用户名: 密码: 验证码:
底水油藏水平井分段完井控水优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发底水油藏最大的问题就是底水锥进,底水一旦突破,含水率迅速上升,严重的可能出现暴性水淹,被迫关井。分段完井可对出水生产段进行有效控制,实现分段控水分段采油,从而达到延长无水产油期,提高累积无水产油量的目的。本文采用有别于常规带ECP的分段完井方法,提出了变盲筛比的新型分段完井控水方法,在ECP基础上增加了盲管段,从而能有效延缓底水横向运移的时间。但目前变盲筛比的新型分段完井控水方法还没有建立系统的分段优化理论体系,因此本文深入开展了这方面的研究工作,为油田在进行分段完井方案设计时提供了可靠的理论依据。
     首先,本文紧紧围绕变盲筛比的新型分段完井方法,借助渗流力学、工程流体力学、油藏工程等基础理论知识,建立了水平井分段完井产能预测耦合模型与水平井分段完井底水脊进三维模型。该模型运用离散化半解析方法,考虑油藏各向异性、渗流干扰、井筒管流压降、钻完井污染等因素,给出了循环迭代式求解方案。编制了水平井分段优化计算程序,通过计算机辅助计算可以得到水平井分段完井的流率分布、井筒流压分布、底水突破时间分布以及底水突破高度分布。根据这些计算结果以累积无水产油量和增产倍比为目标函数对分段参数做优化处理,包括打开程度、打开段数、盲管位置等。
     其次,在建立的数学模型基础上,分别对分段完井后的产能、底水脊进动态、累积无水产油量做了敏感性分析。对均质油藏分段完井优化提出了动态分段控水和预分段控水的优化思路。对非均质油藏分段优化,应根据非均质油藏的特点,考虑非均质油藏底水突破位置的随机性,对平面渗透率按相对高渗、中渗与低渗划分层段,进而给出非均质油藏分段完井优化方案设计思路。
     最后,通过实例分析表明动态完井控水提高无水产油量非常显著,但现有的堵水技术难以保障动态分段堵水的有效性,因此在实际生产中,采用预分段控水技术较为稳妥。不仅均质油藏预分段控水技术能够较大幅度的提高增产倍比,而且非均质油藏采用分段控水技术提产效果更好,且非均质程度越严重,增产倍比越大。总之,底水突破不可避免,因此采用变盲筛比的新型分段完井控水技术后,就能进一步延缓底水对全井段水淹的时间。通过本文的研究成果,可以对打开程度、打开段数、盲管位置等分段参数进行合理优化,从而最大限度的延长无水采油期,提高累积无水采油量。
     本文建立的分段完井控水优化理论为分段完井提供了配套理论基础,对底水油藏采用分段控水完井方法进行开发提供了重要理论支撑,具有重要的理论和应用价值。
Bottom water coning is one of the biggest problem to exploit the bottom water reservoir. Water cut increases greatly with water breakthrough, which leads to the well shut down. There are many disadvantages in the developing of the bottom water reservoir with the selective completion. Water plugging can be carried out in the Water production interval under the selective completion which has been proved an effective completion method to increase water free production period and cumulative water free production rate. For this, segregated optimization theory is studied in this paper, which is on the based of new selective completion with external casing packer and blank tubing that is different from conventional selective completion with ECP. So the selective completion can increase water free production period by means of increasing the length of blind tube. This paper studies the key technologies for selective completion of system theory, provided relevant theoretical basis for the development of oil and gas reservoir development.
     First, based on the theory of fluid mechanics in porous medium, engineering mechanics and reservoir engineering, a coupling productivity model of selective completion and a three dimensional model of water buildup have been established by mathematical and physical methods. Considering the elements such as anisotropy, filtering interference, conduit flow drawdown as well as damage zone caused by drilling and/or completion, a full set of loop iteration solving schemes for the stable coupling model have been established by means of discretized semi-analytic method, relevant theories such as permeation fluid mechanics, engineering fluid mechanics, reservoir engineering and mathematics. Then, with the help of computer programs, which are compiled on the base of the scheme mentioned above, rate, flowing pressure, breakthrough time and lifting height distribution profiles have been worked out. According to the results, selective completion optimization is obtained, which is on the based of cumulative free water production rate and stimulation ratio as objective function. Segregated optimization includes open degree, the number of open segment and blind tube position. Then the best completion parameter is recommended.
