用户名: 密码: 验证码:
区域海—气—浪耦合模式改进及航海仿真应用试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
台风是热带洋面能量大量聚积和释放所诱发的强烈天气现象,是地球上破坏力最大的几种气象灾害之一,我国每年都会不同程度地遭受台风引起的强风、暴雨、风暴潮及其巨浪的袭击。台风是在热带洋面上形成和发展,台风和海洋是通过热力和动力过程的相互作用而耦合在一起的,在研究台风过程的海-气相互作用时,必须全面考虑大气诱导的海洋变化对大气的效应和海洋诱导的大气扰动对海洋的效应,即海-气间双向的响应和反馈的影响,在此基础上的海-气耦合模式的发展促进了台风-海洋相互作用的研究。海浪作为存在于大气-海洋界面的一种小尺度天气现象能够直接地影响海-气相互作用,它是参与大气边界层和上层海洋之间动量、热量和物质交换的一个重要物理过程。因此,通过发展大气-海浪-海洋全耦合模式成为研究海-气相互作用和海洋环境变化的重要手段,是目前国际上较为前沿的研究方向。本文回顾了近年来国内外有关大气-海浪-海洋耦合模式的研究现状,海浪对海-气相互作用影响的研究主要围绕海面粗糙度展开,海面粗糙度是表征海面空气动力学粗糙程度的物理量。最早关于海面粗糙度计算的经典参数化方案是由Chamock (1955)提出,他提出粗糙度依赖于风速的变化,并由量纲分析导出粗糙度与风速的关系;随后实施的大量观测试验表明,海面粗粗度与风浪状态有关,但由于观测实验本身及实验所在海域风浪的分布特征都不相同,没有一个明确、普遍适用于各个海域的关系式。国内外研究中开展了建立大气-海浪耦合模式来研究基于海浪状态的海面粗糙度对海-气相互作用过程的影响机制,但大气-海浪-海洋是一个完整的系统,仅考虑大气-海浪之间的耦合作用显然不能准确地反映出海-气相互作用的全过程。本文在课题组原有的中尺度海-气耦合模式LASG-MCM的基础上建立了新的区域大气-海浪-海洋耦合模式(亦简称区域海-气-浪耦合模式),对海-气界面的动力作用和热力作用过程进行参数化,并引入海面粗糙度最新理论研究和观测试验成果,改进大气模式中计算海面粗糙度的Charnock经典参数化方案,更为真实地考虑上层海洋对大气的反馈机制,进一步优化耦合模式对海-气界面物理过程的描述。本文选择南海0214号强热带风暴"Vongfong"和黄东海0414号台风"Rananim"两个典型的台风过程,利用建立的区域大气-海浪-海洋耦合模式进行海面粗糙度参数化方案敏感性试验,通过对敏感性试验与控制试验的模拟结果进行对比分析,研究考虑海浪状态的海面粗糙度参数化方案对台风过程中海-气-浪相互作用过程的影响。研究结果表明,考虑了海面粗糙度的反馈后,对热带气旋的移动路径的模拟有一定改进,但总体改进较小;海-气动量通量受到的影响显著,敏感性试验模拟的海面风场均较控制试验明显减弱,摩擦速度明显增加,且影响的区域主要位于台风的右半圆,具有明显的右偏性;海洋环流背景场特征受到显著影响,流速较控制试验有所减小,且具有明显的右偏性;耦合模式较好地模拟了台风过程中海浪场的分布,敏感性试验各方案模拟的有效波高明显减小,减小的区域与海面风场基本一致。台风内部海面风应力的减小使得海水垂向混合减弱,引起SST上升,SST上升直接导致近地层气温上升,近地层气温上升的区域与SST的升温区域基本一致;各海面粗糙度方案引起潜热通量的变化与SST的变化分布具有较好的一致性,在整个台风影响的区域内,潜热通量均有显著增加;在此过程中,感热通量变化不显著,主要由于SST上升的幅度和范围都较小,感热通量变化很小;在台风中心区域内垂直运动有所加强,主要是SST上升引起台风中心的上升运动增强;台风中心的上升气流把低层的高温、高湿空气向高空输送,引起台风上层的升温较为显著,使得在台风中心的上空的暖核中心附近相对湿度也有所增加;无论是对流性降水还是非对流性降水强度均有增加,且对流性降水降水量增加较大,敏感性试验模拟的降水量与实况更为一致,很好地解决了原海-气耦合模式对降水模拟偏弱的问题,降水落区与实况也更为接近。在上述分析的基础上,本文提出了海面粗糙度对海-气-浪相互作用的影响机制。本文最后结合某沿海港口进港船舶航行仿真试验实例,将海浪数值模拟结果与船舶操纵模拟器结合,并对数值场与定常风浪条件下的航行仿真试验结果进行对比分析,定量地评估了仿真试验中数值海浪场引起的航迹带偏移量。试验结果表明,波浪作用力使得船舶在进港航行过程中的航迹带发生偏移。
Typhoon is one of the most violent storms in the world, which accumulates and releases a great deal energy in the tropical ocean surface. It does great damage to our country by its strong wind, heavy rain, high tide and huge wave. Typhoon only forms and develops in the tropical ocean surface, and it couples with the ocean by dynamic interaction processes and thermal interaction processes. When researching the air-sea interaction in the typhoon process, the effect of ocean change induced by the atmosphere on the atmosphere motion and the effect of atmospheric disturbance induced by the ocean on the upper ocean must be fully considered. This is the response and feedback at air-sea interface. Ocean wave is smallscale weather phenomenon, which may contribute to the air-sea interaction. Accordingly, the development of the atmosphere-wave-ocean coupled model is the important measure to explore the air-sea interaction and ocean state change, and it is the international cutting-edge research directions.This paper first reviewed the research of coupled atmosphere-wave-ocean model in recent years. The sea surface roughness