用户名: 密码: 验证码:
镁合金板材特殊轧制变形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为最轻的金属结构材料,镁合金被誉为“二十一世纪最具发展前景的绿色工程材料”,特别是变形镁合金板材以其优异的的综合性能展现出极其广阔的应用前景。但受到镁合金自身晶体结构的限制,传统的制备和加工技术生产镁合金板材时存在成本偏高、力学性能和低温成形性能不够理想等局限,从而很大程度上制约了变形镁合金的发展。因此,低成本、高性能变形镁合金板材的研制已成为当今材料领域研究的热点。
     为提高镁合金板材的成品率并进一步改善其室温塑性,本文采用AZ31镁合金为研究对象,提出了通过细化晶粒、调整晶粒取向和控制动态再结晶及孪生行为等前期处理,从根本上改善镁合金成形性能,再结合优化的轧制工艺制备高性能镁合金板材的思想,开展了镁合金板材的系列特殊轧制技术研究。
     首先,基于镁合金初始晶粒取向、动态再结晶和孪生行为在板材轧制过程中的重要作用,论文开展了AZ31镁合金铸锭挤压坯轧制技术的研究,分析了挤压坯的显微组织特征和压缩变形行为,研究了轧制温度、变形量和板坯初始取向对AZ31镁合金板材微观组织和力学性能的影响规律,探讨了热轧过程中孪晶的演变以及动态再结晶组织特征和机制,揭示了板材在退火过程中的组织、性能的演变规律,结果表明:
     (1)AZ31镁合金挤压坯具有很强的(0002)基面择优取向和明显的室温各向异性,挤压坯的轧制成形性能随基面与轧面之间倾角的增大而明显改善;随着道次变形量的增大,板材的晶粒组织细化,室温抗拉强度和伸长率增大;镁合金热变形组织对初始晶粒组织非常敏感,具有较明显的组织遗传效应;多道次热轧时,合理地逐步增大道次变形量有利于获得细小均匀的动态再结晶晶粒组织。
     (2){1012}拉伸孪晶的界面容易扩展,其内部主要发生滑移变形;{1011}压缩孪晶的界面稳定,可以作为再结晶的形核质点而细化晶粒。轧制过程中的动态再结晶在低温时以基于孪生的再结晶为主要机制,其实质为{1011}压缩孪晶内的动态再结晶;中温轧制时的动态再结晶机制包括基于孪生的动态再结晶和连续动态再结晶;高温轧制时为非连续动态再结晶。
     (3)低温轧制板材在200℃退火120min可获得最佳的晶粒组织,在400℃以下温度退火发生初次再结晶对板材织构影响不大,在450℃退火时发生二次再结晶使基面织构弱化。
     其次,基于铸锭先挤后轧虽可显著改善镁合金铸锭的热轧开坯性能,但挤压坯常规轧制时,板材仍形成强烈的基面织构而对后续成形极为不利的事实,以抑制轧制过程中基面织构的形成为目的,论文开展了挤压坯异步轧制技术的研究,分析了小异速比多道次异步轧制的变形特点和规律,揭示了异步轧制工艺参数对板材组织及性能的影响规律,结果表明:
     (1)小异速比多道次异步轧制不仅能有效地获得大剪切应变积累,而且等效应变分布比大异速比轧制时更为均匀。
     (2)小异速比多道次异步轧制时,随着道次变形量的增大,形成倾转基面织构的能力减弱,成形性能降低;随着总变形量的增大,基面织构的强度有所减弱;随着异步轧制温度的升高,新晶粒的形成机制逐渐由动态再结晶转变为形成变形带,基面织构强度逐渐降低;沿D路径轧制时可以获得最佳的综合力学性能和成形性能。对异步轧制板材在300℃下经60min退火处理后,基面织构强度显著降低,板材的室温成形性能进一步提高。
     (3)采用优化工艺制备的异步轧制AZ31镁合金板材的室温伸长率达31.7%,比普通轧制的提高了约49%;室温Erichsen值高达6.14mm,比普通轧制的高出3倍。
     第三,基于先挤后轧技术在制备大尺寸板材时的局限性,以及轧制成形受坯件显微组织和晶粒取向影响的认识,同时针对传统铸造镁合金晶粒组织粗大、易于在晶界析出粗大片状共晶相等对板材轧制的不利影响,以控制铸锭微观组织特别是晶粒取向为目的,论文提出了镁合金定向凝固坯轧制技术,研究了不同定向凝固方式下AZ31镁合金铸锭的晶粒组织、晶粒取向、热压缩和热轧制变形特点,建立了定向凝固铸件热压缩变形本构方程,制定了定向凝固坯热轧工艺规程,结果表明:
     (1)定向凝固能有效抑制传统铸造坯晶界脆性相的析出,在平面定向凝固镁合金中同时存在(1010)、(1120)棱柱面和(1011)、(1012)锥面择优取向。
     (2)定向凝固AZ31镁合金热压缩时的应变速率敏感指数m值为0.19,明显大于文献报道的普通铸锭的0.14,并且与挤压态的相当。
     (3)定向凝固坯轧制技术能明显改善镁合金的热轧成形性能,缩短轧制工艺流程,减小开裂倾向,提高板材成品率。
Being the lightest metallic structural materials, magnesium alloys are considered as the environment-friendly engineering material with the greatest prospects for development in the 21st century. Especially, wrought magnesium alloy plates have broad application prospects due to their excellent combined properties. However, magnesium alloy plates prepared by the traditional preparation & plastic processing technologies always exhibit high fabrication cost, undesirable mechanical properties and forming ability at low temperatures due to the intrinsic close-packed hexagonal crystal structure and thus their devolpment is restricted to a great extent. Therefore, research and development of wrought magnesium alloy plates with low cost and high performance is a hot topic in the field of materials research today.
