用户名: 密码: 验证码:
直接电还原合成对氨基苯酚过程基础及相关溶液热力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步和医药、橡胶、染料等工业的快速发展,对氨基苯酚(PAP)作为重要的医药、橡胶、染料和精细化工中间体,国内外需求量逐年递增,缺口甚大,合成新方法研究相当活跃。有“绿色技术”美称的硝基苯(NB)直接电还原合成技术具有成本低、无污染、投资少、收率高、产品质量好等其它工艺无法比拟的优点,成为国内外学者研究的热点。作为河南省重点科技攻关项目(No.03223023800)的一部分,本文以NB为原料,进行直接电还原合成PAP过程的反应液分析、阴极材料电催化性能与选择、电化学反应器的选择及流体流动特性、工艺条件优化、离子膜的污染与清洗再生、相关流体相平衡、体积性质、粘度性质及相应模型等基础研究,具有重要的学术理论意义和工程应用前景。
     直接电还原合成PAP过程的反应液为PAP、苯胺、未反应的NB及H_2SO_4水溶液,反应液中PAP和苯胺的同时快速分析尚未见报道。本文将等吸收点双波长紫外分光光度法和气相色谱法相结合,建立了可同时对电合成PAP反应液中PAP、苯胺、未反应的NB进行定量分析的新方法。
     阴极是电合成PAP过程的催化剂,又是电催化反应的场所,针对NB直接电还原合成PAP体系的特点,采用循环伏安、稳态极化曲线及控制电位电合成等手段,系统研究了硝基苯在Cu、Ni、Monel合金和Cu-Hg四种阴极上的电化学还原特性,表明Cu-Hg电极和Monel合金电极有较高的析氢过电位、较好的电催化活性和优良的PAP选择性,考虑到Hg污染等因素,Monel合金是电合成PAP较理想的阴极。
     根据NB电化学还原机理和反应工程原理分析,硝基苯电还原合成对氨基苯酚用反应器的流体流动状况应接近理想置换流。据此,设计自制板框式电化学反应器。通过停留时间分布模拟实验和直接电化学合成实验,当阴极液流量接近300L.h~(-1)时,流型接近理想置换流,此时的PAP收率和电流效率最大。
     使用板框式电催化反应器,Nafion427阳离子交换膜,Monel合金阴极,铅锑合金阳极,在阳极液硫酸浓度20wt%、流量300L/h、极间距3mm、阴极液中乳化剂用量0.12wt%、反应前以200ml/min的速度鼓入高纯N_2 20min的条件下,运用正交实验设计和较精细的单因素实验得到最佳工艺条件为:电流密度500A/m~2;电解温度85℃;阴极液硫酸浓度20wt%;阴极液NB的浓度6.75wt%;通电量100A.h:
p-Aminophenol(PAP) is an important medicine, rubber and dye intermediate with wide uses and optimum application prospects. With the development of medicine, rubber and dye industry, the need for p-aminophenol was yearly increased both in China and abroad, however the supply is insufficient. The technology of direct electrochemical synthesis of PAP is characterized by mild reaction conditions, high product purity and reduced waste, and is called as "Green Technology". So the studies to fluid phase equilibria, volumetric and viscosity properties, the analysis method, the electro-catalytic activity and selectivity of cathode materials, the design and flow characteristic of reactor, the technological conditions optimization and the fouling and cleaning processes of Nafion membrane etc. have a great science and applied significance for electrochemical synthesis of p-aminophenol using nitrobenzene (NB) as raw material. The research contents of this paper are one of subjects funded by Henan Key Research Projects (No. 03223023800) in 2003.
    In the electro-synthesis process of p-aminophenol, supporting electrolytes were sulfuric acid aqueous solution, and the reaction solution were the mixtures consisting of p-aminophenol, water, H_2SO_4, aniline and un-reacted NB. The analysis method that can simultaneously and rapidly analyzes the contents of p-aminophenol and aniline in reaction mixture liquid was not found in literature. In this paper, a new analysis method that can simultaneously analyzes the contents of p-aminophenol and aniline in reaction mixture liquid was proposed by combining gas phase chromatography method with equivalence absorbency double-wavelength UV spectrophotometry method.
    The cathode is the catalyst and a reaction field for electro-catalytic reaction. Base on the properties of the electro-synthesis process of p-aminophenol and with the methods of CV, steady-state polarization curve and controlled potential electrochemical reduction, the electro-catalytic properties of Cu, Ni, Monel alloy and Cu-Hg electrode were investigated, respectively. It was found that the Monel alloy and Cu-Hg cathodes exhibited higher overpotential to hydrogen evolution, better electro-catalytic activity and p-aminophenol selectivity, and can be applied in the electro-synthesis process of p-aminophenol. Further thinking of the factor of mercury pollution aspect, Monel alloy was finally selected as the cathode material for electrochemical reduction NB to p-aminophenol.
    According to the analysis of the chemical reaction engineering theory and the NB electrochemical reduction mechanism, the fluid flow patterns in the electrolyzer used as direct electrochemical reduction NB to p-aminophenol should be close to plug-flow. Based on the outcome, the Plate and frame electrolyzer that can be used in direct electrochemical reduction NB to p-aminophenol was designed. In terms of the results of the residence time distribution(RTD) experiments and the direct electrochemical reduction experiments of NB, it can be known, when the catholyte flow rate is 300L.h~(-1), the fluid flow patterns in the electrolyze are close to plug-flow and both the current efficiencies and the yield of PAP are the highest.
    In this study, using Nafion 427 cation-exchange membrane as membrane, Monel alloy as cathode and Pb-Sb alloy as anode, the technology conditions for synthesizing
引文
[1] SteckhanE. Electroorganicsynthesis[M]. New York: Marcel Dekker, 1996. 295—296
    [2] 王福安,任保增.绿色过程工程引论[M].北京:化学工业出版社,2002.
    [3] Russion J. Membrane electrochemistry[J]. Electrochem., 2002, 38(8): 800-805.
    [4] Zhao, J. H.; Wang, L. C.; Xu, H. S.; Song, C. Y.; Wang, F. A. Solubilities of p-Aminophenol in Sulfuric acid + Water from (286.15 to 362.80) K[J]. J. Chem. Eng. Data 2005, 50(3): 977-979.
    [5] Zhao, J. H. Wang, L. C.; Wang, F. A. Solubilities ofp-aminophenol in sulfuric acid + water + (methanol, ethanol, 1-propanol, 2-propanol, 1,2-propanediol and glycerin, respectively) from (292.35 to 348.10) K[J]. J. Chem. Eng. Data, 2006, 51(2): 376-381.[6] Zhao, J. H.; Wang, L. C.; Xu, H. S.; Song, C.Y.; Wang, F. A.; Densities and Viscosities of p-aminophenol in Sulfuric acid + water at temperatures from (293.15 to 343.15)K[J]. J. Chem. Eng. Data, 2006, 51(3):660-664.
    [7] 赵建宏,徐海升,杨许召,王留成,宋成盈,王福安.对氨基酚直接电还原合成过程中Nation膜的污染与清洗再生[J].化工学报,2005,56(7):1327-1331.
    [8] 候峰岩,王为.电化学技术与环境保护[J].化工进展,2003,22(5):471-476.
    [9] 刘竹青,胡爱琳,王公应.对氨基苯酚的合成研究进展[J].工业催化,1999,(2):11-16.
