用户名: 密码: 验证码:
全固态调Q和双调Q激光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全固态短脉冲激光器由于其具有结构简单、泵浦效率高、稳定性强、寿命长、光束质量好等众多优点,使其在激光通讯、遥感探测、光信息处理、激光加工、激光医疗和军事武器装备等领域均有广泛的应用前景,引起人们极大的关注。
     本论文采用氙灯和光纤耦合输出的半导体激光器作为泵浦源,用Nd:YAG、Nd:YVO_4、Nd:GdVO_4和Nd:LuVO_4晶体作激光工作物质,利用声光开关、饱和吸收体Cr~(4+):YAG和GaAs作为腔内调Q元件,研究了声光—GaAs主被动双调Q、Cr~(4+):YAG—GaAs双被动调Q激光的脉冲输出特性和脉宽控制特性;利用KTP晶体和周期极化的LiNbO_3(PPLN)晶体作为腔内倍频晶体,研究了双折射相位匹配和准相位匹配绿激光连续及调Q运转特性;运用速率方程对以上调Q、双调Q激光的运转特性进行了理论模拟,理论计算与实验结果相符。论文的主要研究工作包括:
     Ⅰ实现了氙灯泵浦Nd:YAG晶体、Cr~(4+):YAG和GaAs双被动调Q 1.06μm激光运转,测量了单一被动调Q、双被调Q激光的脉冲对称因子和脉冲宽度与输出镜反射率及Cr~(4+):YAG小信号透过率的依赖关系。结果表明,与单一Cr~(4+):YAG和GaAs被动调QNd:YAG激光相比,双被调Q激光不但脉宽被压缩,而且产生的脉冲形状更加对称。考虑GaAs饱和吸收体的单光子、双光子以及自由载流子吸收过程,运用平面波近似下耦合的速率方程对激光脉冲的输出特性进行了理论模拟,理论计算与实验结果相符。(第二章2.1节)
     Ⅱ研究了氙灯泵浦Nd:YAG晶体、KTP内腔倍频、Cr~(4+):YAG和GaAs双被动调Q0.53μm绿激光特性。测量了单一被动调Q和双被动调Q激光脉冲宽度和脉冲对称因子与Cr~(4+):YAG小信号透过率的依赖关系;测量了激光的脉冲宽度、平均输出能量、脉冲重复率随泵浦能量变化规律,获得了输出脉冲的单脉冲能量和脉冲峰值功率随泵浦能量的变化规律;利用平面波近似下耦合的速率方程模型对实验结果进行了理论模拟,数值计算与实验结果相符。(第二章2.2节)
     Ⅲ实现了LD泵浦c-cut Nd:GdVO_4晶体、声光—GaAs主被动双调Q 1.06μm激光运转,并比较了a轴切割(a-cut)与c轴切割(c-cut)的双调Q Nd:GdVO_4激光输出脉冲的脉冲宽度和峰值功率。实验结果表明,与a-cut Nd:GdVO_4激光相比较,c-cutNd:GdVO_4激光虽然泵浦阈值更高,但具有更窄的脉冲宽度和更高的峰值功率增长率;另外,比较了c-cut Nd:GdVO_4双调Q与单一AO及GaAs调Q激光输出脉冲的宽度、重复率及峰值功率随泵浦功率的变化关系。在理论分析中,讨论了激光晶体的热效应对腔模尺寸和衍射损耗的影响,并将泵浦光近似为一个高斯光束,同时将腔内光子数密度和反转粒子数密度均考虑成高斯分布,给出了描述声光—GaAs主被动双调Q激光运转特性的速率方程模型,对声光和GaAs双调Q激光运转特性进行了理论模拟。(第三章3.1节)
     Ⅳ从理论和实验上研究了LD泵浦c-cut Nd:GdVO_4晶体、KTP内腔倍频、AO—GaAs主被动双调Q 0.53μm激光的脉宽压缩特性。测量了主被动双调Q、单一AO和GaAs三种调Q激光输出脉冲的上升沿、下降沿的宽度以及脉冲宽度和重复率随泵浦功率的变化,获得了脉冲对称因子、单脉冲能量、峰值功率随泵浦功率的变化关系;结果表明,与单一调Q激光相比,双调Q激光的脉宽明显被压缩,且脉冲对称性提高;并将c-cutNd:GdVO_4双调Q激光与a-cut Nd:GdVO_4双调Q激光KTP内腔倍频时的各种激光特性进行了比较。利用高斯近似下的速率方程模型对实验结果进行了理论模拟,理论计算和实验结果相符合。(第三章3.2节)