     The thought that improving the forming ability of magnesium alloys can be fundamentally achieved by grain refinement, grain orientation modification and control of dynamic recrystallization & twinning and the high-performance magnesium alloy plates can be prepared by the optimum rolling process in the combination with the pretreatment mentioned above is proposed to improve the rate of finished products and their ambient temperature plasticity. The AZ31 magnesium alloy is selected for the study on the special rolling technologies of magnesium alloy plates in the present study.
     Firstly, the conventional rolling technique of the extrusions prepared from the AZ31 ingots is studied in the consideration that the crystal orientation of original grains, dynamic recrystallization and twinning play the important role during the rolling process of magnesium alloy plates. The microstructural feature and the compression deformation behavior of the as-extruded AZ31 magnesium alloy are analyzed. The effects of the rolling parameters such as rolling temperature, reduction in each pass and crystal orientation of the original plate on the microstructure and mechanical properties of the AZ31 plate are also investigated. Moreover, the evolution of twinning during the hot rolling process as well as the microstructural feature and the mechanism of dynamic recrystallization is explored. In addition, the evolution regularities of the microstructure and mechanical properties of the as-rolled AZ31 plates are revealed during the subsequent annealling. The results show that:
     (1) The as-extruded AZ31 magnesium alloy exhibits a strong (0002) basal preferential orientation and an obvious ambient-temperature anisotropy and its rolling ability is evidently improved as the angle between the basal plane and the rolling surface increases. Grain refinement, higher ambient-temperature ultimate tensile strength and higher elongation are achieved with the increasing reduction in each pass. The hot-deformed microstructure of the AZ31 alloy is very sensitive to the original microstructure and exhibits rather an obvious microstructure hereditary effect. The properly gradual increase of reduction in each pass is beneficial to achieve the fine, homogenous dynamic recrystallization grains during the multiple pass hot rolling.
     (2) The interfaces of the{1012} tensile twins are liable to expand and deformation through dislocation slip is dominant within these twins. The interfaces of the {1011} compression twins are stable and these twins can refine grains by acting as the nucleation sites of dynamic recrystallization. The twin-induced dynamic recrystallization is dominant during rolling at low temperatures. In essence, it is dynamic recrystallization in the{1011} compression twins. However, the twin-induced dynamic recrystallization in the combination with the continuous dynamic recrystallization is dominant during rolling at medium temperatures, while the non-continuous dynamic recrystallization is dominant during rolling at high temperatures.
     (3) The AZ31 plates rolled at low temperatures exhibit the best microstructure after annealing at 200℃for 12min. Annealing below 400℃brings about the primary recrystallization and the latter has no obvious influence on the basal textures. However, annealing at 450℃induces the secondary recrystallization and the latter weakens the basal textures.
     Secondly, the different speed rolling technique of the extrusions prepared from the AZ31 ingots is studied to prohibit the formation of the basal rolling textures since the conventional rolling brings about the severe basal texture and the latter is harmful to the subsequent plastic processing. However, extrusion before rolling can improve the hot rolling ability of the AZ31 ingots. The deformation features and regularities of the different speed rolling with a small differece in the rolling speed and multiple passes are also analyzed. Moreover, the effects of the different speed rolling parameters on the microstructure and mechanical properties of the as-rolled plates are also disclosed. The results show that:
     (1) The different speed rolling with a small differece in the rolling speed and multiple passes can not only achieves the bigger accumulation of shear strain effectively, but also the equivalent strain distribution is more uniform than that of the highly different speed rolling.
     (2) The rotation ability of the basal textures is weakened and the forming ability is reduced with the increasing reduction in each pass during the different speed rolling with a small differece in the rolling speed and multiple passes. The intensity of the basal textures is weakened with the increasing total strain. The formation mode of new grains is varied from dynamic recrystallization to the deformation band and the intensity of the basal textures is reduced gradually. The best mechanical properties and forming ability can be achived by rolling along the D path. The intensity of the basal textures of the as-rolled plate is obviously reduced after annealing at 300℃for 60min and thus its forming ability at ambient temperature is further improved.
     (3) The AZ31 plates prepared by the optium different speed rolling process exhibits the elongation at ambient temperature up to 31.7%, about 49% higher than that of the plate prepared by conventional rolling. Its Erichsen value at ambient temperature is high up to 6.14mm, about 3 times higher than that of conventional rolling.