    [10] 陈学梅.对氨基苯酚的合成工艺[J].化学工业与工程技术,1997,18(1):35-37
    [11] Ma, K.W.; Potts, I.W.; Malek, R.A. Process of regenerating a noble metal used in the reduction of organic nitro compounds[P].US:4164481, 1979.
    [12] 李荣才.对氨基苯酚(PAP)国内外概况及发展趋势[J].江苏化工,1999,27(2):13-16.
    [13] 李莉,王元瑞,于宝洁,张龙.壳聚糖-钯催化剂用于对硝基苯酚的催化加氢[J].贵金属,2003,24(2):7-10
    [14] 谢垣,刘嘉良,龙学礼等.硝基苯催化加氢合成对氨基苯酚的研究评价[J].辽宁化工,1998,27(2):65-67.
    [15] 刘竹青,胡爱林,王公英.担载铂催化剂用于硝基苯催化加氢制对氨基苯酚的研究[J].分子催化,2000,14(2):98-101
    [16] 王燕玲,储伟,谢在库等.硝基苯催化加氢制对氨基苯酚的合成工艺研究进展[J].化学研究与应用,2002,14(5):497-501
    [17] 黄伟,杨晓莉.硝基苯催化加氢制对氨基苯酚工艺研究[J].化学工业与工程技术,2002,23(5):13-15
    [18] 李好管.对氨基苯酚未来市场需求大[J].中国化工信息,2002,(15):13
    [19] 王光信,张积树.有机电合成导论[M].北京:化学工业出版社,1997.
    [20] 马淳安,苏为科,王焕华.电化学还原合成对氨基苯酚的研究(Ⅱ)-影响电解合成的主要因素[J].浙江工学院学报,1992,55(2):1-8
    [21] Delue N R., Pickens S R. Process for preparing para-aminophenol[P]. US4584070.1986.[22] 杨国华.从硝基苯制备对氨基苯酚的新工艺[P].CN1061808,1992
    [23] Rance, H. C.; Coulson, J.M. The Electrolytic Preparation of p-Aminophenol. Electrochim. Acta 1969, 14, 283-292
    [24] Nolen, T.R.; Fedklw, P. S. Kinetic Study of the Electeoreduction of Nitrobenzene. J. Appl. Electrochem. 1990, 20, 370-376
    [25] Polat, K.; Aksu, M.L.; Pekel, A.T. Electeoreduction of Nitrobenzene to p-Aminophenol -Using Voltammetric and Semipilot Scale Preparative Electrolysis Techniques[J]. J. Appl. Electrochem. 2002, 32, 217-223
    [26] 朱户沭,张积树,潘云生等.电合成对氨基苯酚的研究(Ⅱ)[J].精细化工,1993,10(2):47-49
    [27] 许文林,丁平,袁渭康.硝基苯电解还原制备对氨基苯酚过程优化研究[J].化学工程,1994,22(4):35-41
    [28] 王留成,赵建宏,宋成盈,等.对氨基苯酚合成工艺最新进展[J].精细与专用化学品,2002,(18):24-25
    [29] Smeltzer, J. C.; Fedkiw, R S. Reduction of nitrobenzene in a parallel -platereator[J]. J. Electrochem. Soc. 1992,139(5):1366-1372
    [30] Yun, K. S.; Cho, B. W. Multi-rotating disk electrode and solid polymer electrolyte electrode type electrolytic bath[P].US:4956067,1990
    [31] Yun, K. S.; Cho, B. W. Process for preparing Para-amionphenol [P]. US: 5066369, 1991
    [32] 许文林,丁平,刘河洲,等.硝基苯电解还原制备对氨基苯酚的研究[J].化学反应工程与工艺,1993,9(4):497-500.
    [33] 马淳安,郑勤安.对氨基苯酚电解合成中Cu—Ni合金阴极的研究[J].浙江工业大学学报,1996,24(2):138-141.
    [34] 李保山,朱玉舒,翟玉春,等.硝基苯在发泡镍阴极上电还原为对氨基苯酚[J].石油化工高等学校学报,2000,13(2):2-5
    [35] 李保山,朱玉舒,翟玉春,等.硝基苯在发泡铜阴极上电还原为对氨基苯酚研究[J].精细化工,2000,17(4):213-216
    [36] Muralidharan, S.; Chellammal, S.; Anantharaman, P. N. Electroreduction of p-nitrosophenol to p-aminophenol using titanium oxide-coated titanium??electrode[J]. Bull Electrochem, 1991,7(5):222-223
    [37] Polat, K. A Novel, Semi-Pilot Scale Electrolysis System for the Production of p-Amino- phenol[J]. Turk. J. Chem. 2003, 27, 501-511.
    [38] 马淳安.有机电化学合成导论[M].北京:科学出版社,2002.306-308
    [39] Inaba, M.; Ogumi, Z.; Takehara, Z. I. Application of the solid polymer electrolyte methode to organic electro-chemistry[J].JElectrochemSoc, 1993,140(1): 19-22
    [40] 王雅琼,许文林,王保成等.硝基苯电解还原制备对氨基苯酚所用离子膜的选择[J].化学工业与工程,1996,13(4):55-85
    [41] 马淳安,张文魁,黄辉等.硝基苯电解合成对氨基苯酚的工业化研究[J].高校化学工程学报,2001,15(3):454-457.
    [42] 马淳安,褚有群,童少平等.对氨基苯酚的绿色电化学合成及其工业化[J].化工学报,2004,55(12):1971-1975
    [43] 徐海升,白汝江,赵建宏等.一种“绿色合成”技术——有机电合成[J].郑州工业大学学报,2001,22(3):17-21
    [44] 王留成,徐海升,赵建宏,宋成盈,王福安.对氨基苯酚的直接电还原合成技术研究进展[J].化学世界,2004,7:380-383[1] Delue, N. R.; Pickens, S. R. Process for Preparing para-Aminophenol[P]. US Patent 4584070, 1986.
    [2] 王留成,徐海升,赵建宏,宋承盈,王福安.对氨基苯酚的直接电还原合成技术研究进展[J].化学世界,2004,7:380-383
    [3] Zhao, J. H.; Wang, L. C.; Xu, H. S.; Song, C. Y.; Wang, F. A. Solubilities of??p-Aminophenol in Sulfuric acid + Water from (286.15 to 362.80) K[J]. J. Chem. Eng. Data 2005, 50, 977-979.
    [4] 杨许召,赵建宏,徐海升等.电还原硝基苯合成对氨基苯酚的研究,第十二次全国电化学会议,上海,2004,11,B04-05.