is chosen as the influencing factor when the effect of ocean waves on air-sea interaction is considered. The earliest parameterization of sea surface roughness is put forward by Charnock (1955), and the main idea of the parameterization is that the sea surface roughness depends on the wind speed. The results of subsequent observational experiments show that the sea surface roughness depends on the ocean surface waves, and there are no definite and applicable expressions which can be used in any sea area. The coupled atmosphere-wave model is used to explore the effect of sea surface roughness on air-sea interaction, but the air-wave-sea interaction is an integrated system, therefore, the coupled atmosphere-wave model can not reflect the full process during the air-sea interaction.In this paper, the regional coupled atmosphere-wave-ocean model is developed at the base of the original mesoscale coupled air-sea model (LASG-MCM). The dynamic interaction processes and thermal interaction processes at air-sea interface are parameterized in the coupled model, and the sea surface roughness parameterization is introduced into the model, which is based on the latest theoretical and observational research achievement. The classical Charnock parameterization is substituted by several new sea surface roughness parameterizations, which are more exact means to express the feedback from the upper layer ocean to atmosphere.Two representative typhoon processes are chosen and simulated using the regional coupled atmosphere-wave-ocean model, which are the 0214 Vongfong in the South Sea and 0414 Rananim in the Yellow and East Sea. The results show the path is indistinctively influenced by the sea surface roughness, the ocean surface wind speed decreases and the friction speed increases, especially to the right of the path. The ocean current speed and significant wave height are also reduced and the variational area is nearly the same to the wind field. The decrease of ocean surface wind stress weakens the ocean vertical mixing, and then sea surface temperature (SST) rises. The rise of SST results in the increase of ocean surface air temperature and latent heat fluxes, the change of sensible heat fluxes is not evident. The increase of SST also enhances the vertical motion, the updraft transports the high temperature and highly wet air from the lower layer to the upper layer in the typhoon center, and it also induces the increase of air temperature and relative humidity in the upper layer. This process strengthens the warm core and the precipitation, the precipitation simulated by the coupled model is more consistent with observation data.Finally, marine simulation is conducted using the example of entering the fairway in one seaport, the simulated wave field is applied in the ship navigation simulator. The excursion of the track is due to the simulated wave field data as compared with steady wave.
引文
[1] 韩珏靖,白莉娜,王栋,等.从《Science》和《Nature》看关于台风研究的热点问题[J].南京大学学报(自然科学),2007,43(6):681-694.