     Thirdly, the rolling technique of the directionally solidified AZ31 ingot is developed on the basis of the understanding of the influences of the microstructure and the grain orientation of the ingot on the rolling deformation to modify the microstructure especially the grain orientation of the ingot since the conventional rolling after extrusion exhibits the limitation for the preparation of the large-size plates and the traditional magnesium alloy castings are characteristic of coarse grains and coarse plate-like eutectics along the grain boundaries, which have a detrimental effect on the rolling. The microstructure, grain orientation, hot compression and hot rolling deformation features of the AZ31 ingots prepared under the different directional solidification conditions are investigated. On the basis of the understanding mentioned above, the constitutional equation of the directionally solidified AZ31 ingot during hot compression deformation and its hot rolling procedure are established. The results show that:
     (1) Directional solidification can inhibit the precipitation of the brittle phases along the grain boundaries in the traditional castings. The preferential orientations of the (1010), (1120) prismatic planes and the (1011), (1012) pyramidal planes are existent in the planar directionally solidified AZ31 ingots.
     (2) The strain rate sensitivity exponent m of the directionally solidified AZ31 ingot during hot compression is 0.19, much higher than that of the traditional casting reported in the literature (0.14) and comparable to that of the as-extruded state.
     (3) The rolling technique of the directionally solidified ingot can improve the hot rolling ability of the AZ31 alloy, shorten the process flow of rolling, lower the tendency of cracking and increase the rate of the finished AZ31 plate.
引文
[1]张士宏,许沂,王忠堂.镁合金成形加工技术.世界科技研究与发展,2001,23(6):18-21
    [2]余琨,黎文献,李松瑞.变形镁合金材料的研究进展.轻合金加工技术,2001,29(7):6-9
    [3]张士宏,王忠堂,许沂,等.镁合金的塑性加工技术.金属成形工艺,2002,20(5):1-4
    [4]Galiyev A,Kaibyshev R. Superplasticity in a Magnesium Alloy Subjected to Isothermal Rolling. Scripta Materialia,2004,51:89-93
    [5]陈振华,夏伟军,严红革,等.变形镁合金.北京:化学工业出版社,2006
    [6]Baril G,Pebere N. The Corrosion of Pure Magnesium in Aerated and Deaeratd Sodium Sulphate Solutions. Corrosion Science,2001,43:471-475
    [7]余刚,刘跃龙,李瑛.镁合金的腐蚀与防护.中国有色金属学报,2002,12(6):1087-1096
    [8]胡文斌,向阳辉,刘新宽.镁合金化学镀镍预处理过程表面状况的研究.中国腐蚀与防护学报,2001,21(6):340-344
    [9]Dube D,Fiset M,Couture A. Characterization and Performance of Laser Melted AZ91D and AM60B. Materials Science and Engineering,2001,A299:38-43
    [10]Ando S,Tanaka M,Tonda H. Pyramidal Slip in Magnesium Alloy Single Crystals. Materials Science Forum Vols,2003,419-422:87-92
    [11]Yoo M H,Agnew S R,Morris J R,et al. Non-basal Slip Systems in HCP Metals and Alloys:Source Mechanisms. Mater Science and Engineering, A319-321, 2001:87-92
    [12]Takuda H,Kikuchi S. Formability and strain rate sensitivity of a Mg-8.5Li-1Zn alloy sheet. Int Conf.Magnesium alloys and the applications,Munich,2000:285
    [13]陈振华,严红革,陈吉华,等.镁合金.北京:化学工业出版社,2004
    [14]毛卫民,张新民.晶体材料织构定量分析.北京:冶金工业出版社,1993
    [15]Wang Y N,Huang J C. Texture analysis in hexagonal materials. Mater Chemistry and Phy,2003,81:11-26
    [16]Prado M T,Valle J A,Ruano O A. Effect of sheet thickness on the microstructure evolution of an Mg alloy during large strain hot rolling. Scripta Materialia, 2004,50:667-671
    [17]Poss R. Sheet metal production of magnesium. Materials Science Forum Vols, 2003,419-422:327-336
    [18]Styczynski A,Hartig C,Bohlen J,et al. Cold rolling textures in AZ31 wrought magnesium alloy. Scripta Materialia,2004,50:943-947
    [19]Valle J A,Prado M T,Ruano O A.Texture evolution during large-strain hot rolling of the AZ61 Mg alloy. Materials Science and Engineering,2003,A355:68-78