    [5] Polat, K. A Novel, Semi-Pilot Scale Electrolysis System for the Production of p-Aminophenol. Turk. J. Chem. 2003, 27:501-511
    [6] Polat, K.; Aksu, M. L.; Pekel, A. T. Electeoreduction of Nitrobenzene to p-Aminophenol Using Voltammetric and Semipilot Scale Preparative Electrolysis Techniques[J]. J. Appl. Electrochem. 2002, 32, 217-223
    [7] 马淳安,褚有群,童少平等.对氨基苯酚的绿色电化学合成及其工业化[J].化工学报,2004,55(12):1971-1975
    [8] Russion J.Membrane Electrochemistry.Electrochemistry,2002,38:800-811
    [9] 尤进茂,孙学军,李怀娜等.电解还原法生产的PAP纯度及杂质4,4-二胺基二苯醚的高效液相色谱分析[J].色谱1995,13(3):213-215
    [10] 尤进茂,高灿柱,孙学军,周连君.电解还原法生产的对氨基苯酚纯度及杂质的高效液相色谱分析[J].分析化学,1995,23(9):1059-1062
    [11] 包文棣,米启沐.电位滴定法测定阴极电解液中对氨基苯酚[J].山东化工,1993.4:44
    [12] Ngo T T, Yam C F. Sensitive and selective spectrophotometric determination of para-and ortho-aminophenol with hypochlorite-alkaline phenol reagents. Analytical Letters, 1984, 17(A15): 1771—1782
    [13] 王雅琼,许文林,王树勇.硝基苯电解还原液中对氨基苯酚的测定——Berthelot显色剂分光光度法[J].山西化工,1994,(2):31-32
    [14] 孙建军,杨伯伦,林宏业.分光光度法测定氨基甲酸甲酯和尿素混合物[J].分析试验室,2004,23(4):28-30
    [15] 楼良旺,高年发.紫外分光光度法测定丙酮酸[J].分析试验室,2005,24(4):11-13
    [16] 庚梅,杜海燕,孙家跃,吴爱萍.四工作曲线法同时测定芦荟甙和芦荟大黄素[J].分析试验室,2005,24(1):66-69[17] 赵建宏,程磊,王留成等.对氨基苯酚直接电还原合成反应液的等吸收点双波长紫外分光光度法分析[J].分析试验室,2006(已接受)
    [18] 李亚新,赵晨红.紫外分光光度法同时定量测定多组分混合物——喹啉 吡啶吲哚 苯酚[J].环境工程,1999,17(2):58-60.
    [19] 李亚新,赵晨红.紫外分光光度法测定焦化废水的主要污染物[J].中国给水排水,2001,17(1):54-56
    [20] 王留成,徐海升,赵建宏,宋成盈,王福安.直接电合成烟酸反应液的全分析[J].分析科学学报,2005,21(1):36-38.
    [22] 隋铭皓,马军,盛力.MnO_x/颗粒活性炭催化臭氧氧化技术降解硝基苯效能研究[J].现代化工,2004,25(8):31-37.
    [23] Noel, M.; Ravichandran, C.; Anantharaman, P.N. Electrochemical technique for the reduction of aromatic nitrocompounds in H_2SO_4 medium on thermally coated Ti/TiO_2 electrodes[J]. J. Appl. Electrochem. 1995, 25(7): 690-698
    [24] 赵建宏,徐海升,杨许召,王留成,宋成盈,王福安.对氨基酚直接电还原合成过程中Nation膜的污染与清洗再生[J].化工学报,2005,56(7):1327-1331.
    [25] Zhao, J. H. Wang, L. C.; Wang, E A. Solubilities of p-aminophenol in sulfuric acid + water + (methanol, ethanol, 1-propanol, 2-propanol, 1,2-propanediol and glycerin, respectively) from (292.35 to 348.10) K[J]. J. Chem. Eng. Data, 2006, 51(2): 376-381.
    [26] Zhao, J. H.; Wang, L. C.; Xu, H. S.; Song, C.Y.; Wang, F. A.; Densities and Viscosities of p-aminophenol in Sulfuric acid + water at temperatures from (293.15 to 343.15) K[J]. J. Chem. Eng. Data, 2006, 51(3):660-664.[1] 陈康宁,金属阳极[M].上海,华东师范大学出版社,1989.
    [2] Popczyk, M.; Budniok, A.; Lasia, A. Electrochemical properties of Ni-P electrode materials modified with nickel oxide and metallic cobalt powders[J]. International??Journal of Hydrogen Energy, 2005, 30 (3):265-271.
    [3] 陈延禧.电解工程[M].天津:天津科学技术出版社,1993.
    [4] 丁平,许文林,朱中南,袁渭康.硝基苯电解还原制备对氨基苯酚[J].上海化工,1989,17:26-29
    [5] 卢世刚,杨汉西,王长发.贮氢合金用作硝基苯电解加氢的催化电极研究[J].电化学,1995,1(1):15-20
    [6] 马淳安,苏为科,王焕华.电化学还原合成对氨基苯酚的研究[J].浙江工学院学报,1992,1:1-7
    [7] Rance, H.C.; Coulson, J.M. The Electrolytic Preparation ofp-Aminophenol[J]. Electrochim. Acta 1969, 14, 283-292
    [8] Marquez, J. : Pletcher,, D. A Study of the Electrochemical Reduction of Nitrobenzene to p-Aminophenol[J]. Journal of Applied Electrochemistry, 1980, 10: 567-573
    [9] Christopher, L. W. ; Handady, V. U. Electrolytic Reduction of Organic Compounds[J]. Journal of the Electrochemical Society, 1952, 99(7): 289-294
    [10] MexhnieI, A. S. ; Schneider, L. ; Ballard, A. Trans. Am. Electrochem. Soe. , 1921, 39:441-448
    [11] Delue N R., Pickens S R. Process for preparing para-aminophenol[P]. US4584070. 1986.
    [12] Polat, K.; Aksu, M. L.; Pekel, A. T. Electeoreduction of Nitrobenzene to p-Amino-phenol -Using Voltammetric and Semipilot Scale Preparative Electrolysis Techniques[J]. J. Appl. Electrochem. 2002, 32, 217-223
    [13] Polat, K. A Novel, Semi-Pilot Scale Electrolysis System for the Production of p-Amino- phenol[J]. Turk. J. Chem. 2003, 27, 501-511.
    [14] Nolen, T. R.; Fedklw, P. S. Kinetic Study of the E lecteoreduction of Nitrobenzene. J. Appl. Electrochem. 1990, 20, 370-376
    [15] Seshadri, G.; Kellber, J. A. A Study of the Electrochemical Reduction of Nitrobenzene at Molybdenum Electrodes[J]. J. Electrochem. Soc. 1999, 146(10):3762-3764.
    [16] Ravichandran, C.; Chellammal, S.; Anantharaman, P. N. Electroreduction of nitrobenzene to p-aminophenol at a TiO_2/Ti electrode[J]. J. Appl. Electrochem., 1989,19(3):465-466.
    [17] Jiang, J. H.; Zhai, R. S.; Bao, X. H. Electrocatalytic Properties of Cu-Zr Amorphous Alloy towards the Electrochemical Hydrogenation of Nitrobenzene[J]. Journal of Alloys and Compounds, 2003, 354(1~2):248-258.
    [18] 王留成,徐海升,赵建宏等.对氨基苯酚的直接电还原合成技术研究进展[J].化学世界,2004,7:380-383
    [19] 马淳安,张文魁,黄辉等.硝基苯电解合成对氨基苯酚的工业化研究[J].高校化学工程学报,2001,15(3):454-45.