     Ⅴ采用三镜折叠腔结构,实现了LD泵浦Nd:YVO_4晶体、KTP内腔倍频、Cr~(4+):YAG和GaAs双被动调Q 0.53μm绿激光运转,给出了三种不同Cr~(4+):YAG小信号透过率下的双调Q激光的平均输出功率、脉冲宽度、单脉冲能量和峰值功率随泵浦功率的变化关系;比较了双被动调Q与单一Cr~(4+):YAG和GaAs被动调Q情况的下的脉冲宽度与脉冲对称因子。当Cr~(4+):YAG小信号透过率T_0=71%时,双调Q激光的平均输出功率最大。这说明双调Q激光的输出特性与两种饱和吸收体的小信号透过率有关;与单一被动调Q激光相比,双被动调Q脉冲激光不仅能压缩脉宽、提高脉冲对称性,而且输出的单脉冲能量和峰值功率得到提高。(第三章3.3节)
     Ⅵ简单介绍了Nd:YVO_4/YVO_4键合激光晶体的制造过程及性质,实现了LD泵浦Nd:YVO_4/YVO_4晶体、声光主动调Q基频激光运转,测量了泵浦光斑在激光晶体内的位置变化对输出功率的影响;结果表明,当泵浦光斑位于晶体键合面附近处可以得到最大的输出功率。另外,测量了不同声光调制频率下主动调Q激光的脉冲输出特性。用三维的热传导方程分析了键合晶体内的热透镜焦距和热致折射率损耗随泵浦功率的变化,并与普通的Nd:YVO_4晶体作了比较;用速率方程模型对激光的脉冲特性进行了理论模拟,数值计算结果与实验结果相符。(第四章4.1节)
     Ⅶ采用三镜折叠腔结构,利用自Q晶体Cr~(4+):Nd~(3+):YAG作为饱和吸收体,实现了LD泵浦Nd:YVO_4/YVO_4晶体、被动调Q 1.06μm激光运转,测量了激光输出脉冲宽度、脉冲重复率、单脉冲能量和峰值功率等激光输出特性,并与同样腔型结构下,Cr~(4+):YAG被动调Q Nd:YVO_4/YVO_4激光进行了比较。结果表明,用Cr~(4+):Nd~(3+):YAG作为饱和吸收体时,激光具有更低的泵浦阈值和更高的光光转换效率。(第四章4.2节)
     Ⅷ将GaAs同时兼做调Q元件和谐振腔的输出镜,实现了LD泵浦Nd:LuVO_4晶体、GaAs被动调Q 1.06μm激光运转。考虑未镀膜的GaAs形成Fabry-Perot腔,利用吸收系数和透过率的理论计算公式得到了其有效的反射率。在相同的泵浦功率和谐振腔结构的条件下,与Nd:GdVO_4和Cr:Nd:YAG激光晶体相比,Nd:LuVO_4激光可以产生更短的脉冲宽度。另外,还测量了激光平均输出功率、脉冲宽度、脉冲重复率和峰值功率等激光特性。(第四章4.3节)
     Ⅸ简单的介绍了5mol%MgO掺杂的周期性极化的LiNbO_3(MgO-PPLN)晶体的特性,MgO的掺入可以极大的提高PPLN晶体的抗损伤性能。利用三镜折叠腔实现了LD泵浦Nd:YVO_4/YVO_4晶体、MgO-PPLN内腔倍频、GaAs被动调Q 0.53μm绿激光运转,测量了不同泵浦功率下的脉冲宽度、脉冲重复率、单脉冲能量和峰值功率,分析了准相位匹配PPLN晶体的倍频理论,给出了高斯分布近似下PPLN倍频晶体内二次谐波转换引起的非线性损耗,并利用准相位匹配理论和速率方程模型对实验结果进行了理论模拟。(第五章5.1-5.2节)
     Ⅹ采用三镜折叠腔结构,实现了LD泵浦Nd:YVO_4/YVO_4晶体、MgO-PPLN腔内倍频、Cr~(4+):YAG被动调Q 0.53μm绿激光运转;测量了在不同Cr~(4+):YAG小信号透过率、不同泵浦功率下的脉冲宽度、脉冲重复率、单脉冲能量和脉冲峰值功率的变化规律。(第五章5.3节)