    [20]Yang P,Yu Y,Chen L,et al. Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZ31. Scripta Materialia,2004,50: 1163-1168
    [22]Yang P,Mao W M,Ren X P,et al. Shear Bands in Magnesium alloy AZ31. Trans Nonferrous Met Soc,2004,14(5):851-857
    [23]Saito Y,Utsunomiya H,Suzuki H,et al. Improvement in the r-value of Aluminum strip by a continuous shear deformation process. Scripta Materialia,2000,42: 1139-1144
    [24]Lee J C,Seok H K,Han J H,et al. Controlling the textures of the metal strips via the continuous confined strip shearing (C2S2) process. Materials Research Bulletin 2001,36:997-1004
    [25]Lee S,Yung H C,Wang J. Isothermal sheet formability of magnesium alloy AZ31 and AZ61. Journal of Materials Processing Technology,2002,124 (1-2):19-24
    [26]Kim W J,Hong S I,Kim Y S. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia,2003,51 (11):3293-3307
    [27]Agnew S R,Horton J A,Lillo T M. Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scripta Materialia, 2004,50(3):377-381
    [28]Perez-Prado M T,Valle D,Ruano O A. Grain refinement of Mg-Al-Zn alloya via accumulative roll bonding. Scripta Materialia,2004,51 (11):1093-1097
    [29]Utsunomiya H,Hatsuda K,Sakai T. Continuous grain refinement of aluminum strip by conshearing. Materials Science and Engineering,2004,A372(1-2): 199-206
    [30]程永奇,傅定发,夏伟军,等.等径角轧制ZK60镁合金板材的组织与性能.机械工程材料,2006,30(6):37-39
    [31]Chen Z H,Cheng Y Q,Xia W J. Effect of equal-channel angular rolling pass on microstructure and properties of magnesium alloy sheets. Materials and Manufacturing Processes,2007,22:51-56
    [32]Watanbe H,Mukai T,Ishikawa K. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties. Journal of Materials Science,2004,39:1477-1480
    [33]Kim S H,You B S,Yim C D,et al. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets. Materials Letters, 2005,59 (29-30):3876-3880
    [34]Kim W J,Park J D,Kim W Y,et al. Effect of differential speed rolling on microstructure and mechanical properties of an AZ91 magnesium alloy. Journal of Alloys and Compounds,2008,460 (1-2):289-293
    [35]Cheng Y Q,Chen Z H,Xia W J. Drawability of AZ31 magnesium alloy sheet produced by equal channel angular rolling at room temperature. Materials Characterization,2007,58 (7):617-622
    [36]小林孝幸,小池淳一,铃木真由美.日本金属学会,68,2003:27-31
    [37]Kubota K,Mabuchi M,Higashi K,et al. Review Processing and Mechanical Properties of Fine-Grained Magnesium Alloys. Journal of Mateaials Science, 1999,34:2255-2262
    [38]张凯锋,尹德良,韩文波.热轧AZ31镁合金温变形中的微观组织演变.航空学报,2005,26(4):505-509
    [39]Agnew S R,Duygulu O. A Mechanistic Understanding of the Formability of Magnesium:Examing the Role of Temperature on the Deformation Mechanisms. Materials Science Forum Vols,2003,419-422:177-188
    [40]Yoo M H. Slip,Twinning,and Fracture in Hexagonal Close-Packed Metals. Metall Trans,1981,A 12:409-418
    [41]Myshlyaev M M,McQueen H J,Mwembela A,et al. Twinning,dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy. Materials Science and Engineering,2002,A337:121-133
    [42]Yoshinaga B H,Horiuchi R. Deformation Mechanisms in Magnesium Single Crystales Compressed in the Direction Parallel to Hexagonal Axis. Trans JIM,1963,4:1-8
    [43]Koike J,Ohyama R,Kobayashi T,et.al. Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523K. Materials Transactions,44(4), 2003:445-451
    [44]吕宜振Mg-Al-Zn合金组织、性能、变形和断裂行为研究.[上海交通大学博士 学位论文],上海:上海交通大学,2001
    [46]Staroselsky A,Anand L. A Constitutive Model for HCP Materials Deforming by Slip and Twinning:Application to Magnesium Alloy AZ31B. International Journal of Plasticity,19,2003:1843-1864
    [47]Agnew S R,Yoo M H,Tom C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li and Y. Acta Mater,2001,49:4277-4289
    [48]Tanno Y,Mukai T,Asakawa M. Study on warm caliber rolling of magnesium alloy. Materials Science Form Vols.,2003,419-422:359-364
    [49]Wu S K,Chou T S,Wang J Y. The deformation texture in AZ31B magnesium alloy. Materials Science Forum Vols,2003,419-422:527-532