     Second, on the basis of the coupling productivity model and three dimensional bottom water creating model, sensitivity analysis of productivity, water cresting process and cumulative free water production rate was done. For homogeneous reservoir, dynamic segregated and pre-segmented optimization is proposed. For heterogeneous reservoir, because of heterogeneity of penetration, the position of bottom water breakthrough is randomness. Based on the plane heterogeneity of penetration, the segregated optimization of is proposed according to the level of permeability.
     Third, the result show that using dynamic segregated to increase cumulative free water production rate is very significant. However, the existing technology disable guarantee the validity of it. So pre-segmented technology is more appropriate in oil reservoir development. Using pre-segmented technology to increase stimulation ratio is very significant in homogeneous reservoir and heterogeneous reservoir, especially to heterogeneous reservoir. Horizontal well can delay bottom water cresting to a certain extent in the bottom water reservoir, however, premature water breakthrough in the horizontal well.So selective completion technology can effectively delay of bottom water coning in the bottom water reservoir. Applying the results of this paper, segregated optimization including open degree, the number of open segment and blind tube position is designed. So it can effectively delay water coning and maximize the cumulative free water production rate.
     This paper studies the key technologies for moderate selective completion of system theory, appropriate for the the bottom water reservoir development provided relevant basis theoretical, which has important theoretical and practical value.
引文
[1]王嘉淮,刘延强,杨振杰,等.水平井出水机理研究进展[J].特种油气藏.2010,17(1):6-11
    [2]周全兴.现代水平井采油技术[M].天津大学出版社,1997:21-34
    [3]戴彩丽,路建国,任熵,等.薄层底水油藏底水锥进控制可视化研究[J].中国石油大学学报.2006,30(3):72-76
    [4]邓玄,曹鹏,陈辉.薄层底水油藏水平井采水抑锥方法研究[J].复杂油气藏.2009,2(2):44-49
    [5]王嘉淮,刘延强,杨振杰,等.水平井出水机理研究进展[J].特种油气藏.2010,17(1):6-11
    [6]李积永,张玉敏,季赞.X油田Es31底水油藏水平井设计优化[J].石油天然气学报.2009,31(1):296-297
    [7]陈浩,张仕强,钟水清等.薄层、底水油藏水锥控制技术研究与应用[J].天然气勘探与开发.2005,28(4):43-45
    [8]肖春艳,李伟,肖淑萍.边底水油藏开采机理与含水上升规律[J].断块油气田.2009,16(6):68-70
    [9]H.A.Al-Ahmadi,S.M.Al-Mutairi.Effective Water Production Control Through Utilizing ECP and Passive ICD Completion Technologies:Case Histories[C].SPE 120822,2008
    [10]S.A.Al Arfi,S.El A.Salem,A.Al-Saiid Keshka.Inflow Control Device an Innovative Completion Solution from Extended Wellbore to Extended Well Life Cycle[C].SPE 119599, 2009
    [11]F T Al-Khelaiwi,V M Birchenko,M R Konopczynski,D R Davies.Advanced Wells:A Comprehensive Approach to the Selection Between Passive and Active Inflow Control Completion[C]. IPTC 12145,2008
    [12]F.T.Al-Khelaiwi, D.R.Davies.Inflow Control Devices:Application and Value Quantification of a Developing Technology[C], SPE 108700,2007
    [13]A.A.Al-Mumen, G.A.Al-Essa, M.Infra,et al. World's First 3-7/8" Multi-lateral Short Radius Re-entry Completed With Ultra-Slim ICD System[C]. SPE 126047,2009
    [14]金勇,唐建东,赵娟,等.边底水油藏合理生产压差优化方法及其应用[J].石油学报.2003,24(1):68-72
    [15]万仁溥.现代完井工程[M].北京.石油工业出版社,2008
    [16]杜娟.Yang底水锥进模型分析与改进[D].西南石油大学,2005
    [17]万仁溥.水平井开采技术[M].北京:石油工业出版社,1995:116-122
    [18]Giger F M,Resis L H,Jourdan A P.The reservoir engineering aspects of horizontal drilling[C].SPE 13024,1984
    [19]Joshi S D.A review of horizontal well and drain hole technology [C]. SPE 16868,1988
    [20]Renard G L,Dupuy J M.Influence of formation damage onthe flowefficiencyofhorizontal well[C].SPE 19414,1990
    [21]窦宏恩.预测水平井产能的一种新方法[J].石油钻采工艺,1996,18(1):76-81.