     Ⅺ研究了LD泵浦Nd:YVO_4/YVO_4晶体、AO—GaAs主被动双调Q激光的脉宽控制特性。通过改变GaAs或同时改变AO和GaAs在腔内的位置以及泵浦光束腰在激光介质中的位置,可以有效的改变调Q激光输出脉冲宽度。理论分析中给出了在一定泵浦功率下的平均泵浦半径与泵浦光斑在增益介质内位置的关系,以及腔内任意位置处的传输矩阵和光束半径的计算公式。运用速率方程模型模拟获得了脉宽与振荡光和泵浦光斑大小之间的关系,理论计算与实验结果相符。(第六章6.1节)
     Ⅻ理论和实验研究了LD泵浦Nd:YVO_4/YVO_4晶体、Cr~(4+):YAG和GaAs双被动调Q激光的脉宽控制特性。实验中,通过改变GaAs或同时改变Cr~(4+):YAG和GaAs在腔内的位置以及泵浦光束腰在激光介质中的位置,可以有效的控制激光的脉冲宽度。运用平均泵浦半径计算公式、腔内高斯光束半径计算公式以及速率方程模型对实验进行了模拟,理论分析与实验结果相符。(第六章6.2节)
     本论文中的主要创新工作包括:
     Ⅰ首次实现了氙灯泵浦Nd:YAG晶体、Cr~(4+):YAG—GaAs双被动调Q激光的基频和KTP腔内倍频激光运转,研究了其运转特性;考虑GaAs的单光子、双光子吸收和自由载流子吸收过程,给出了平面波近似下的速率方程模型,数值求解方程的理论计算值与实验结果相符。
     Ⅱ首次实现了LD泵浦c-cut Nd:GdVO_4晶体、声光—GaAs主被动双调Q 1.06μm和KTP腔内倍频0.53μm激光运转,研究了其运转规律;与a-cut Nd:GdVO_4激光的输出脉冲的宽度、重复率及峰值功率相比,c-cut Nd:GdVO_4激光具有更短的脉宽和更高的峰值功率增长率;用高斯近似下双调Q激光的耦合的速率方程对激光的输出特性进行了模拟,理论计算与实验结果相符。
     Ⅲ将GaAs同时兼做调Q元件和谐振腔的输出镜,首次实现了LD泵浦Nd:LuVO_4晶体、GaAs被动调Q 1.06μm激光运转,测量了激光平均输出功率、脉冲宽度、脉冲重复率和峰值功率等激光特性。与Nd:GdVO_4和Cr:Nd:YAG激光晶体相比,Nd:LuVO_4激光可以产生更短的脉冲宽度。
     Ⅳ首次实现了LD泵浦Nd:YVO_4/YVO_4键合晶体、MgO-PPLN准相位匹配内腔倍频、GaAs和Cr~(4+):YAG被动调Q 0.53μm绿激光运转,研究了运转特性;利用准相位匹配理论和高斯分布近似下的速率方程模型,对PPLN晶体的倍频特性进行了数值模拟,理论计算和实验结果相符。
     Ⅴ首次对LD泵浦的Nd:YVO_4/YVO_4晶体、声光—GaAs主被动双调Q及Cr~(4+):YAG—GaAs双被动调Q激光的脉宽控制特性进行了研究;通过改变泵浦光斑在增益介质内的位置即改变平均泵浦半径的大小,以及调Q开关在腔内的位置即改变调Q开关处光束半径的大小,能够有效地控制调Q激光的脉冲宽度。运用速率方程模型获得了脉冲宽度与增益介质内平均泵浦半径以及调Q开关处光束半径的关系,从理论上模拟了双调Q脉冲宽度变化的规律,理论计算与实验结果相符。
All-solid-state short pulse lasers have wide applications in the fields such as laser telecommunication,remote sensing,information processing,laser processing,medical,and military,due to its advantages such as its simplicity,high efficiency,high stability,long longevity,good beam quality and has been paid much attention on.
