralph R A,Tucker H A,Robert J C. Lactation[M]. London:The Lowa State University Press,1985.
    [336] Ranich, T., Bhathena S.J, Velasquez M.T. Protective effects of dietary phytoestrogens in chronic renal disease [J]. J Ren Nutr , 2001, 11(4) :183-193.
    [337] Revankar C M, Cimino D F, Sklar L A, et al. A transmenmbrane intracdllular estrogen receptor mediates repid cell signaling[J]. Science, 2005, 307 (5715): 1625-1630.
    [338] Robert J Collier. Regulation of bovine mammary factors and binding proteins[J]. Livestock Production Science, 1993, 35: 21-33.
    [339] Russo J,Daniel M,Hu Y F. Breast differentiation and its im[lication in cancer Prevention[J].Clin Cancer Res,2005,11:931-936.
    [340] Schams D. The role of steriod hormones, Prolactin and placental lactogen on mammary gland development in ewes and heifers[J]. Journal of Endocrinology, 1984, 102: 121-130.
    [341] Schedin P, Mitrenga T, Kaeck M, et al. Estrous cycle regulation of mammary epithelial cell proliferation differentiation and death in the Sprague-Dawley rat: model for investigating the role of estrous cycling in mammary carcinogenesis[J]. Journal Mammary Gland Biol Neoplasia, 2000, 5 (2): 211-225.
    [340] Shani K M. Enzyme in bovine milk a review[J]. Journal Dairy Science, 1973,56 (5): 5341-543.
    [341] Sheffields, L. C. Caffine administered during pregnancy augments subsequent lactation in mice[J]. Animal Sci,1991,69:1128-1132.
    [342] Silberstein G B. Postnatal Mammary Gland Morphogenesis[J]. Microsc Res Tech,2001,52(2):155-162.
    [343] Sivaraman L, Hilsenbeck S G, Zhong L, et al. Early exposure of the rat mammary gland to estrogen and progesterone blocks co-localization of estrogen receptor expression and proliferation[J]. Journal Endocrinol, 2001, 171:75-83.
    [344] Snith K L. Hormine induced lactation in bovine I. lactational performance following injections of oesstradiol and Progesterone[J]. Journal of Dairy Science, 1973, 56: 738-743.
    [345] Sorger, P.K, Lewis, M.J, Pelham, H.R.Heat shock factor isregulated differently in yeast and HeLa cells [J]. Nature, 1978, 329(1) :81- 84.
    [346] Stewart C S, Flint H J, et al. The rumen bacteria.In:The Rumen Microbial Ecosystem[C]. Blackie, Melbourne: Hobson, P.N. and Stewart,C.S., Eds. 1997,10-72.
    [347] Stumpf W E, Sar M, Aumuller G. The heart: a target organ for estragiol[J]. Science, 1997, 196 (4287): 319-321.
    [348] Sweeney G. Leptin signalling[J]. Cell Signal, 2002, 14(8):655-663.
    [349] Teer T. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends in Biotechnology, 1997,15: 160-167.
    [350] Tham DM,Gardner CD,Haskel WL. Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence[J]. J Clin Endocrinol Metab, 1998,(83):2223-2235.
    [351] Theodorou M K, Gill M, et al. Enumeration of Anaerobic Chytridiomycetes as Thallus-Forming Units: Novel Method for Quantification of Fibrolytic Fungal Populations from the Digestive Tract Ecosystem[J]. Appl. Environ. Microbiol,1990,56:1073-1078.
    [352] Thomas P, Dong J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 byenvironmental estrogens: a potential novel mechanism of endocrine disruption[J]. Journal Steroid Biochem Mol Biol, 2006, 102 (1-5): 175-179.
    [353] Tucker H A. Physiological control of mammary growth, lactogenesis and lactation[J]. Dairy Sci,1981,64:1403-1421.
    [354] Usui. T. Pharmaceutical p rospects of phytoestrogens[J]. Endocr. 2006,53(1):7 - 20.
    [355] Venderhaar B K. Studies on the mechanism by which thyroid hormones enhance alpha-lactalbumin activity in explants from mouse mammary glands[J]. Endocrinology, 1977, 100 (5): 1423-1431.
    [356] Umland E M, Cauffield J S, Kirk K K, et al. Phytorsrogens as therapeutic alternatives to traditional hormone replacement in postmenopausal women[J]. Pharmcotherapy, 2000, 20 (8): 981-990.
    [357] Unilever, N.V. Skin care compositions containing an organic extract of chick pea. DE 69812367T, 2003, 8-14.
    [358] Walgren R A, Lin J T, Kinne P K, et al. Cellular uptake of dietary flavonoid quercrtin 4’-beta-glucoside by sodium0dependent glucose transporter SGLT1[J]. Journal of Pharmacol Exp Ther, 2000, 294: 837-843.
    [359] Walgren RA, Walle UK, Walle T. Transport of quercetin and its glucosides across tumor intestinal epithelial Caoo-2 cells[J]. Biochem Phamacol, 1998, 55: 1721-1727.
    [360] Wallance R J. Newbold C J, Mckain N. Inhibition by 1,10-phenanthroline of the breakdown of peptides by rumen bacteria and protozoa[J]. Journal of Applited Bacteriology, 1996, 80 ( 4 ): 425-430.
    [361] Wang, X.Y., Manjlili M.H, Chen, X. et al. Development of cancer vaccines using autologous and recombinant high molecular weight stress proteins[J]. Methods, 2004, 32(1): 13-20.
    [362] Wang, W.Q et al. Individual and comninatory effects of soy isoflavones on the in vitro potentiation of lymphocyte activation[J].Nutr Cancer. 1997, 29(1): 29-34.
    [363] Williams P E V, Pagliani L, Innes GH. Effects of aβ-agonist (clenbuterol) on growth, carvass composition, protein and energy metabolism of veal calves. British Journal of Nutrition, 1987, 57: 417-428.
    [364] Zava D T, Duwe G. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro[J]. Nutr. cance, 1997, 27(1):31- 40.
    [365] Zhang, R.Q.et al. Enhancement of immune unction in mice fed high dose of soy daidzein [J]. Nutr. Cancer, 1997, 29(1): 24-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700