    [20] 马淳安,褚有群,童少平等.对氨基苯酚的绿色电化学合成及其工业化[J].化工学报,2004,55(12):1971-1975
    [21] 褚道葆,沈广霞,朱琼霞,林昌健,林华水.Ti表面修饰纳米TiO_2膜电极的电催化活性[J].高等学校化学学报,2002,23(4):678-681[22] 李保山,朱玉舒,翟玉春,等.硝基苯在发泡铜阴极上电还原为对氨基苯酚研究[J].精细化工,2000,17(4):213-216
    [23] 马淳安,褚有群,朱英红,徐志花.酸性溶液中硝基苯在WC电极上的电化学还原[J].电化学,2004,10(3):298-302
    [24] 马淳安,张文魁,黄辉,甘永平.硝基苯的电还原特性研究[J].电化学,1999,5(4):395-400
    [25] 张积树,朱启沐,宋楠,李长泰.电合成对氨基苯酚的研究(Ⅰ)---电极材料等条件的影响[J].精细化工,1993,10(2):44-48
    [26] 许文林,丁平,袁渭康.硝基苯电解还原制备对氨基苯酚过程优化研究[J].化学工程,1994,22(4):35-41
    [27] 马淳安.有机电化学合成导论[M].北京:科学出版社,2002.
    [28] Bard, A. J.; Fanlkner, L. R. Electrochemical Method, Fundamentaland application [M]. John Wiley & Sons, Inc, 1980.
    [29] 吴浩青,李永舫.电化学动力学[M].北京:高等教育出版社,1998.
    [30] 樊金红 徐文英 高廷耀.硝基苯在铜电极上的电还原特性研究[J].电化学2005.11(3):341-345.
    [31] Smeltzer, J.C.; Fedkiw, RS. Reduction of nitrobenzene in a parallel-plate reactor. Ⅰ. Differential conversion using periodic cell-voltage control[J]. Journal of the Electrochemical Society, 1992, 139(5): 1358-1366
    [32] 季霞,徐颖.在有机合成中控制亲核重排推动力的探讨[J].石油化工高等学校学报,1996,19(1):23-25.
    [33] Cry, A.; Huot, P.; Belot, G.; Lessard, J. The efficient electrochemical reduction of nitrobenzene and azoxybenzene to aniline in neutral and basic aqueous methanolic solutions at devarda copper and raney nickel electrodes[J]. Electrochim. Acta, 1990, 35: 147-152.
    [34] 王光信,张积树.有机电合成导论[M].北京:化学工业出版社,1997.
    [35] 许文林.固定床电化学反应器的基础研究.博士学位论文.上海:华东化工学院,1991.
    [36] 查全性等.电极过程动力学导论(第三版[M].北京:科学出版社,2002.
    [37] 田昭武.电化学研究方法[M].北京:科学出版社,1984.
    [38] 刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987.
    [39] 周伟舫.电化学测量[M].上海:上海科学技术出版社,1985.
    [40] Noninski, V. C. Magnetic field effect on copper electrodeposition in the Tafel potential region[J]. Electrochimica Acta, 1997, 42(2): 251-254.
    [41] John C. Smeltzer, Peter S. Fedkie.Reduction of nitrobenzene in a parallel-plate reactor Ⅰ. Differential conversion using periodic cell-voltage control[J]. J.Electrochem. Soc. 1992, 139(5): 1358-1366.
    [42] John C. Smeltzer, Peter S. Fedkie.Reduction of nitrobenzene in a parallel-plate reactor Ⅱ. Integral conversion using periodic cell-voltage control[J]. J.Electrochem. Soc. 1992, 139(5): 1366-1372.
    [43] 许文林等.硝基苯电解还原制备对氨基苯酚的研究[J].化学反应工程与工艺,1993,9(4):497.
    [44] 赵建宏,程磊,王留成等.对氨基苯酚直接电还原合成反应液的等吸收点双波长紫外分光光度法分析[J].分析试验室,2006,25(6)(已校对)[45] 马淳安,郑勤安.对氨基苯酚电解合成中cu—Ni合金阴极的研究[J].浙江工业大学学报,1996,24(2):138-141.
    [46] Zhao, J. H.;Yang, X. Z.; Xu, H. S.;Wang, F. A. Effect of surface composition and state of Cu-Ni alloy on electtochemical reduction of nitrobenzene to p-aminophenol, 229~(th)ACS National Meeting, San Diego, CA, March 13-17,2005. No. 383[1] 刘永民,刘铮,袁乃驹.多管环流反应器的流动和传质特性[J].化工学报,2001,52(3):222-226.
    [2] 王涛,卢春喜,时铭显.高硫焦用强混反应器流动特性[J].过程工程学报,2004,4(2):97-102.
    [3] Kushwaha, A.; Poirier, M.; Sapoundjiev, H. Effect of reactor internal properties on the performance of a flow reversal catalytic reactor for methane combustion[J]. Chemical Engineering Science, 2004, 59(19): 4081-4093.
    [4] Hwang, Jang Y.; Park, Chinho; Huang, Min; Anderson, Tim. Numerical procedure to extract physical properties from raman scattering data in a flow reactor[J]. Journal of the Electrochemical Society, 2005, 152(5): 334-C339.
    [5] Liang, W.; Jin, Y.; Yu, Zh.; Wang, Zh.; Zhu, J.; Chen, J. Flow characteristics and mixing properties in a high velocity liquid-solid loop reactor[J]. Chemical Engineering Journal, 1996, 63(3): 181-188.
    [6] Brunazzi, E.; Galletti, C.; Paglianti, A.; Pintus, S. An impedance probe for the measurements of flow characteristics and mixing properties in stirred slurry reactors[J]. Chemical Engineering Research and Design, 2004, 82(9): 1250-1257.
    [7] Weinberg,N. L. Technique of Electroorganic Chemistry[M]. Vol.3, Part three, John Wiley & Sons, Inc, 1982.[8] Baizer, M. M.; Lund, H. Organic Electrochemistry[M]. New York: Marcel Dekker, 1983
    [9] Allen, M. J. Organic Electrode Processes[M]. Chapman and Hall LTD, 1958
    [10] Polat, K.; Aksu, M. L.; Pekel, A. T. Electeoreduction of Nitrobenzene to p-Aminophenol -Using Voltammetric and Semipilot Scale Preparative Electrolysis Techniques[J]. J. Appl. Electrochem. 2002, 32, 217-223
    [11] 许文林.固定床电化学反应器的基础研究.博士学位论文.上海:华东化工学院,1991.
    [12] Marquez, J. ; Pletcher,, D. A Study of the Electrochemical Reduction of Nitrobenzene to p-Aminophenol[J]. Journal of Applied Electrochemistry, 1980, 10: 567 -573
    [13] Smeltzer, J.C.; Fedkiw, E S. Reduction of nitrobenzene in a parallel-plate reactor.Ⅰ. Differential conversion using periodic cell-voltage control[J]. Journal of the Electrochemical Society, 1992, 139(5): 1358-1366
    [14] 季霞,徐颖.在有机合成中控制亲核重排推动力的探讨[J].石油化工高等学校学报,1996,19(1):23~25.
    [15] 许文林,丁平,袁渭康.硝基苯电解还原制备对氨基苯酚过程优化研究[J].化学工程,1994,22(4):35-41.
    [16] Delue N R., Pickens S R. Process for preparing para-aminophenol[P]. US4584070.1986.
    [17] 马淳安 张文魁 黄辉等。对氨基苯酚电合成的工业化开发研究[J].精细化工增刊,2000,10:17-19.
    [18] 马淳安,张文魁,黄辉等.硝基苯电解合成对氨基苯酚的工业化研究[J].高校化学工程学报,2001,15(3):454-457.