     In this dissertation,by using xenon flash lamp or fiber-coupled laser-diode as the pump source,Nd:YAG,Nd:YVO_4,Nd:GdVO_4 and Nd:LuVO_4 crystals as the gain mediums,we have studied the performance of the diode-pumped doubly Q-switched lasers with AO-GaAs or Cr~(4+):YAG-GaAs,the frequency doubling performance of the KTP crystal and MgO doped periodically poled LiNbO_3(PPLN) crystal,as well as the pulse width control of doubly Q-switched lasers with AO-GaAs or Cr~(4+):YAG-GaAs.Meanwhile,the coupling rate equations under plane-wave or Gaussian distribution approximation have been established to theoretically analyze the properties of the above-mentioned Q-switched and doubly Q-switched lasers.The main content of this dissertation includes:
     ⅠUsing xenon flash lamp as pumping source,the doubly Q-switched Nd:YAG laser at 1.06μm with Cr~(4+):YAG and GaAs saturable absorbers has been realized.We also compared the laser performances of the doubly Q-switched laser with those of singly Q-switched lasers when there is only a single pulse during one pump pulse.The pulse widths and pulse symmetry factor of the three lasers versus the small signal transmission of Cr~(4+):YAG or the output coupler reflectivity have been given.The results show that the doubly passively Q-switched laser can improve the pulse symmetry and narrow the pulse width in comparison with the singly passively Q-switched laser.Considering the single-photon,two-photon and free carriers absorptions of GaAs,the coupling rate equations under the plane-wave approximation have been used to simulate the laser performances,the experimental results are consistent with the theoretical results.(Chapter 2-2.1)
     ⅡThe research on the laser performance of xenon flash lamp pumped KTP intracavity frequency-doubling Nd:YAG green laser with Cr~(4+):YAG and GaAs saturable absorbers have been presented.We have measured the pulse widths and symmetry factor versus small signal transmission of Cr~(4+):YAG for both the single passively and the doubly passively Q-switched intracavity-frequency-doubling green lasers when there is only a single pulse on the oscilloscope during one pump pulse.In addition,the dependence of pulse width,average output energy,pulse repetition,single pulse energy and peak power on incident pump energy for different Cr4+:YAG have been measured.We used the coupled rate equation under the plane-wave approximation to simulate the laser performances.The numerical solutions of the rate equations are in agreement with the experimental results.(Chapter 2-2.2)
     ⅢUsing both acoustic-optic(AO) modulator and GaAs saturable absorber in the same cavity,a diode-pumped doubly Q-switched c-cut Nd:GdVO_4 laser has been realized.We made a comparison between c-cut and a-cut Nd:GdVO_4 crystals and the experimental results shows that the doubly Q-switched c-cut Nd:GdVO_4 laser can generate narrower pulse with higher peak power when the incident pump power higher than 3.4 W.Furthermore,c-cut Nd:GdVO_4 laser can generate the more symmetric pulse with shorter pulse width in comparison with singly AO or GaAs Q-switched laser.Considering the turn-off time of AO Q-switch,the spatial distributions of the intracavity photon density and the population-inversion density,the population-inversion density and pump light,coupled rate equations are introduced to theoretically analyze the experimental results,and the experimental results are in fair agreement with the numerical solutions.(Chapter3-3.1)
     ⅣThe theoretical and experimental studies on laser diode-pumped doubly Q-switched Nd:GdVO_4/KTP green lasers at 0.53μm have been presented.The rise time and fall time of the pulse,pulse widths,pulse energy and peak power have been measured under different pump power and repetition rates for the doubly and singly Q-switched lasers.Moreover,the comparison between a-cut Nd:GdVO_4/KTP green laser and c-cut Nd:GdVO_4/KTP green laser have been given.Considering the nonlinear loss due to the intracavity second harmonic conversion under Gaussian distribution approximation as well as the thermally induced diffraction loss and the variations of the beam radius at different positions along the cavity axis,coupled rate equations describing the doubly Q-switched intracavity frequency doubling green lasers are given.The theoretical results are consisting with experimental results. (Chapter 3-3.2)