    [2] 黄立文,吴国雄,宇如聪.中尺度海-气相互作用对台风暴雨过程的影响[J].气象学报,2005,63(4):455468.
    [3] 关皓,周林,王汉杰,等.南海中尺度大气-海浪耦合模式及其对该区一次强台风过程的模拟研究[J].气象学报,2008,66(3):342-350.
    [4] 赵鸣,苗曼倩,等.边界层气象学教程[M].青岛:青岛海洋大学出版社,1991.
    [5] Alfredo Pena, Sven-Erik Gryning. Charnock's Roughness Length Model and Non-dimensional Wind Profiles Over the Sea [J]. Boundary-Layer Meteorol,2008,128:191-203.
    [6] Drennan, W. M., Taylor, P. K., Yelland, M. J. Parameterizing the Sea Surface Roughness [J]. 2005,35:835-848.
    [7] Maat, N., C. Kraan, W. A. Oost. The roughness of wind waves [J]. Bound.-Layer Meteor., 1991,54:89-103.
    [8] Smith, S. D., R. J. Anderson, W. A. Oost, et al. Sea surface wind stress and drag coefficients: The HEXOS results [J]. Bound.-Layer Meteor.,1992,60:109-142.
    [9] Donelan, M. A., F. W. Dobson, S. D. Smith, et al. On the dependence of sea surface roughness on wave development [J]. J. Phys. Oceanogr.,1993,23:2143-2149.
    [10] Janssen, P. A. E. M. Wave induced stress and the drag of the air flow over sea waves [J]. J. Phys. Oceanogr.,1989,19:745-754.
    [11] Janssen, P. A. E. M. Quasi-linear theory of wind-wave generation applied to wave forecasting [J]. J. Phys. Oceanogr.,1991,21:1631-1642.
    [12] Janssen, P. A. E. M., B. Hansen, and J.-R. Bidlot. Verification of the ECMWF wave forecasting system against buoy and altimeter data [J]. Weather Forecasting,1997,12:763-784.
    [13] Janssen, P. A. E. M. On the effect of ocean waves on the kinetic energy balance and consequences for the inertial dissipation technique [J]. J. Phys. Oceanogr.,1999,29:530-534.
    [14] Janssen, P. A. E. M. Progress in ocean wave forecasting [J]. Journal of Computational Physics.2008,227:3572-3594.
    [15] Hwang, P.A.,2004:Influence of Wavelength on the Parameterization of Drag Coefficient and Surface Roughness. J. Phys. Oceanogr.,60:835-841.
    [16] Hwang, P.A.,2005:Altimeter Measurements of Wind and Wave Modulation by the Kuroshio in the Yellow and East China Seas. J. Phys. Oceanogr.,61:987-993.
    [17] Charnock, H. Wind stress on a water surface [J]. Quart. J. Roy. Meteor. Soc,1955,81: 639-640.
    [18] Hsu, S. A. A dynamic roughness equation and its application to wind stress determination at the air-sea interface [J]. J. Phys. Oceanogr.,1974,4:116-120.
    [19] Donelan, M. A. Air-sea interaction [M]. The Sea, B. LeMehaute and D. M. Hanes, Eds., Wiley and Sons,1990,9:239-292.
    [20] Donelan, M.A., Dobson, F.W., Smith, S.D., Anderson, R.J. On the dependence of sea surface roughness on wave development [J]. J. Phys. Oceanogr.,1993,23:2143-2149.
    [21] Donelan, M. A., W. M. Drennan, and A. K. Magnusson. Nonstationary analysis of the directional properties of propagating waves [J]. J. Phys. Oceanog.,1996,26:1901-1914.
    [22] Johnson, H. K., J. Hojstrup, H. J. Vested, et al. On the dependence of sea surface roughness on wind waves [J]. J. Phys. Oceanogr.,1998,28:1702-1716.
    [23] Johnson, H. K., Vested, H. J., Hersbach, H., et al. The Coupling between Wind and Waves in the WAM Model [J]. Journal of Atmospheric and Oceanic Technology,1999,16:1780-1790.