    [50]Pyzalla A,Brodmann M,Haeffner D. Microstructure,Texture and residual microstrains in MgAl8Zn deformed at very high strain rates. Int Conf.Magnesium alloys and the allpications,Munich:2000,125-130
    [51]Yoshida Y,Cisar L,Kamado S,et al. Effect of Microstructural Factors on Tensile Properties of an ECAE-Processed AZ31 Magnesium Alloy. Mater Trans,2003, 44(4):468-475
    [52]Kim W J,Hong S I,Kim Y S,et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia,2003,51:3293-3307
    [53]Cheng Y Q,Chen Z H,Xia W J,et al. Effect of channel clearance on crystal orientation development in AZ31 magnesium alloy sheet produced by equal channel angular rolling. Journal of Materials Processing Technology,2007, 184(1-3):97-101
    [54]汪凌云,范永革,黄光杰,等.AZ31B镁合金板材的织构.材料研究学报,2004,18(5):466-470
    [55]吕炎,孔祥永.镁合金上机匣等温精锻工艺.哈尔滨工业大学学报,2000,32(4):127-129
    [56]鎌土重晴,北中農,播磨克忠,等.Mg-重稀土類元素-Zr合金の高温变形特性ぉょび锻造性.轻金属,1998,48(4):168-173
    [57]翟秋亚,王智民,袁森,等.挤压变形对AZ31镁合金组织和性能的影响.西安理工大学学报,2002,3:254-258
    [58]王忠堂,张士宏,莫立华,等.镁合金管材挤压工艺及组织性能研究.锻压机 械,2002,1:60-62
    [60]Kleiner S,Uggowitzer P J. Mechanical anisotropy of extruded Mg-6% A1-1% Zn alloy. Materials Science and Engineering 2004,A379:258-263
    [61]张青来,李强,卢晨,等.AZ31B变形镁合金压力成形.轻合金加工技术,2004,32(1):30-34
    [63]Doege E,Droder K. Sheet metal forming of magnesium wrought alloys-formability and process technology. Journal of Materials Processing Technology, 2001,115:14-19
    [64]Shoichiro Y,Hisashi N,Hirokuni Y,et al. Formability enhancement in magnesium alloy stamping using a local heating and cooling technique:circular cup deep drawing process. Journal of Materials Processing Technology,2003,142:609-613
    [65]张青来,卢晨,朱燕平,等.轧制方式对AZ31镁合金薄板组织和性能的影响.中国有色金属学报,2004,14(3):391-397
    [66]Chang T C,Wang J Y. Grain Refining of Magnesium Alloy AZ31 by Rolling. Journal of Materials Processing Technology,2003,140:588-591
    [68]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京,机械工业出版社,2002
    [69]Mukai T,Watanabe H,Ishikawa K,Higashi K. Guide for Enhancement of Room Temperature Ductility in Mg Alloys at High Strain Rates. Materials Science Forum Vols,2003,419-422:171-176
    [70]Huang X S,Kazutaka S,Akira W, et al. Microstructural and textural evolution of AZ31 magnesium alloy during differential speed rolling. Journal of Alloys and Compounds,10.1016/j.jallcom.2009.01.046
    [71]Tsuji N,Toyoda T,Minamino Y,et al. Microstructure Change of Ultra-grained Aluminum during High-speed Plastic Deformation. Materials Science and Engineering,2003,A350:108-116
    [72]Costa A L M,Reis A C,Kestens L,et al. Ultra grain refinement and hardening of IF-steel during accumulative roll-bonding. Materials Science and Engineering, 2005,A406:279-285
    [73]管仁国,李俊鹏,赵金力,等.叠轧深变形制备超细晶Al-21%Mg合金.材料与冶金学报,2005,4(1):65-69
    [74]Lee S H,Saito Y,Tsuji N,et al. Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process. Scripta Materialia,2002,46:281-285
    [75]Tsuji N,Saito Y,Lee S,et al. ARB (Accumulative Roll-Bonding) and other new Techniques to Produce Bulk Ultrafine Grianed Materials. Advanced Engineering Materials,2005,5(5):338-344
    [76]Valle J A,P'erez-Prado M T,Ruano O A. Accumulative roll bonding of a Mg-based AZ61 alloy. Materials Science and Engineering,2005,A410-411:353-357
    [77]仇治勤,陈振华,夏伟军,等.等径角轧制AM60镁合金板材的显微组织与力学性能.机械工程材料,2008,32(5):48-51
    [78]罗衡,陈振华,夏伟军,等.等径角轧制AZ31镁合金板材流变行为研究.矿冶工程,2008,28(5):103-106
    [79]程永奇,陈振华,夏伟军,等.AZ31镁合金板材等径角轧制变形规律研究.塑性工程学报,2007,14(4):127-132
    [80]Chen Z H,Cheng Y Q,Xia W J,et al. Press formability of AZ31 magnesium alloy sheets produced by equal channel angular rolling. Materials Technology,2006, 21(3):148-150
    [81]Cheng Y Q,Chen Z H,Xia W J. Effect of crystal orientation on the ductility in AZ31 Mg alloy sheets produced by Equal Channel Angular Rolling. Journal of Materials Science,10.1007/s10853-007-1559-0 (In Press)