    [19] 马淳安,褚有群,童少平等.对氨基苯酚的绿色电化学合成及其工业化[J].化工学报,2004,55(12):1971-1975.
    [20] Pikett, D. H. Electrochemical Reactor Design[M]. New York :distributors for the U.S. and Canada, Elsevier North-Holland, 1979.
    [21] 陈延禧.电解工程[M].天津:天津科学技术出版社,1993.[22] 马淳安.有机电化学合成导论[M].北京:科学出版社,2002.
    [23] 徐海升,赵建宏,宋成盈等.维生素K_3合成的工业化研究[J].化学.反应工程与工艺2002,18(4):334-338.
    [24] 叶忠,陈建方,杨凌峰.微型工业反应器的停留时间分布的测定[J].温州师范学院学报,1997,3:62-64.
    [25] 周国忠,高正明,王英琛,等.多级搅拌槽内流动特性实验及模型研究[J].北京化工大学学报,2001,28(1):18-21.
    [26] 姜信真.化学反应工程简明教程[M].西安:西北大学出版社,1987.
    [27] 陈甘棠.化学反应工程[M].北京:化学工业出版社,1989.
    [28] 朱炳辰.化学反应工程[M].北京:化学工业出版社教材出版中心,2001.
    [29] 赵建宏,程磊,王留成等.对氨基苯酚直接电还原合成反应液的等吸收点双波长紫外分光光度法分析[J]. 分析试验室,2006,25(6)(已校对).[1] Noel, M.; Anantharaman, P. N.; Udupa, H. V.K. An electrochemical technique for the reduction of aromatic nitro compounds[J]. Journal of Applied Electrochemistry,1982,12:291-298
    [2] Marquez, J.; Pletcher,, D. A Study of the Electrochemical Reduction of Nitro- benzene to p-Aminophenol[J]. Journal of Applied Electrochemistry, 1980, 10,56-573
    [3] Polat, K.; Aksu, M. L.; Pekel, A. T. Electeoreduction of Nitrobenzene top-Amino-phenol -Using Voltammetric and Semipilot Scale Preparative Electrolysis Techniques[J]. Journal of Applied Electrochemistry, 2002, 32, 217-223
    [4] 马淳安,张文魁,黄 辉等.硝基苯电解合成对氨基苯酚的工业化研究[J].高校化学工程学报,2001,15(3):454-457.
    [5] Smeltzer, J. C.; Fedkiw, P. S. Selectivity enhancement of an electroorganic synthesis in a parallel-plate reactor under periodic cell-voltage control[J]. Proceedings - The Electrochemical Society, 1999, 90(10),125-140.
    [6] Oliveira, M. C. F. Study of the hypophosphite effect on the electrochemical reduction of nitrobenzene on Ni[J]. Electrochimica Acta, 2003, 48(13): p 1829-1835.
    [7] Jiang, J. h.; Zhai, R.; Bao, X. Electrocatalytic properties of Cu-Zr amorphous alloy??towards the electrochemical hydrogenation of nitrobenzene[J]. Journal of Alloys and Compounds, 2003, 354(1-2): p 248-258.
    [8] Zhang, C. Z.; Yang, J.; Wu, Z. d. Electroreduction of nitrobenzene on titanium electrode implanted with platinum[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 68(3): p 138-142.
    [9] Smeltzer, J. C.; Fedkiw, P, S. Reduction of nitrobenzene in a parallel-plate reactor[J]. Journal of the Electrochemical Society, 1992,139(5): p 1366-1372.
    [10] Salavagione, H. J.; Arias, J.; Garces, P.; Morallon, E.; Barbero, C. Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium[J]. Journal of Electroanalytical Chemistry, 2004, 565(2):p 375-383.
    [11] 赵建宏,程磊,王留成等.对氨基苯酚直接电还原合成反应液的等吸收点双波长紫外分光光度法分析[J].分析试验室,2006,25(6)(已校对)
    [12] 王雅琼,许文林,王保成,孙彦平.硝基苯电解还原制备对氨基苯酚所用离子膜的选择[J].化学工业与工程,1996,13(4):55-58.
    [13] 许文林,丁平,袁渭康.硝基苯电解还原制对氨基苯酚过程优化研究[J].化学工程1994,22(4):35-41.
    [14] Delue N R., Pickens S R. Process for preparing para-aminophenol[P]. US4584070.1986.
    [15] 马淳安,褚有群,童少平等.对氨基苯酚的绿色电化学合成及其工业化[J].化工学报,2004,55(12):1971-1975
    [16] John C.; Smeltzer, Peter S. Fedkie.Reduction of nitrobenzene in a parallel-plate reactor I. Differential conversion using periodic cell-voltage control[J]. J. Electrochem. Soc. 1992, 139(5): 1358-1366.
    [17] Polat, K. A Novel, Semi-Pilot Scale Electrolysis System for the Production of p-Amino-phenol[J]. Turk. J. Chem. 2003,27,501-511.
    [18] Nolen, T. R.; Fedklw, P. S. Kinetic Study of the Electeoreduction of Nitrobenzene. J. Appl. Electrochem. 1990,20,370-376
    [19] 李保山,朱玉舒,翟玉春,等.硝基苯在发泡铜阴极上电还原为对氨基苯酚研究[J].精细化工,200,17(4):213-216
    [20] 马淳安.硝基苯电解合成对氨基苯酚的工业化实验[J].化学工业与工??艺1996,13(4)55-58.
    [21] Timothy R. Nolen, Peter S. Fedkiw. Reaction Selectivity Enhancement under Peridic Current Control: The reaction of nitrobenzene on rotating disk electrode[J].J.Electrochem.Soc.. 1990,137(9),2726-2735.
    [22] 刘大壮,杨碧光.化工开发研究中的实验设计与数据处理[M].河南:河南科学技术出版社,1993.
    [23] Wang, F. A.; Zhu, J. Q.; Song, J. C. et al. Synthesis ofbis(2, 2, 6, 6-tetramethyl-4-piperidinyl) maleate[J]. Molecules, 2001, 6(6):528-533
    [24] Smeltzer, J.C.; Fedkiw, P.S. Reduction of nitrobenzene in a parallel-plate reactor. Ⅰ. Differential conversion using periodic cell-voltage control[J]. Journal of the Electrochemical Society,1992,139(5):1358-1366
    [25] 季霞,徐颖.在有机合成中控制亲核重排推动力的探讨[J].石油化工高等学校学报,1996,19(1):23-25.
    [26] Sigma, A. C. The Aldrich Library of FT-IR Spectra[M]. edition Ⅱ, 1997, Vol.2-1,2053C.
    [27] Dunn, S. A. Some Physical Properties ofp-Aminophenol[J]. J. Amer. Chem. Soc.1954,76:6191-6192.
    [28] Dean, J. A. Lange's Handbook of Chemistry, 15th ed. McGraw-Hill: New York,1999.[1] Baizer M M, Lund H. Organic Electrochemistry:An Introduction And a Guide[M],New York: Marcel Dekker Inc.,1983:295-296.
    [2] Polat K, Aksu M L, Pekel A T. Electroreduction of Nitrobenzene to p-aminophenol using Voltammetric and Semipilot scale Preparative Electrolysis Techniques[J]. J??Appl Electrochem, 2002, 32(2):217-223.
    [3] Marquez J, Pletcher D. A study of the electrochemical reduction ofnitrobenzene to p-aminophenol[J]. J Appl Electrochem,1980,10:567-573.