    [24] Taylor, P. K., and M. J. Yelland. The dependence of sea surface roughness on the height and steepness of the waves [J]. J. Phys. Oceanogr.,2001,31:572-590.
    [25] Oost, W. A., Komen, G. J., Jacobs, C. M. J., et al. New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE [J]. Bound-Layer Meteor, 2002,103:409-438.
    [26] Fairall, C. W., Bradley, E. F., Hare, J. E., et al. Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm [J]. Journal of Climate,2003,16: 571-591.
    [27] Drennan, W. M., Graber, H. C., Hauser, D., et al. On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res [J].2003,108:8062.
    [28] Lange, B., Johnson H. K., Larsen, S., et al. On detection of a wave age dependency for the sea surface roughness [J]. J. Phys. Oceanogr.2004,34:1441-1458.
    [29]潘玉萍,沙文钰.TY01和002两种海面空气动力粗糙度方案的比较[J].海洋预报,2004,21:56-64.
    [30]潘玉萍,闵锦忠,沙文钰.COARE算法中 3 种海面空气动力粗糙度方案的比较[J].海洋学报,2005,27:163-169.
    [31]潘玉萍,沙文钰,王巨华,等.发展新型的海面气动力学粗糙度参数化办案[J].自然科学进展,2007,17(8):1069-1077.
    [32] Doyle, J. D. Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis [J].Tellus,1995,47A:766-788.
    [33] Lionello, P., Malguzzi, P., Buzzi, A. On the coupling between the atmospheric circulation and the ocean wave field:an idealized case [J]. J.Phys.Oceanogr.1998,28:161-177.
    [34] Desjardins,S., Mailhot, J., Lalbeharry, R. Examination of the Impact of a Coupled Atmospheric and Ocean Wave System.Part I:Atmospheric Aspects [J]. J.Phys.Oceanogr. 2000,30:385-401.
    [35] Perrie, W., Zhang, Y.C. Coupling and Feedbacks of the Atmosphere and Ocean Surface: Synoptic and Monthly Time-scales.
    [36] Perrie, W., Zhang, Y.C. A regional climate model coupled to ocean waves:synoptic to multimonthly simulations [J]. Journal of Geophysical Research.2001,106:17753-17771.
    [37] Perrie, W., Zhang, W., Long, Z., et al. Wave-atmosphere-ocean modelling recent storms [C]. Proc.7th International Workshop on Wave Hindcasting and Forecasting.2002.
    [38] Doyle, J. D. Coupled atmosphere-ocean wave simulations under high wind conditions [J]. Mon. Wea. Rev.2002,130:3087-3099.
    [39] Lee, D. K., Ahn, Y. I., Kim, C. J. Impacts of ocean roughness and bogus typhoons on summertime circulation in a wave-atmosphere coupled regional climate model [J]. J. Geophys. Res.2004,109, D06112.
    [40]林惠娟.区域大气与海浪耦合模式的研制及1998年南海夏季风的模拟[D].南京:南京大学,2004.
    [41] Lin H J, Qian Y F, Zhang Y C. A regional coupled air-ocean wave model and the simulation of the South China Sea summer monsoon in 1998[J]. International Journal of Climatology, 2006,26:2041-2056.
    [42]于卫东.气候过程中的海洋-大气相互作用研究——小尺度的海-气通量过程和大尺度的热带海-气相互作用过程[D].青岛:中国科学院海洋研究所,2004.
    [43]于卫东,Laurent Z.-X. Li,袁业立.全球大气-海浪耦合模式对海面气压场模拟的改善[J].科学通报,2005,50(23):2686-2688.
    [44]刘春霞,齐义泉,梁建茵.WRF与海浪模式耦合及其对台风的影响[C].中国气象学年会论文集.北京:中国气象学会,2005.
    [45]刘斌.大气—海浪耦合模式的物理基础及数值研究[D].青岛:中国海洋大学,2007.
    [46]赵伟,徐幼平,程锐,等.AREM中尺度大气模式与海浪模式双向耦合预报试验[J].暴雨灾害,2008,27(2):114-120.
    [47]关皓,周林,王汉杰,等.有限区域大气-海浪耦合模式的建立及海表粗糙度参数化试验[J].海洋学报,2008,30(4):30-38.