    [22]徐景达.关于水平井的产能计算—论乔希公式的应用[J].石油钻采工艺,1991,13(6):67-74.
    [23]Muskat M,Wyckoff R.D. An Approximate Theory of Water-Coming in Oil Production[J]. Tans,AIME,1935,144-161
    [24]Meyer,H L,Garder A O.Mechanics of Two Immiscible Fluids in Porous Media[J]. Journal of Applied Physics,1954,25(11):1400-1406
    [25]Wheatley M.J. An Approximate Theory of Oil/Water Coning[C].SPE 14210,1985
    [26]Ozkan E,Raghavan R.Performance of Horizontal Wells Subject to Bottomwater Drive[J]. SPE Reservoir Engineering,1990,5(3):375-383
    [27]Ozkan E,Raghavan R.A Breakthrough Time Correlation for Coning Toward Horizontal Wells[C].SPE 20964,1990
    [28]Papatzacos P,Herring T R,Marthinsen R,et al.Cone breakthrough Time for Horizontal Wells[C].SPE 19822,1991
    [29]Guo Bo-yun.,Molinard J-E,Lee R L.A General Solution of Gas/Water Coning Problem for Horizontal Wells[C].SPE 25050,1992
    [30]Sobocinski D P,Cornelius A J.A Correlation for Predicting Water Coning Time[J]. JPT,1965,17(5):594-600
    [31]Umnuayponwiwat S,Ozkan E.Water and Gas Coning toward Finite-Conductivity Horizontal Wells:Cone Buildup and Breakthrough[C].SPE 60308,2000
    [32]Bahadori A.Determination of well placement and breakthrough time in horizontal wells for homogeneous and anisotropic reservoirs [J]. Journal of Petroleum Science and Engineering. 2010 (75):196-202
    [33]Goodarzian S,Ghalambor A,Izadi M.Analysis of Parameters Affecting Critical Flow Rate in a Horizontal Well:Case Study in Ahwaz Oil Field[C]. SPE 151759,2012
    [34]Goode P A, Wilkinson D J.Inflow Performance of Partially Open Horizontal Wells[C].SPE 19341.1991
    [35]Guo B,Lee R L.A Simple Approch to Optimization of Completion Interval in Oil/Water Coming Systems[C].SPE 23994,1992
    [36]Karmal M M.Pressure-Transient Analysis for a Well With Multiple Horizontal Sections[C]. SPE 26444,Oct.3-61993
    [37]Yildiz T,Ozkan E.Transient Pressure Behaviour of Selectively Completed Horizontal Wells[C],SPE 28388,1994
    [38]Retnanto A,Yamin M.Impact of Completion Technique on Horizontal Well Productivity[C].SPE 54302,1999
    [39]Yildiz T. Productivity of Selectively Perforated Horizontal Wells[C].SPE 90580,2004
    [40]Kalita R,Jalali Y.Numerical Investigation of Horizontal Well Performance With Selective Completion[C].SPE 96395,2005
    [41]Dikken B J.Pressure Drop in Horizontal Wells and It's Effect on Production Performance[C]. SPE 19824,1989
    [42]Doan Q,Farouq Ali S M,Gorge A E.Scaliing Crieria and Model Experiments for Horizontal Wells[C].Petroleum Society of Canada 90-128,1990
    [43]Ozkan E,Sarica C,Hacifslamoglu M.Effect of Conductivity on Horizontal Well Pressure Behavior [C]. SPE 24683,October,1992