    [4] Delue N R., Pickens S R. Process for preparing para-aminophenol[P]. US4584070.1986.
    [5] 邢卫红,童金忠,徐南平,时均.微滤和超滤过程中浓差极化和膜污染控制方法研究[J].化工进展,2000,19(1):44-48
    [6] 张原.超滤膜污染的机理和控制[J].净水技术,2001,20(4):11-13.
    [7] 伍艳辉,王 志,伍登熙,王世昌.膜过程中防治膜污染强化渗透通量技术进展[J].膜科学与技术1999,19(4):12-22
    [8] 尹国,彭超英,朱国洪等.膜生物反应器中膜污染研究进展[J].环境保护科学,2000,26(101):10-13.
    [9] 伍艳辉,王 志,何 菲,王世昌.膜与蛋白质溶液的相互作用及膜污染机制的能谱研究[J].化工学报,2001,52(11):1026-1029.
    [10] 王静荣,许 成.超滤法处理油田含油污水膜清洗方法的研究[J].膜科学与技术2000,20(6):23-25.
    [11] 赵之平,王志,王世昌.膜污染程度与清洗效果的流动电位与通量协同表征[J].化工学报,2003,54(3):417-418
    [12] 孙德栋,张启修.UF处理生活污水过程中的膜污染和膜清洗研究[J].膜科学与技术,2004,24(3):32-35
    [13] 潘艳秋,李红剑等.油水污染炭膜清洗方法的放大实验研究[J].膜科学与技术,2004,24(4):36-39
    [14] 赵建宏,程磊,王留成等.对氨基苯酚直接电还原合成反应液的等吸收点双波长紫外分光光度法分析[J].分析试验室,2006,25(6)(已校对).
    [15] Prausnitz J M, Lichtenthaler R N, Azeredo E G. Molecular thermodynamics of fluid-phase equilibria. 3th ed. New Jersey: Prentice Hall PTR, 1999. 60-101
    [16] 胡徐腾,张瑾,戴猷元.有机羧酸在弱碱性树脂上的吸附平衡[J].化工学报,2000,51(4):555-559.
    [17] 赵建宏,徐海升,杨许召,王留成,宋成盈,王福安.对氨基酚直接电还原合成??过程中Nation膜的污染与清洗再生[J].化工学报,2005,56(7):1327-1331.
    [18] 刘华,蒋文华,韩世钧.用分子连接性指数关联和预测链烷烃的 PVT 性质[J].化工学报,1999,50(5):709-713.
    [19] Li C. W.; Wang F. A.; Qi T.; Yu Z. H.; Zhang Y. Change of operating voltages in electrosynthesis process of sodium dichromate[J]. Chem. Eng. Technol., 2006,29(4): 333-338.
    [20] 李成未,余志辉,齐涛,王福安,张懿.铬酸酐电合成过程中工作电压的变化[J].化工学报,2006,57(1):71-73
    [21] Tongwen X, Weihua Y. Fundamental Studies of a New Series of Anion Exchange Membrane[J]. JMembr Sci., 2001, 190: 159-166.
    [22] 王振坤.离子交换膜…制备、性能及应用[M].北京:化学工业出版社,1986:219-220.[1] Vatanara, A.; Najafabadi, A. R.; Khajeh, M.; Yamini, Y. Solubility of some inhaled glucocorticoids in supercritical carbon dioxide[J]. Journal of Supercritical Fluids, 2005, 33(1):21-25.
    [2] Valtz, A.; Heqarty, M.; Richon, D. Experimental determination of the solubility of aromatic compounds in aqueous solutions of various amines[J]. Fluid Phase Equilibria, 2003,210(2):257-276.
    [3] 魏东炜,姜浩锡,井欣,袁继堂.4-羟基苯甲醛及其溴代物在氯仿中溶解度测定和关联[J].化工学报,2004,55(7):1192-1195.
    [4] Wang, F. A.; Wang, L. C.; Song, J. C.; Wang, L.; Chen, H. S. Solubilities of Bis(2,2,6,6-tetramethyl-4-piperidinyl) Maleate in Hexane, Heptane, Octane, m-Xylene, and Tetrahydrofuran from (253.15 to310.15) K. Journal of Chemical and Engineering Data, 2004, 49(6):1539-1541.[5] Domanska, U.; Mazurowska, L. Solubility of l,3-dialkylimidazolium chloride or hexafluorophosphate or methylsulfonate in organic solvents: effect of the anions on solubility[J]. Fluid Phase Equilibria, 2004, 221(1-2):73-82.
    [6] Sidi-Boumedine, R.; Horstmann, S.; Fischer, K. Experimental determination of hydrogen sulfide solubility data in aqueous alkanolamine solutions[J]. Fluid Phase Equilibria, 2004,218(1):149-155.
    [7] Wang, L. C.; Wang, F. A. Solubility of niacin in 3-picoline+water from (287.65 to 359.15) K[J]. J. Chem. Eng. Data, 2004, 49(1):155-156.
    [8] 韩佳宾,王静康.咖啡因在水和乙醇中的溶解度及其关联[J].化工学报,2004,55(1):125-128.
    [9] Li, D. Q.; Liu, D. Z.; Wang, F. A. Solubilities of terephthalaldehydic, p-toluic, benzoic, terephthalic, and isophthalic acids in N-methyl-2-pyrrolidone from 295.65 K to 371.35 K[J]. J. Chem. Eng. Data. 2001, 46(1):172-173.
    [10] 任保增,李晨,袁晓亮,王福安.三聚氰胺溶解度的测定与关联[J].化工学报,2003,54(7):1001-1004.
    [11] Wang, L. C.; Wang, F. A. Solubilities of niacin in sulfuric acid+water and 3-picoline+sulfuric acid+water from (292.65 to 361.35) K[J]. Fluid Phase Equilibria, 2004,226(1-2):289-293.
    [12] Zhao, J. H.; Wang, L. C.; Xu, H. S.; Song, C. Y.; Wang, F. A. Solubilities of p-Aminophenol in Sulfuric acid+Water from (286.15 to 362.80) K[J]. J. Chem. Eng. Data 2005, 50(3): 977-979.
    [13] Teodorescu, M.; Wichterle, I. Modeling of nitrogen and carbon dioxide solubility in alternative fuels at high pressures using the Soave-Redlich-Kwong equation of state[J]. Chemical Engineering and Technologv, 2003, 26(9):992-995.
    [14] Save, G. S. Application of the Redlich Kwong equation of solid-liquid equilibria calculation[J]. Chem. Eng. Sci.,1997, 34(2):225-229.
    [15] Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular thermodynamics of fluid-phase equilibria[M].3rd ed. Prentice-Hall PTR, Upper Saddle River, New Jersey, 1999.
    [16] 王福安,蒋元力.分子热力学与色谱保留[M].北京:气象出版社,2001.[17] Wilson, G. M. Vapor-liquid Equilibrium XI. A new expression for the excess free energy of mixing[J]. J. Am.Chem. Soc, 1964,86:127-130.
    [18] Null, H. R. Application of the Wilson equation to solid-liquid equilibria[J]. A. I. Ch.E. Symoposium Series 63,1967, 13: 52-56.