     ⅤUsing three-mirror-folded cavity,diode-pumped doubly passively Q-switched KTP intracavity frequency-doubling Nd:YVO_4 laser at 0.53μm with Cr~(4+):YAG and GaAs saturable absorbers have been realized.For three Cr~(4+):YAG wafers with different small signal transmission,the average output power,pulse widths,repetition rates,pulse energy,and peak powers of the doubly Q-switched laser under different pump power have been measured, respectively.In comparison with singly Q-switched laser,doubly Q-switched laser can compress the pulse width,improve the pulse symmetry and improve the pulse energy and peak power.(Chapter 3-3.3)
     ⅥThe method of manufacturing Nd:YVO_4/YVO_4,as well as its properties,has been presented.A diode-pumped actively Q-switched Nd:YVO_4/YVO_4 laser with AO has been carried out.The experimental studies on the output power versus the location of pumping facula in the laser crystal have been presented.The experimental results show that the maximum laser output power can be obtained when the pumping spot lies in the diffusion-bonded interface of the Nd:YVO_4/YVO_4 crystal.The three dimensional Possion equation has been used to analyze the steady state temperature profile in the laser crystal,and the thermal focus length of the Nd:YVO_4/YVO_4 composite crystal and thermal loss at different pump power are obtained.From the experimental results,we can see that the diffusion bonding crystal can reduce the thermal effect influence of laser crystal.Meanwhile, a rate-equation model for the actively Q-switched laser is used to simulate the laser performance.The numerical solutions are in agreement with the experimental results. (Chapter 4-4.1)
     ⅦBy using a piece of co-doped Nd~(3+):Cr~(4+):YAG crystal as saturable absorber,a laser-diode pumped passively Q-switched Nd:YVO_4/YVO_4 laser has been realized.The maximum laser output power of 2.452W has been obtained at the incident pump power of 8.9W for 8.8%transmission of output coupler at 1064 nm,corresponding to a slope efficiency of 30%.The other output laser characteristics of the laser have also been investigated.The laser with Nd~(3+):Cr~(4+):YAG saturable absorber has the lower threshold pump power and the higher slope efficiency compared with the laser with Cr~(4+):YAG saturable absorber that with the similar small-signal transmission.The dependence of the pulse width,pulse repetition, pulse energy and peak power on the pump power have also been measured.(Chapter 4-4.2)
     ⅧBy using GaAs as both a saturable absorber and an output coupler,a laser-diode pumped passively Q-switched Nd:LuVO_4 laser has been realized for the first time to our knowledge.The uncoated GaAs forms a Fabry-Perot cavity,and the effective reflection, absorption and transmission coefficient of the GaAs wafer have been given.The characteristics of the laser such as the average output power,the pulse width,the pulse repetition rate and the peak power have been measured at different incident pump power. Compared with Nd:GdVO_4 and Cr:Nd:YAG laser crystals,much shorter pulse widths can be obtained with the use of a Nd:LuVO_4 laser crystal under a similar pump power level and laser cavity length.(Chapter 4-4.3)
     ⅨThe properties of the 5mol%MgO doped periodically poled LiNbO_3(MgO-PPLN) have been demonstrated.By adding 5mol%MgO dopant impurities,the optical damage threshold as well as nonlinear coefficients of PPLN crystal is highly increased compared with that of non-doped PPLN crystal.Using the 5mol%MgO doped PPLN as the nonlinear crystal, diode-pumped cw and GaAs passively Q-switched Nd:YVO_4/YVO_4 green laser have been realized.The nonlinear loss due to the second harmonic wave conversion is obtained.In addition,a frequency doubling theory for quasi-phase-matched crystal PPLN are given under Gaussian distribution approximation.The coupled rate equations have been used to simulate the laser,and the theoretical analysis is consistent with the experimental results.(Chapter 5-5.1,5.2)