    [44]Landman M J,Goldthorpe W H.Optimization of Perforation Distribution for Horizontal Wells[C].SPE 23005,1991
    [45]Su Z,Gudmundsson J S.Pressure Drop in Perforated Pipes:Experiments and Analysis[C].SPE 28800,1994
    [46]Ihara,Masaru,Kikuyama,et al.Flow in Horizontal Wellbore with Influx Through Porous Wells[C].SPE 28485,1994
    [47]Novy R A.Pressure Dorp in Horizontal wells:when can They Be Ignored?[J]. SPE Reservoir Engineering,1995,10(1):29-35
    [48]Penmatcha V R,Arbabi S,Aziz K.A Comprehensive Reservoir/Wellbore Model for Horizontal Well[C]. SPE 39521,1998
    [49]Holmes J A.Enhancements to the strongly Coupled Fully Implicit Well Model:Wellbore Crossflow Modeling and Collective Well Control[C].SPE 12259,1983
    [50]Holmes J A, Barkve T,Lund O.Application of a Multisegment Well Model to Simulate Flow in Advanced Wells[C]. SPE 50646,1998
    [51]Ozkan E,Sarica C,Haci M.Influence of Pressure Drop Along the Wellbore on Horizontal Well Productivity [J]. SPE journal,1999,4(3):288-301
    [52]Vicente R,Sarica C,Ertekin T.An Investigation of Horizontal Well Completions using a two-phase Model Coupling Reservoir and Horizontal Well Flow Dynamics[C].SPE 71601,2001
    [53]Vincente R,Sarica C,Ertekin T.Horizontal Well Design Optimisation:A Study of the Parameters Affecting the Producitivity and Flux Distribution of a horizontal Well[C].SPE 84194,2003
    [54]Ouyang L B, Huang B. An Evaluation of well Completion Impacts on the perfomance of Horizontal and Mutilateral Wells[C].SPE 96530,2005
    [55]Brekke K,Johansen T E,Olusfen R.A New Modular Approach to Comprehensive Simulation of Horizontal Wells[C].SPE 26518,1993
    [56]Kabir A,Sanchez GAccurate Inflow Profile Profile Prodiction of Horizontal Wells through couping of a Reservoir and a Wellbore Simulator[C].SPE 119095,2009
    [57]Kabir A,Jose A.Accurate Inflow Profile Prediction of Horizontal Wells Using a Newly Developed Coupled Reservoir and Wellbore Analytical Models [C].SPE 129038,2010
    [58]Augustine J,Mathis S,Nguyen H,et al.World's First Gravel-Packed Inflow-Control Completion,SPE Drilling & Completion,2008,23(2):61-67
    [59]Davila E,Almeida R,Vela J,et al.First Applications of Inflow ControlDevices(ICD)in Open Hole Horizontal Wells in Block 15,Ecuador. SPE 123008,2009
    [60]Robinson M.Intelligent Well Completions[C].SPE,80993,2003
    [61]Henriksen K H,Gule E I,Augustine J.Case Study:The Application of Inflow Control Devices in the Troll Oil Field[C].SPE 100308,2006
    [62]Iyamu O,Coll C,Bouhafs C.Impact of Multilateral Wells on Oil Recovery in an Oil Rim Field Development Using Multilateral Wells with Natural Gas Lift and Inflow Control Devices in a Fractured Carbonate Reservoir[C].SPE 113866,2008