    [19] Domanska, U. Solubility of acetyl-substituted naphthols in binary solvent mixtures[J]. Fluid Phase Equilibria, 1990, 55(1-2): 125-145.
    [20] Roy, L. E.; Hernandez, C. E.; Reddy, G. D.;et al. Solubility of anthracene in binary alkane + 2-ethyl-1-hexanol and alkane + 1-pentanol solvent mixtures at 298.2 K[J]. J. Chem. Eng. Data, 1998, 43(3):493-495.
    [21] Pauly, J.; Dauphin, C; Daridon, J.L. Liquid-solid equilibria in a decane + multi -paraffins system[J]. Fluid Phase Equilibria, 1998,149( 1-2): 191 -207.
    [22] Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures[J].AIChE J. 1968, 14:135-144.
    [23] Domanska, U.; Lachwa, J.; Morawski, P.; Malanowski, S. K. Phase equilibria and volumetric properties in binary mixtures containing branched chain ethers[J]. J. Chem. Eng. Data, 1999, 44(5):974-984.
    [24] Lee, M. J.; Chen, C. H.; Lin, H. M. Solid-liquid equilibria for binary mixtures composed of acenaphthene, dibenzofuran, fluorene, phenanthrene, and diphenylmethane [J]. J. Chem. Eng. Data, 1999, 44(5):1058-1062.
    [25] Abrams, D. S.; Prausnitz, J. M. Statistical thermodynamics of liquid mixture: A new expression for the excess Gibbs energy of partly or completely miscible systems[J].AIChE. 1975,21(1): 116-128.
    [26] Coutinho, J. A. P. Predictive UNIQUAC: A new model for the description of multiphase solid-liquid equilibria in complex hydrocarbon mixtures[J]. Ind. Eng. Chem. Res., 1998, 37(12):4870-4875.
    [27] Domanska, U.; Venkatesu, P. Measurement and correlation of solid-liquid equilibria of 18-crown-6 in alcohols[J]. J. Chem. Eng. Data, 1998, 43(6):919-924.
    [28] Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures[J]. AIChE J. 1975,21(6):1086-1099.[29] Fredenslund, A.; Gmehling, J.; Rasmussen, R Vapor-liquid equilibria using UNIFAC[M]. Elsevier Scientific Publishing Co., 1977.
    [30] Gmehling, J. G.; Anderson, T. F.; Prausnitz, J. M. Solid-liquid equilibria using UNIFAC[J]. Ind. Eng. Chem. Fundam, 1978,17(4):269-273.
    [31] Jakob, A.; Joh, R.; Rose, C.; Gmehling, J. Solid-liquid equilibria in binary mixtures of organic compounds[J]. Fluid Phase Equilibria,1995,113(1-2):117-126.
    [32] 夏清.2,6-萘二甲酸提纯方法研究.天津大学博士学位论文,1998.
    [33] 王静康,朱向前,任宝山,何予基.芳烃衍生物同分异构体低共熔物系固液相平衡研究[J].化学工程,1999,27(2):41-45.
    [34] 李殿卿.混合苯羧酸分离与利用工程基础研究.天津大学博士学位论文,2001.
    [35] Gmehling, J; Li, J. D.; Schiller, M. Modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties[J]. Ind. Eng. Chem.Res.1993,32(1):178-193.
    [36] Buchowski, H.; Ksiazcak, A.; Pietrzyk, S.; et al. Solvent activity along a saturation line and solubility of hydrogen bonding solids[J]. J. Phys. Chem. 1980,84:975-979.
    [37] Buchowski, H.; Khiat, A. Solubility of solids in liquids: one-parameter solubility equation[J]. Fluid Phase Equilibria,1986,25(3):273-278.
    [38] 魏东炜,姜浩锡,袁继堂,井欣.4-羟基苯甲醛及其溴代物固液平衡数据测定与关联[J].化工学报,2003,54(10):1459-1462.
    [39] 刘国柱,程淑颖,王莅,米镇涛,常贺英.2-戊基蒽醌在TMB/TOP T中溶解度的测定与关联[J],化工学报,2004,55(4):640-642.
    [40] Apelblat, A.; Manzurola, E. Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K[J]. J. Chem. Thermodyn.1987,19(3):317-320.
    [41] Ngo,T.T.; Yam, C. F. Sensitive and Selective Spectrophotometric Determination of Para- and Ortho- Aminophenol with Hypochlorite-Alkaline Phenol Reagents[J]. AnalyticalLetters,1984,17(A15):1771-1782.
    [42] 赵建宏,程磊,王留成,宋成盈,徐海升,王福安.对氨基苯酚直接电还原合成反应液的等吸收点双波长紫外分光光度法分析[J].分析试验室,??2006,25(6)(已校对)
    [43] Li, D. Q.; Liu, D. Z.; Wang, F. A. So1ubilities of 4-methylbenzoic acid between 288 K and 370 K[J]. J. Chem. Eng. Data, 2001,46(2),234-236.
    [44] Li, D. Q.; Liu, J. C.; Liu, D. Z.; Wang, F. A. Solubilities of terephthalaldehydic, p-toluic, benzoic, terephthalic, and isophthalic acids in N, N-dimethylformamide from 294.75 K to 370.75 K[J]. Fluid Phase Equilibria, 2002,200(1),69-74.
    [45] Dunn, S. A. Some Physical Properties of p-Aminophenol[J]. J. Amer. Chem. Soc.1954,76,6191-6192.
    [46] Zhao, J. H.; Wang, L. C.; Wang, F. A. Solubilities of p-aminophenol in sulfuric acid+water+(methanol, ethanol, 1-propanol, 2-propanol, 1,2-propanediol and glycerin, respectively) from (292.35 to 348.10) K[J]. J. Chem. Eng. Data, 2006,51(2):376-381.
    [47] Wang, F. A.; Chen, H. S.; Zhu, J. Q.; Song, J. C.; Wang, Z. C. Estimation of Excess Enthalpy for Binary Systems[J]. Chemical Engineering Journal, 2002, 85,235-243.
    [48] 王福安,蒋元力.分子热力学与色谱保留[M].北京:气象出版社,2001.pp40-65.
    [49] Barton, A. F. M. CRC Handbook of solubility parameters and Other Cohesion Parameters[M]. 2nd ed. CRC Press: Floride,1991;pp 99-148.
    [50] Nunez, L.; Barral, S.; Largo, G.; Pilcher, G. Enthalpies of Combustion of the three Aminophenols[J]. J. Chem. Thermodynamics 1986,18,575-579.
    [51] 王晓艳.对氨基苯酚的合成方法及其工业应用[J].陕西化工,1995,22,21-24.
    [52] Gerhards, M.; Unterberg, C, IR double-resonance spectroscopy applied to the 4-aminophenol(H_2O)_1 cluster[J]. Applied Physics A." Materials Science and Processing 2001, 72, 273-279.
    [53] Hofman, T.; Nagata, I. A New Method to Determine Association Constants for Alcohols from the Properties of Pure Compounds[J]. Fluid Phase Equilib. 1986,28, 233-252.[1] 操斌.碳酸二乙酯一甲苯二元体系粘度密度的测定与关联[J].化工进展,2005,24(12):1409-1413.
    [2] Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular thermodynamics of fluid-phase equilibria[M], 3rd ed.; Prentice-Hall PTR, Upper Saddle River, New Jersey, 1999.
    [3] 王福安,蒋登高.化工数据导引[M].北京:化学工业出版社,1995.