    [82]王丽娜,杨平,夏伟军,等.特殊成形工艺下AZ31镁合金的织构及变形机制.金属学报,2009,45(1):58-62
    [83]程永奇,陈振华,夏伟军.退火处理对等径角轧制AZ31镁合金板材组织与性能的影响.材料热处理学报,2007,28(5):90-94
    [84]朱泉.异步轧制实验研究.钢铁,1980,15(6):1-5
    [85]李尧.异步轧制对3004铝合金变形织构及制耳率的影响.中国有色金属学报,1997,7(2):113-117
    [86]刘京华,张文刚,郭元杰.大辊径差型钢轧制的生产实践及其内在规律.首钢科技,1995,10:4-9
    [87]Gao H,Ramalingam S C,Barber G C,et al. Analysis of Asymmetrical Cold Rolling with Varying Coefficients of Friction. Journal of Materials Processing Technology,2002,124:178-182
    [88]高寅元.异步轧制技术的发展.江西冶金,1990,10(2):45-50
    [89]刘刚,刘桂兰,齐克敏,等.异步轧制取向硅钢薄带的三次再结晶.材料研究学报,1998,12(4):431-433
    [90]齐克敏,李壬龙,高秀华,等.异步轧制取向硅钢薄带的三次再结晶.钢铁,2001,36(5):58-60
    [91]王铭宗,郑红专,姚利仁.异步轧结铝-钢双金属的实验研究.钢铁,1994,29(12):32-35
    [92]段坤详,张营森,史庆南,等.双金属异步轧制压力的测试实验研究.昆明理工大学学报,1997,22(1):54-57
    [93]Huang X S,Kazutaka S,Naobumi S. Microstructure and mechanical properties of AZ80 magnesium alloy sheet processed by differential speed rolling. Materials Science and Engineering,2009,A 508:226-233
    [94]Lee J B,Konnob T J,Jeong H G. Grain refinement and texture evolution in AZ31 Mg alloys sheet processed by differential speed rolling. Materials Science and Engineering,10.1016/j.mseb.2009.02.021
    [95]Kim S H,You B S,Yim C D,et al.Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets. Materials Letters,2005, 59:3876-3880
    [96]Gong X B,Kang S B,Li S Y,et al. Enhanced plasticity of twin-roll cast ZK60 magnesium alloy through differential speed rolling. Materials and Design,10. 1016/j.matdes.2009.03.040
    [97]Huang X S,Kazutaka S,Akira W,et al. Mechanical properties of Mg-Al-Zn alloy with a tilted basal texture obtained by differential speed rolling. Materials Science and Engineering,2008,A 488:214-220
    [98]Xia W J,Chen Z H,Chen D. Microstructure and mechanical properties of AZ31 magnesium alloy sheets produced by differential speed rolling. Journal of Materials Processing Technology,2009,209:26-31
    [99]Kim W J,Yoo S J,Chen Z H,et al. Grain size and texture control of Mg-3Al-1Zn alloy sheet using a combination of equal-channel angular rolling and high-speed-ratio differential speed-rolling processes. Scripta Materialia,2009,60: 897-900
    [100]Watanabe H,Mukai T,Ishikawa K. Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy.Journal of Materials Processing Technology,2007,182:644-647
    [101]Huang X S,Kazutaka S,Akira W,et al. Microstructural and textural evolution of AZ31 magnesium alloy during differential speed rolling. Journal of Alloys and Compounds,10.1016/j.jallcom.2009.01.046
    [102]Huang X S,Kazutaka S,Akira W,et al. Effects of thickness reduction per pass on microstructure and texture of Mg-3Al-1Zn alloy sheet processed by differential speed rolling. Scripta Materialia,2009,60:964-967
    [103]曲家惠,张正贵,王福,等.AZ31镁合金室温异步轧制的织构演变.材料研究学报,2007,21(4):354-358
    [104]朱素琴,严红革,夏伟军,等.异步轧制AZ31镁合金板材的组织性能研究.湖南大学学报(自然科学版),2008,35(8)
    [105]张文玉,刘先兰,陈振华,等.非对称/对称轧制AZ31镁合金微观组织研究.材料工程,2008,6:25-28
    [106]刘兴,陈振华,夏伟军,等.异步轧制对AZ31镁合金板材组织和性能的影响.热加工工艺,2006,35(20):22-25
    [107]谢建新,黄继华,康永林,等.材料加工新技术与新工艺.北京:冶金工业出版社,2004,61-91
    [108]胡汉起.凝固原理.北京:机械工业出版社,1998
    [109]Rutter J W,Chalmers B. A prismatic substructure formed during solidification of metals. Can J Phy,1953,31:15-19
    [110]Mullins W M,Sekerka R F. Stability of a planar interface during solidification of a dilute binary alloys. J Appl Phys,1964,35:444-448
    [111]安阁英.铸件成形理论.北京:冶金工业出版社,2004,106-108
    [112]Versnyder F L,Barlow R S,Slink L W,et al. Directional solidification in the precision casting of gas-turbine parts. Modern Casting,1967,52(6):68-75
    [113]Higginborham G. From research to cast-effective directional solidification and single-crystal production-an integrated approach. Materials Science and Technology,1986,2:442-459
    [114]Giamei A F,Tschinkel J G. Liquid metal cooling:A new solidification technique. Materials Transactions,1976,7A:1427-1434