    [63]Ouyang L B,Huang W S.Case Studies for Improving Completion Design through Comprehensive Well Performance Modeling[C].SPE 104078,2006
    [64]Ratterman E E,Voll B A,Augustine J R.New Technology Applications to Increase Oil Recovery by Creating Uniform Flow Profiles in Horizontal Wells:Case Studies and Technology Overview[C].IPTC 10177,2005
    [65]Solomon O,Andrew K.New Concepts of Dual-Completion for Water Cresting Control and Improved Oil Recovery in Horizontal Wells[C].SPE 77416,2002
    [66]Jaripatke O,Dalrymple D.Water-Control Management Technologies:A Review of Successful Chemical Technologies in the Last Two Decades[C].SPE 127806,2010
    [67]Sun K,Constantine J,Ricardo,et al.Intelligent Well Systems-Providing Value or Just Another Completion[C].SPE 124916,2009
    [68]Abdullah M,Qahtani,Dialdin H.Future Advanced Completion Technologies to Maximize Recovery[C].OTC 20136,2009
    [69]Ouyang L B.Practical Consideration of an Inflow Control Device Application for Reducing Water Production [C]. SPE 124154,2009
    [70]Freyer R,Morten.An Oil Selective Inflow Control System[C].SPE 78272,2002
    [72]刘慈群,王晓冬.水平井水驱开发极限产量问题[J].石油学报,1993,14(2):59-64
    [73]范子菲,林志芳.底水驱动油藏水平井临界产量公式及其变化规律研究[J],石油勘探与开发,1994,21(1):65-70
    [74]李传亮.带隔板底水油藏油井临界产量计算公式[J].大庆石油地质与开发,1993,12(4):43-46
    [75]李传亮.带隔板底水油藏油井见水时间预报公式[J].大庆石油地质与开发,1997,16(4):49-50
    [76]李传亮.底水油藏油井最佳打开程度研究[J].新疆石油地质,1994,15(1):57-59
    [77]程林松,郎兆新,张丽华.底水驱油藏水平井油藏工程研究[J].石油大学学报(自然科学 版),1994,18(4):43-47
    [78]喻高明,凌建军,蒋明煊.砂岩底水油藏底水锥进影响因素研究[J].江汉石油学院学报,1996,18(3):59-62
    [78]窦宏恩.水平井开采底水油藏临界产量的计算[J].石油钻采工艺,1997,19(3):70-75
    [79]窦宏恩.水平井开采底水油藏的消锥工艺及证明[J].石油钻采工艺,1998,20(3):56-59
    [80]窦宏恩.提高原油采收率的一种新理论与新方法[J].石油学报,1998,19(1):71-74
    [81]程林松,张健琦,李春兰.底水油藏水平井开发见水后生产动态预测[J].西南石油学院学报,2002,24(2):12-16
    [82]周代余,江同文,赵金洲,等.底水油藏水平井临界产量及其不确定性分析[J].钻采工艺,2005,28(1):33-36
    [83]王家禄,刘玉章,江如意.水平井开采底水油藏水脊脊进规律的物理模拟[J].石油勘探与开发,2007,25(2):65-69
    [84]刘欣颖,胡平.非均质底水油藏水平井三维物理模拟实验[J].石油学报,2011,32(6):1012-1016
    [85]孟红霞,陈德春,海会荣,等.水平井分段射孔完井方案优化[J].油气地质与采收率,2007,14(5):84-87
    [86]杨勇.水平井变孔密分段射孔水平段长度优化设计[J].石油天然气学报,2008,30(3):123-126
    [87]杨波,刘德基,尹玉川.水平井分段射孔优化技术[J].石油天然气学报,2008,30(4):153-155
    [88]刘珊,同登科.依据油藏与井筒耦合关系建立水平井分段采油优化模型[J].石油学报,2009,30(6):932-936
    [89]刘珊,同登科.水平井分段采油优化模型[J].计算力学学报,2010,27(2):342-346
    [90]胥元刚.水平井筒摩擦压降对产能的影响[J].油气田地面工程,1995,14(4):9-10
    [91]刘想平,郭呈柱,蒋志祥,等.油层中渗流与水平井筒内流动的耦合模型[J].石油学报,1999,20(3):82-86
    [92]吴淑红,刘翔鹗,郭尚平.水平段井筒管流的简化模型[J].石油勘探与开发,1999,26(4):64-67
    [93]刘想平,张兆顺.水平井筒内与渗流耦合的流动压降计算模型[J].西南石油学院学报,2000,20(2):36-40
    [94]李明川,崔桂香.变质量气液分层流动数值模拟[J].石油钻采工艺,2001,23(1):47-51