    [4] Wang, L. C.; Xu, H. S.; Zhao, J. H.; Song, C.Y.; Wang, F. A. Densities and Viscosities of Niacin + 3-Picoline + Water Mixtures from (293.15 to 343.15) K[J]. J. Chem. Eng. Data, 2005, 50(1),254-257.
    [5] Wang, L. C.; Xu, H. S.; Zhao, J. H.; Song, C. Y. Wang, F. A. Densities and Viscosities of Niacin + 3-Picoline + Sulfuric Acid + Water from (293.15 to 343.15) K[J]. J. Chem. Eng. Data 2005, 50, 643-646.
    [6] Wang, L. C.; Xu, H. S.; Zhao, J. H.; Song, C. Y. Wang, F. A. Densities and Viscosities of(3-picoline + Water) binary mixtures from T=(293.15 to 343.15) K[J]. J. Chem. Thermodynamics, 2005, 37(5): 477~483.
    [7] Sharma, V. K.; Yadav, O. P.; Singh, J. Thermodynamics of molecular interactions in some water + nonelectrolyte mixture[J]. Indian J. Chem. 1995, 34A: 594-601.
    [8] Marczak, W.; Ernst, S. Bull. Effects of hydrophobic and hydrophilic hydration on the compressibility, volume and viscosity of mixtures of water with/β-picoline[J]. Polish Acad. Sci. 1998,46(4):375-395.
    [9] Sadeghi, R.; Zafarani-Moattar, M. T. Thermodynamics of aqueous solutions of polyvinylpyrrolidone[J]. J. Chem. Thermodyn. 2004,36,(8),665-670.
    [10] Wang, F. A.; Chen, H. S.; Zhu, J. Q.; Song, J. C.; Wang, Z. C. Estimation of excess enthalpy for binary Systems[J]. Chem. Eng. J., 2002, 85(2):235-243.
    [11] 陈海松,王文昌,王福安,任保增,王留成.关联二元体系超额焓的改进模型[J].化工学报,2005,56(5):757-762.
    [12] Ngo,T.T.; Yam, C. F. Sensitive and Selective Spectrophotometric Determination of Para- and Ortho- Aminophenol with Hypochlorite-Alkaline Phenol Reagents[J]. AnalyticalLetters,1984,17(A15):1771-1782.[13] 赵建宏,程磊,王留成等.对氨基苯酚直接电还原合成反应液的等吸收点双波长紫外分光光度法分析[J].分析试验室,2006(已校对)
    [14] Dean, J. A. Lange's handbook of chemistry[M], 15th ed. McGraw-Hill Book Co.,1999, pp5.87-5.134.
    [15] 苏尔皇.液体的粘度计算和测量[M],北京:国防工业出版社,1986,pp72.137.
    [16] Nikam, P. S.; Kharat, S. J. Excess molar volumes and deviations in viscosity of binary mixtures of N,N-dimethylformamide with aniline and benzonitrile at (298.15, 303.15, 308.15, and 313.15) K[J].J. Chem. Eng. Data, 2003, 48(4):972-976.
    [17] I.C.T[M], Vol. Ⅲ, McGraw-Hill Book Co., New York, 1928, pp56-57.
    [18] Japan Chemical Society, The handbook of chemistry[M], 3rd ed., Maruzhen Ltd.Co.: Tokoyo, 1984, ppⅡ-47.
    [19] 刘少武,齐焉,刘东,刘翼鹏.硫酸工作手册[M],南京:东南大学出版社,2001,pp14.
    [20] Krakowiak, J.; Koziel, H.; Grzybkowski, W.Apparent molar volumes of divalent transition metal perchlorates and chlorides in N,N-dimethylacetamide[J]. Journal of Molecular Liquids, 2005,118(1-3):7-65.
    [21] Yan, Z. N.; Wang, J. J.; Kong, W.; Lu, J. S. Effect of temperature on volumetric and viscosity properties of some a-amino acids in aqueous calcium chloride solutions[J].Fhud Pkase Equilibria, 2004, 215(2):143-150.
    [22] Zhao,C. W.; Ma R S.; Li. J. D. Partial molar volumes and viscosity B-coefficients of arginine in aqueous glucose, sucrose and L-ascorbic acid solutions at T=298.15 K[J]. J. Ckem. Tkermodynamics, 2005,37(1),37-42.
    [23] Jiang, Y. C.; Hu, M. C.; Wang, J. J.; Zhuo, K. L.; Xia, S. P. Volumetric properties and volumetric interaction parameters for the CsCl-monosaccharide (D-galactose, D-xylose and D-arabinose)-water systems at T=298.15 K[J]. J. Ckem. Thermodynamics, 2004, 36(8):671-676.
    [24] Zhao, J. H.; Wang, L. C.; Xu, H. S.; Song, C.Y,; Wang, F. A.; Densities and Viscosities ofp-aminophenol in Sulfuric acid + water at temperatures from (293.15 to 343.15) K[J]. J. Ckem. Eng. Data, 2006, 51(2): 660-664.[25] Amalendu, P.; Rakesh, K. B. Excess molar volumes and viscosities of binary mixtures of diethylene glycol diethyl ether with chloroalkanes at 298.15K[J]. Journal of Molecular Liquids,2003, 102(1-3): 197-211.
    [26] Adel, S. A.; Jasem, A. A.; Abdul-Haq, M. A. Densities and viscosities for binary mixtures of phenetole with 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures[J]. Fluid Phase Equilibria, 2004, 218 (2):247-260.
    [27] Hildebrand, J. H.; Viscosity and diffusivity[M], Wiley, New York, 1977.
    [28] Lei, Q. F.; Hou, Y. C.; Correlation of binary liquid mixtures [J]. Fluid Phase Equilibria,1999,154(1):153-163.
    [29] Abdulghanni, H. N.; Abdul-Fattah, A. A. Prediction of viscosity of multi- component liquid mixtures: a generalized McAllister three-body interaction model[J]. Chem. Eng. Sci. 2000, 55(15):2861-2873.
    [30] Oswal, S.L. Studies of viscosity and excess molar volume of binary mixtures: 5. Characterization of excess molar volume of 1-alkanol with alkylamines, dialkylamines and trialkylamines in terms of the ERAS model[J]. Thermochimica Acta, 2005, 425(1-2):59-68.
    [31] Wang, F. A.; Jian, Y. L.; Wang, W. C. Group theoretical model of surface tension for binary solutions [J]. Chem. Eng. Technol. 1997,20(5):313-316.
    [32] Wang, F. A.; Wang, W. C.; Jian, Y. L. A new model of dielectric constant for binary solutions[J]. Chem. Eng. Technol. 2000, 23(7):623-627.
    [33] 王福安,蒋元力.分子热力学与色谱保留[M].北京:气象出版社,2001.
    [34] 王福安,陈海松,宋建池,王郑昌,任保增.戊酮-2 与脂肪醇系列溶液的超额焓模型[J].郑州大不学报(工学版),2004,25(3):1-5.
    [35] Smitz, J. M.; Van, N. H. C. Introduction to chemical engineering thermodynamics[M]. 6th ed. McGraw-Hill education companies, Inc. 2002.
    [36] 王留成.直接电还原合成对氨基苯酚过程基础及相关溶液热力学.博士学位论文.郑州:郑州大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700