     ⅩA diode-pumped MgO-PPLN intracavity frequency doubling Cr~(4+):YAG passively Q-switched Nd:YVO_4/YVO_4 green laser has been realized in a three-mirror-folded cavity. Using two pieces of Cr~(4+):YAG with different small signal transmission as saturable absorber respectively,the pulse width,pulse repetition,pulse energy,and peak power of the green laser have been measured.(Chapter 5-5.3)
     ⅪThe methods to control the pulse width of a laser-diode end-pumped doubly Q-switched Nd:YVO_4/YVO_4 composite crystal laser with acoustic-optic(AO) and GaAs saturable absorber has been theoretically and experimentally studied.By varying one or two Q-switchers in the laser cavity and the pumping facula in the gain medium,we provide two kinds of efficient means to control the pulse duration.The average pumping radius versus the location of pumping facula in the laser crystal,as well as the transfer matrix and formula for calculating the beam radius of arbitrary position in the cavity,have been presented.The coupled rate equations are used to analyze the process of the laser.The experimental results are consistent with the theoretical results.(Chapter 6-6.1)
     ⅫWe have theoretically and experimentally studied the methods to control the pulse duration of a diode-pumped doubly passively Q-switched Nd:YVO_4/YVO_4 composite crystal laser with Cr~(4+):YAG and GaAs saturable absorbers.By varying the position of saturable absorbers in the laser cavity or the pumping facula in the gain medium,we can vary the pulse duration of the laser pulse.The coupled rate equations are introduced to simulate the process of the laser,and the theoretical calculation results agree with the experimental results.
     The main innovations of this dissertation are as follows:
     ⅠUsing xenon flash lamp as pumping source,we first demonstrated the Cr~(4+):YAG-GaAs doubly Q-switched Nd:YAG 1.06μm laser and KTP intracavity frequency-doubling 0.53μm green laser.The pulse widths and pulse symmetry factor of the three lasers versus the small signal transmission of Cr~(4+):YAG or the output coupler reflectivity have been given.The results show that the doubly passively Q-switched laser can improve the pulse symmetry and narrow the pulse width in comparison with the singly passively Q-switched laser.Considering the single-photon,two-photon and free carriers absorptions of GaAs,the coupling rate equations under the plane-wave approximation have been used to simulate the laser performances.
     ⅡUsing both acoustic-optic(AO) modulator and GaAs saturable absorber in the same cavity,diode-pumped doubly Q-switched c-cut Nd:GdVO_4 1.06μm laser and KTP intracavity frequency-doubling 0.53μm green laser has been first demonstrated.In comparison with a-cut Nd:GdVO_4 laser,c-cut Nd:GdVO_4 laser can generate narrower pulse width and higher peak power when the incident pump power higher than 3.4W and 4.4W for 1.06μm laser and 0.53μm green laser,respectively.Considering the turn-off time of AO Q-switch,the spatial distributions of the intracavity photon density and the population-inversion density,the population-inversion density and pump light,coupled rate equations are introduced to theoretically analyze the experimental results,and the experimental results are in fair agreement with the numerical solutions.
     ⅢBy using GaAs as both a saturable absorber and an output coupler,a laser-diode pumped passively Q-switched Nd:LuVO_4 laser has been realized for the first time to our knowledge.The characteristics of the lasers such as the average output power,the pulse width, the pulse repetition rate and the peak power have been measured at different incident pump power.Compared with Nd:GdVO_4 and Cr:Nd:YAG laser crystals,much shorter pulse widths can be obtained with the use of a Nd:LuVO4 laser crystal under a similar pump power level and laser cavity length.