    [95]周生田,张琪,黄炳家,等.变生产指数下水平井生产动态分析[J].石油学报,2002,23(3):77-80
    [96]周生田.射孔水平井孔眼分布优化研究.石油大学学报(自然科学版)[J].2002,26(3):52-54
    [97]汪志明,赵天奉,徐立.射孔完井水平井筒变质量湍流压降规律研究[J].石油大学学 报,2003,27(1):41-44
    [98]段永刚,陈伟,黄诚,等.井筒与油藏耦合条件下的水平井非稳态产能预测(Ⅰ)—数学模型[J].西南石油学院学报,2004,26(1):23-25
    [99]黄诚,陈伟,段永刚,等.井筒与油藏耦合条件下的水平井非稳态产能预测(Ⅱ)—计算模型[J].西南石油学院学报,2004,26(1):36-28
    [100]陈伟,段永刚,黄诚,等.井筒与油藏耦合条件下的水平井非稳态产能预测(Ⅲ)—实例分析[J].西南石油学院学报,2004,26(1):30-31
    [101]陈满朝,郑联勇.底水油藏水平井水平段长度优化模型[J].新疆石油地质,2004,24(5):523-525
    [102]王小秋,徐静,汪志明.水平井筒变质量流动规律的研究进展[J].天然气工业,2005,25(4):92-94
    [103]李晓平,张烈辉,李允,等.水平井井筒内压力产量变化规律研究[J].水动力学研究与进展,2005,20(4):492-496
    [104]吕爱民,姚军.裂缝性非均质底水油藏含水变化规律研究[J].钻采工艺,2008,31(4):56-59
    [105]刘珊,同登科.依据油藏与井筒耦合关系建立水平井分段采油优化模型[J].石油学报,2009,30(6):932-935
    [106]熊友明,唐海雄,罗东红,等.底水砂岩油藏水平井筒压降计算耦合模型与应用[J].数字技术与应用,2009,176-177
    [107]宋开利.水平井分段采油管柱[J].石油机械,2003,23(8):40-41
    [108]李洪山.水平井底水油藏变密度射孔技术优化研究[J].内蒙古石油化工,2007,33(5):208-210
    [109]熊友明,罗东红,唐海雄,等.延缓和控制底水锥进的水平井完井新方法[J].西南石油大学学报(自然科学版),2009,103-106
    [110]熊友明、唐海雄、张俊斌、姜柯、张林.一种水平井控压缓水锥的功能的完井装置,实用新型专利ZL 200920134507.0,专利证书号第1579887号
    [111]熊友明、唐海雄、张俊斌、姜柯、张林.一种高效控压缓水锥水平井完井技术,国家发明专利CN200910109251.2
    [112]程林松、李忠兴、黄世军,等.不同类型油藏复杂结构井产能评价技术[M].北京.中国石油大学出版社,2007:29-32
    [113]Asheim H,Kolnes J,Oudeman P.A Flow Resistance Correlation for Completed Wellbore[J].Journal of Petroleum Science and Engineering.1992 (18):97-104
    [114]Su Z,Gudmundsson J S.Friction Factor of Perforation Roughness in Pipes[C].SPE 26521,1993.
    [115]周生田,张琪.水平井筒两相流压力计算模型[J].石油大学学报(自然科学版),1998,22(4):43-44
    [116]周生田,张琪,李明忠,等.水平井筒变质量流体流动实验研究[J].石油大学学报(自然科学版),1998,22(5):53-55
    [117]Plaxton B L.Pipeflow Experiments for the Analysis of Pressure Drop in Horizontal Wells[C].Petroleum Society of Canada 96-64,1996
    [118]Yuan H,James P.Investigation of Single Phase Liquid How behavior in horizontal wells[C].SPE 48937,1998
    [119]Ruben M S M,Schulkes,Utvik O H.Pressure Drop in a Perforated Pipe With Radial Inflow:Single-Phase Flow[J]. SPE Journal,1998,3(1):77-85
    [120]姜振强,王晓冬,周丛丛.井筒压降对水平井人流动态的影响[J].油气地质与采收率.2009,26(2):81-84
    [121]Ouyang L B,Arbabi S,Aziz K. General Wellbore Flow Model for Horizontal Vertical,and Slanted Well Completion[C].SPE 36608,1996
    [122]袁恩熙.工程流体力学[M].石油工业出版社,2007:124-125
    [123]Chaperon,I.Theoretical Study of Coning Toward Horizontal and Vertical Wells in Anisotropic Formations:Subcritical and Critical Rates[C].SPE 15377,1986
    [124]Papatzacos,Herring,Martinsen.Cone Breakthrough Time for Horizontal Wells[J].SPE Reservoir Engineering,1991,6(3):311-318
    [125]李传亮.油藏工程原理[M].石油工业出版社,2005:47-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700