    [48]丁亚梅,董克慧,周林,等.大气-海浪耦合模式对台风“碧利斯”的数值模拟[J].海洋预报,2009,26(2):15-26.
    [49] Hasselmann, K.Ocean circulation and climate change [J]. Tellus,1991,43:82-103.
    [50] Ly, L. N. A numerical coupled model for studying air-sea-wave interaction [J]. Physics of Fluids,1995,7:2396-2406.
    [51] Ly, L. N. A Numerical Algorithm for Solving a Coupled Problem of the Air-Sea-Wave Interaction [J]. Mathl. Comput. Modelling.1996,24:19-32.
    [52] Powers. J. G, Stoelinga, M. T. A Coupled Air-Sea Mesoscale Model:Experiments in Atmospheric Sensitivity to Marine Roughness [J]. Monthly Weather Review.2000,128: 208-228.
    [53] Moon, I. J., I. Ginis, T. Hara. Effect of surface waves on air sea momentum exchange. Ⅱ: Behavior of drag coefficient under tropical cyclones [J]. Journal of Atmosphere Science, 2004,61:2334-2348.
    [54] Moon, I. J. Impact of a coupled ocean wave-tide-circulation system on coastal modeling [J]. Ocean Modelling.2005,8:203-236.
    [55] Moon I. J., Ginis I., Hara T. A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions[J]. Monthly Weather Review,2007,135:2869-2878.
    [56] Nagai, H, Kobayashi, T., Tsuduki, K., et al. Coupled atmosphere, land-surface, hydrology, ocean-wave, and ocean-current models for mesoscale water and energy circulations [C]. The 11th Conference on Mesoscale Processes.2005.
    [57] Yoshino, J., Murakami, T., Hayashi, M., et al. Forecasting Typhoon Chaba's (2004) Intensity Change Using a Coupled Atmosphere-Ocean-Wave Model [C].14th Conference on Interaction of the Sea and Atmosphere.2006.
    [58] Jin, H., Hodur, R. A Framework for Coupled Modeling [C].14th Conference on Interaction of the Sea and Atmosphere.2006.
    [59] Zhao, W., Chen, S. S. A coupled Atmosphere-Wave-Ocean Framework for High-Resolution Modeling of Tropical Cyclones and Coastal Storms [C]. WRF/MM5 Users's Workshop. 2005.
    [60] Chen, S. S., Price, J. F., Zhao, W., et al. The CBLAST-Hurricane program and the next-generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction [J]. Bulletin of the American Meteorological Society,2007,88:311-317.
    [61] 黄立文.黄东海区域中尺度海-气相互作用研究(博士后研究工作报告)[M].北京:中国科学院大气物理研究所,2002.
    [62] 文元桥,黄立文,余胜生,等.基于移动代理技术的海-气-浪耦合模拟系统[J].武汉理工大学学报,2006,28(3):125-127.
    [63] Wen, Y.Q., Huang, L.W., Deng, J., et al. Framework of distributed coupled atmosphere-ocean-wave modeling system [J]. Advances in Atmospheric Sciences.2006,23:442-448.
    [64]黄立文,邓健,文元桥,等.中国近海中尺度海-气-浪耦合模式系统及台风耦合试验[C].第六次全国动力气象会议论文.2005.
    [65] Zhang, J.F., Huang, L.W., Wen, Y.Q., et al. Implementation of a Distributed Atmosphere-Wave-Ocean Coupling Model:Typhoon Wave Simulation in the China Seas [C].2006 International Symposium on Distributed Computing and Applications for Business, Engineering, and Sciences.2006.
    [66] Zhang, J.F., Huang, L.W., Wen, Y.Q., et al. A distributed coupled atmosphere-wave-ocean model for typhoon wave numerical simulation [J]. International Journal of Computer Mathematics,2008, DOI:10.1080/00207160802047632.
    [67]宋振亚,乔方利,雷晓燕,等.大气-海浪-海洋环流耦合数值模式的建立及北太平洋SST模拟[J].水动力学研究与进展,2007,22:543-548.