    [115]蒋成保,周寿增,张茂才,等.定向凝固TbDyFe合金的取向、组织和磁致伸缩性能.金属学报,1998,34(2):164-170
    [116]李德林,毛协民,傅恒志.动力学深过冷定向凝固的可行性研究.第一届全国相变会议,北京,1993,322-327
    [117]金俊泽.电磁搅拌对灰铸铁宏观偏析的影响.金属学报,1992,28B(2):80-83
    [118]张振忠,杨根仓,陈光,等.深过冷Fe-B-Si共晶合金纳米化机制探讨.材料科学与工艺,2001,9(4):342
    [119]陈绍楷,周康,王克光,等.定向凝固法制备YBCO超导体的若干材料科学问题. 稀有金属材料与工程,2002,31(2):129
    [120]Mabuchi M,Kobata,Chino Y,et al. Tensile properties of directionally solidified AZ91 Mg alloy. Materials Transactions,2003,44(4):436-439
    [121]彭德林,邢大伟,安阁英.定向凝固条件下二元Mg-Li合金共晶组织的研究.哈尔滨工业大学学报,1999,31(1):10-12
    [122]Iwanaga K,Tashiro H,Okamoto H. Improvement of formability from room temperature to warm temperature in AZ-31 magnesium alloy. Journal of Materials Processing Technology,2004,155-156:1313-1316
    [123]Koike J,Kobayashi T,Mukai T,et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Materialia,2003,51:2055-2065
    [124]Mathis K,Trojanova Z,Lukac P. Hardening and softening in deformed magnesium alloys. Materials Science and Engineering,2002,A324:141-144
    [125]Myshlyaev M M,McQueen H J,Mwembela A,et al. Twinning,dynamic recovery and recrystallization in hot worked Mg-Al-/Zn alloy. Materials Science and Engineering,2002,A337:121-133
    [126]Galiyev A,Kaibyshev R,Gottstein G. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60. Acta Mater,2001,49: 1199-1207
    [127]Tan J C,TanM J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Materials Science and Engineering,2003,A339:124-132
    [128]Beer A G,Barnett M R. Influence of initial microstructure on the hot working flow stress of Mg-3Al-1Zn. Materials Science and Engineering,2006,A 423: 292-299
    [129]Barnett M R,Beer A G,Atwell D,et al. Influence of grain size on hot working stresses and microstructures in Mg-3Al-1Zn. Scripta Materialia,2004,51:19-24
    [130]Perez-Prado M T,Ruano O A. Texture evolution during annealing of magnesium AZ31 alloy. Scripta Materialia,2002,46:149-155
    [131]傅定发,许芳艳,夏伟军,等.退火工艺对轧制AZ31镁合金组织和性能的影响.湘潭大学自然科学学报,2005,27(4)
    [132]Chang T C,Wang J Y,Lee S. Grain refining of magnesium alloy AZ31 by rolling. Journal of Materials Processing Technology,2003,140:588-591
    [133]Mohri T,Nishiwaki T,Kinoshita T,et al. Microstructure and tensile properties of rolled Mg-5.5%Zn-0.6%Zr alloy. Materials Transactions,2000,41 (9):1154-1156
    [134]Goroh I,Yosei I,Yoshinobu M. Refinement recrystallized grains in wrought magnesium alloy AZ31 through cold rolling and subsequent annealing. J.Japan Inst. Metals,2002,66(1):16-21
    [135]Mohri T, Mabuchi M, Nakamura M,et al. Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn.Materials Science and Engineering,2000, A290:139-144
    [136]Staroselsky A,Anand L. A constitutive model for hcp materials deforming by slip and twinning:application to magnesium alloy AZ31B. International Journal of Plasticity,2003,19:1843-1864
    [137]Wang Y N,Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy. Acta Materialia,2007,55:897-905
    [138]Yang X Y,Miura H,Sakai T. Dynamic Evolution of New Grains in Magnesium Alloy AZ31 during Hot Deformation. Materials Transactions,2003,44(1):197-203
    [139]Klimanek P,Potzsch A. Micro structure evolution under compressive plastic deformation of magnesium at different temperatures and strain rate. Materials Science and Engineering,2002,A324:145-150
    [140]Varzaneh S M F,Zarei-Hanzaki A,Beladi H,et al. Dynamic recrystallization in AZ31 magnesium alloy. Materials Science and Engineering,2007,A456:52-57
    [141]Hirohiko T,Shiomi K,Noriyuki Y,et al. Tensile Properties and Press Formability of a Mg-9Li-1Y Alloy Sheet. Materials Transactions,2003,44(11):2266-2270
    [142]Barnett M R. Recrystallization during and following hot working of magnesium alloy AZ31. Materials Science Forum,2003,419-422:503
    [143]Barnett M R.Twinning and the ductility of magnesium alloys Part Ⅱ:Contraction twins. Materials Science and Engineering A,2007,10.1016/j.msea.2007.02.109.