    [68] Song Z Y, Qiao F L, Yang Y Z, et al. An improvement of the too cold tongue in the tropical Pacific with the development of an ocean-wave-atmosphere coupled numerical model[J]. Progress in Natural Science,2007,17(05):576-583.
    [69]宋磊.船舶操纵模拟器三维视景建模技术研究[D].哈尔滨:哈尔滨工程大学,2007.
    [70]吴子春.航海模拟器中信息的采集、传输及处理过程研究[D].大连:大连海事大学,2001.
    [71]孙腾达.船舶操纵模拟器三维视景的实用化研究[D].大连:大连海事大学,2001.
    [72]杨萌.环境压力模型在操纵模拟器上的实现及其在交通规划某些方面的应用[D].大连:大连海事大学,2002.
    [73]康捷.船舶操纵模拟器程序自行终止问题与断点记忆技术的研究[D].上海:上海海运学院,2003.
    [74]周卫兵.船舶操纵模拟器罗经测向的可行性研究[D].大连:大连海事大学,2003.
    [75]王逢仅.大型船舶操纵模拟器控制台的结构与设计[D].大连:大连海事大学,2003.
    [76]李万超.船舶操纵模拟器中拖轮子系统的研究[D].大连:大连海事大学,2004.
    [77]张毅.基于多Agent系统的船舶操纵模拟器Internet集成技术研究[D].上海:上海海事大学,2005.
    [78]袁利毫.船舶操纵模拟器视景仿真研究[D].哈尔滨:哈尔滨工程大学,2007.
    [79]钱华忠.船舶操纵模拟器在港航设计论证上的应用研究与设计[D].上海:上海海运学院,2002.
    [80]肖英杰.运用船舶航海模拟器对洋山深水港进港航道宽度和深度的研究[D].上海:上海海运学院,2002.
    [81]彭国均.大型船舶操纵模拟器船舶航行危险性实时评价的研究
    [82]卜平.船舶操纵模拟器在航海教学与培训中的应用研究[D].上海:上海海事大学,2003.
    [83]上官伟,郝燕玲,卢志忠,等.真实海洋环境视景仿真技术研究[J].系统仿真学报,2006,18 (Suppl.2):394-397.
    [84]高菲.桥墩处流场模型研究及在航海模拟器中的应用[D].大连:大连海事大学,2008.
    [85]张丹.基于实时模拟流场的武桥水道船舶操纵模拟及通航方案研究[D].武汉:武汉理工大学,2009.
    [86]文元桥.中国东部中尺度海-气耦合模式的初步研究[D].武汉:武汉理工大学硕士论文,2002.
    [87]亓春霞.中尺度海——气耦合模式MM5V3-ECOM-si对黄东海入海气旋的模拟研究[D].武汉:武汉理工大学,2003.
    [88]亓春霞,黄立文,吴国雄,宇如聪.MM5V3/ECOM-si海.气耦合模式的数值试验[J].武汉理工大学学报(交通科学与工程版),2003,27(4):443-448.
    [89]Huang Liwen, Yu Rucong, Wu Guoxiong, Qin Zenhao. A coupled air-sea mesoscale model and its experiment over the Yellow and East China Seas [C]. Proceedings of the 12th PAMS/JECSS Workshop,2003.
    [90]Huang Liwen, Wu Guoxiong, Byung Ho Choi. Air-sea interaction impacts on atmospheric and oceanic variation of northwest Pacific typhoon process [C]. Proceedings of the 12th PAMS/JECSS Workshop,2003.
    [91]黄立文,吴国雄,宁如聪.中尺度海一气相互作用对台风暴雨过程的影IJ向[C].中国暴雨数值模拟和数值预报学术交流会大会报告,2003.
    [92]黄立文,吴国雄,宇如聪,邓健,等.中尺度海.气耦合模式MCM的台风批量模拟试验[C].中科院人气物理研究所2003年度LASG学术年会,2003.
    [93]黄立文,邓健,王立军,王思思.中尺度海-气耦合模式的发展及南海台风模拟试验[C].大气科学和地球流体力学数值模拟国家重点实验室(LASG):1004年度学术年会,2005.