    [144]Barnett M R. Twinning and the ductility of magnesium alloys Part Ⅰ:Tension twins. Materials Science and Engineering A,2006,10.1016/j.msea.2006.12.037
    [145]Kaibyshev R,Galiyev A,Sitdikov O. On the Possibility of Producing a Nanocrystalling Structure in Magnesium and Magnesium Alloys. Nanostructured Materials,1995,6 (5-8):621-624
    [146]马洪涛,杨蕴林,张柏清.MB26合金的静态与动态再结晶.金属热处理,1999,15(2):12-13
    [148]汪凌云,黄克胜,范永革,等.变形AZ31镁合金的晶粒细化.中国有色金属学报,2003,13(3):594-598
    [149]Ravi K N V, Blandin J J, Desrayaud C,et al. Grain Refinement in AZ91 Magnesium Alloy During Thermomechanical Processing. Materials Science and Engineering,2003,A359:150-157
    [151]Galiyev A, Kaibyshev R,Sakai T. Continuous Dynamic Recrystallization in Magnesium Alloy. Materials Science Forum,2003,419-422:509-514
    [152]谢希文.金属学原理.北京:航空工业出版社,1989.
    [153]毛卫民.金属材料的晶体学织构与各向异性.北京:科学出版社,2002
    [154]毛卫民,张新民.晶体材料织构定量分析.北京:冶金工业出版社,1993
    [155]Matsubara K,Miyahara Y,Horita Z. Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Materialia,2003, 51:3073-3084
    [156]郭强,张辉,陈振华,等.AZ31镁合金的高温热压缩流变应力行为的研究.湘潭大学自然科学学报,2004,26(3):108-111
    [157]彭大暑,张胜华.金属塑性加工原理.长沙:中南大学出版社,2002
    [158]Paul H,Driver J H,Jasienski Z. Shear banding and recrystallization nucleation in a Cu-2%Al alloy single crystal. Acta Materialia,2002,50:815-830
    [159]Xu Y B,Bai Y L,Xue Q,et al. Formation, microstructure and development of the localized shear deformation in low-carbon steels. Acta Mater,1996,44(5): 1917-1926
    [160]李金山,曹海涛,胡锐,等.等径角挤压制备细晶的研究现状.特种铸造及有色冶金,2004,3:1
    [161]Cholinia A,Prangnell P B,Markushey M V. The Effect of Strain Path on the Development of Deformation Structures in Severely Deformed Aluminium Alloys Processed by ECAE.Acta Materialia,2000,A267:100-106
    [162]Furukawa M,Iwahashi Y,Horita Z. The Shearing Characterstics Associated with Equal-channel Angular Pressing. Materialias Science and Engineering,1998, A257 (2):328-332
    [163]Christian J W, Mahajan S. Deformation twinning. Progress in Materials Science, 1995,39:1-157
    [164]钟家湘,郑秀华,刘颖.金属学教程.北京:北京工业大学出版社,1995
    [165]Philippe M J. International Conference on Textures of Materials. Switzerland: Trans Tech Publications,1994,1337-1350
    [166]Perez-Prado M T,Ruano O A. Texture evolution during grain growth in annealed MG AZ61 alloy. Scripta Materialia,2003,48:59-64
    [167]McQueen H J. Development of dynamic recrystallization theory. Materials Science and Engineering,2004,A 387-389:203-208
    [168]Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization:a review. Materials Science and Engineering,1997,A238: 219-274
    [169]《轻金属材料加工手册》编写组.轻金属材料加工手册.北京:冶金工业出版社,1979
    [170]Govind K,Nair S,Mittal M C,et al. Development of rapidly solidified (RS) magnesium-aluminium-zinc alloy. Materials Science and Engineering,2001, A304-306:520-523
    [171]李忠盛,潘复生,张静.AZ31镁合金的研究现状和发展前景.金属成形工艺,2004,22(1):54-57
    [172]Ortega Y, Del R J. Detection of Mg17Al12 precipitates in deformed thermal-aged AZ91 alloy by positron annihilation spectroscopy. Physica Status Solid,2004, 201(3):471-475
    [173]袁武华,张召春,郭强,等.固溶处理对ZK60合金组织及性能的影响.热加工工艺,2006,35(2):22-24
    [174]史正兴.界面问题与超细定向柱晶材料研究.西北工业大学学报,1993(5):3-7
    [175]Bergman M I,Agrawal S,Carter M,et al. Transverse solidification textures in hexagonal close-packed alloys. Journal of Crystal Growth,2003,255:204-211
    [176]Watanabe H,Tsutsui H,Mukai T,et al. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperatures. International Journal of Plasticity,2001,17:387-397
    [177]Nave M D,Barnett M R. Microstructures and textures of pure magnesium deformed in plane-strain compression. Scripta Materialia,2004,51:881-885
    [178]Galiyev A,Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy. Materials Transactions,2003,44(4):426-435
    [179]Barnett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesiumAZ31. Journal of Light Metal,2001,1:167-177
    [180]Gronostajski Z. The constitutive equations for FEM analysis. Journal of Materials Processing Technology,2000,106:40-44
    [181]Takuda H,Morishita T.Kinoshita T,et al. Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperatures. Journal of Materials Processing Technology,2005,164-165:1258-1262
    [182]Takuda H,Yoshii T,Hatta N. Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet. Journal of Materials Processing Technology, 1999,89-90:135-140
    [183]Takuda H,Fujimoto H,Hatta N. Modelling on flow stress of Mg-Al-Zn alloys t at elevated temperatures. Journal of Materials Processing Technology,1998,80-81: 513-516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700