    [94]王思思,黄立文,王立军.热带气旋-海洋的相互作用对南海一个强热带气旋过程影响的数值试验[J].热带海洋学报,2006,25(3):14-20.
    [95]王思思.中国海区域海气相互作刚对台风影响的数值试验[D].武汉:武汉理工大学,2006.
    [96]王立军.中国海区域的海洋数值模式与海-气耦合试验研究[D].武汉:武汉理工大学,2006.
    [97]邓健.中尺度海-气-浪耦合模式系统的研究及应用[D].武汉:武汉理工大学,2007.
    [98]黄立文,文元桥,邓健.基于分布式环境的人气、海洋、海浪耦合模拟系统[c].大气科学和地球流体力学数值模拟国家重点实验室(LASG):1004年度学术年会,2005.
    [99]黄立文,邓健,文元桥,张进峰 中国近海中尺度海-气-浪相互作用对台风过程的影响[C].2005年度大气物理研究所暨LASG和LAPC国家重点实验室学术年会,2006.
    [100]黄立文,邓健,张进峰,文元桥.考虑海洋飞沫的海-气相互作用对台风影响的数值试验研究[C].大气科学和地球流体力学数值模拟国家重点实验室(LASG):2006年度学术年会,2007.
    [101]文元桥,黄立文,余胜生,等.基于移动代理技术的海-气-浪耦合模拟系统[J].武汉理工大学学报,2006,28(3):125-127.
    [102] Jimy Dudhia, Dave Gill, Kevin Manning, et al. PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and Users'Guide (MM5 Modeling System Version 3) [EB/OL]. [2005-1]. http://www.mmm.ucar.edu/mm5/documents/tutorial-v3-notes.html.
    [103] Grell, G. A., J. Dudhia., D. R. Stauffer. A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note. National Center for Atmospheric Research.1995.
    [104] Mellor, G. L. Users guide for a three-dimensional, primitive equation, numerical ocean model (June 2003 version) [EB/OL].2003. http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/PubOnLine/POL.html.
    [105] Mellor, G. L. Users guide for a three-dimensional, primitive equation, numerical ocean model. Technical Note. Princeton University.1998.
    [106] Mellor, G. L., Donelan, M. A. A Surface Wave Model for Coupling with Numerical Ocean Circulation Models.2006
    [107] Hendrik L Tolman. User manual and system documentation of WAVEWATCH-III version 2.22 [EB/OL]. [2002-9]. http://polar.ncep.noaa.gov/waves/Welcome.html.
    [108]张进峰.典型海域的海浪数值模拟研究[D].武汉:武汉理工大学,2005.
    [109] Makin, V. K. and Kudryavtsev, V. N. Coupled sea surface-atmosphere model.1. Wind over waves coupling [J]. J. Geophys. Res.,1999,104:7613-7623.
    [110] Makin, V. K. and Kudryavtsev, V. N. Impact of dominant waves on sea drag [J]. Bound.-Layer Meteorol.2002,103:83-99.
    [111] Makin, V. K. A note on a parameterization of the sea drag [J]. Bound.-Layer Meteorol. 2003,106:593-600.
    [112]陈联寿,罗哲贤,李英.登陆热带气旋研究的进展[J].气象学报,2004,62(5):541-549.
    [113]张蕴斐,等.黑潮环流的数值模拟[J].海洋学报,2003,25(03):120~128.
    [114]李东辉,游小宝,等.南海夏季环流机制的数值试验研究[J].热带海洋学报,2003,25(2):76~84.
    [115] Low-Nam, S., and C. Davis. Development of a tropical cyclone bogussing scheme for the MM5 system [C]. The Eleventh PSU/NCAR Mesoscale Model Users'Workshop,2001.
    [116] Robert, W. Berwin. TOPEX/POSEIDON sea surface height anomaly product user's reference manual version 2. Technical Note. Physical Oceanography Distributed Active Archive Center,2003.
    [117] 梁必骐.南海热带大气环流系统[M].北京:气象出版社,1991.
    [118] Zhang, Y.C., Perrie, W. Feedback mechanisms for the atmosphere and ocean suface [J]. Boundary-Layer Meterology,2001,100:321-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700