     ⅣUsing the 5mol%MgO doped PPLN as the nonlinear crystal,diode-pumped GaAs and Cr~(4+):YAG passively Q-switched Nd:YVO_4/YVO_4 green laser have been first presented. By adding 5mol%MgO dopant impurities,the optical damage threshold as well as nonlinear coefficients of PPLN crystal is highly increased compared with that of non-doped PPLN crystal.By considering the second harmonic conversion as a nonlinear loss of the fundamental wave,we used a rate-equation model considering the quasi-phase-matching theory to simulate the laser performance,and the numerical solution are consistent with the experimental ones.
     ⅤThe methods to control the pulse width for laser-diode end-pumped AO-GaAs and Cr~(4+):YAG-GaAs doubly Q-switched Nd:YVO_4/YVO_4 composite crystal laser has been theoretically and experimentally studied.By varying one or two Q-switchers in the laser cavity and the pumping facula in the gain medium,we provide two kinds of efficient means to control the pulse duration.The average pumping radius versus the location of pumping facula in the laser crystal,as well as the transfer matrix and formula for calculating the beam radius in intracavity arbitrary position,have been presented.The coupled rate equations are used to analyze the process of the laser.The experimental results are consistent with the theoretical results.
引文
[1] T.H. Mainman, "Stimulated optical radiation in ruby", Nature, 187:493-494 (1960).
    
    [2] R.J. Keys, "Injection luminescent pumping of CaF_2:U~(3+) with GaAs diode lasers", Appl. Phys. Lett, 4:50-52 (1964).
    [3] B.J. Le Garrec, G.J. Raze, P.Y. Thro, et al., "high-average-power diode-array pumped frequency-doubled YAG laser", Opt. Lett., 21(24): 1990-1992 (1996).
    [4] T. Kojima, S. Konno, S. Fujikawa et al, "20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser", Opt. Lett, 25(1):58-60 (2000).
    [5] J.M. Liu, J.K. Chee, "Passive mode locking of a cw Nd:YLF laser with a nonlinear external coupled cavity", Opt. Lett, 15(12): 685-687 (1990).
    
    [6] A. Agnesi, S. Dell et al, "Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers", IEEE J. Quantum Electron, 34(8):1480-1484 (1998).
    [7] E. Snitzer, "Optical Maser Action of Nd~(3+) in a Barium Crown Glass", Phys. Rev. Lett, 7(12):444-446 (1961).
    [8] L.F. Johnson, K. Nassau, "Infrared fluorescence and stimulated emission of Nd~(3+) in CaWO_4", Proc. IRE, 49:1704-1706 (1961).
    [9] T. Kushida, J.E. Geusic, "Optical Refrigeration in Nd-Doped Yttrium Aluminum Garnet", Phys. Rev. Lett, 21(16): 1172-1175 (1968).
    [10] N.P. Barnes, D.J. Gerremy, L. Esterowitz, R.A. Allen, "Comparison of Nd 1.06 and 1.33 μm operation in various hosts", IEEE J. Quantum Electron, 23(9):1434-1451 (1987).
    [11] T. Kushida, H.M. Marcos, J.E. Geusic, "Laser Transition Cross Section and Fluorescence Branching Ratio for Nd~(3+) in Yttrium Aluminum Garnet", Phys. Rev, 167(2):289-291 (1968).
    
    [12] W.F. Krupke, M.D. Shinn, J.E. Marion, J.A. Caird, S.E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium- doped gadolinium scandium garnet", J. Opt. Soc. Am. B, 3(1): 102-114 (1986).
    [13] J.K. Neeland, V. Evtuhov, "Measurement of the Laser Transition Cross Section for Nd~(3+) in Yttrium Aluminum Garnet", Phys. Rev, 156(2):244-246 (1967).
    [14]M.Birnbaum,J.A.Gelbwachs,"Stimulated-Emission Cross Section of Nd~(3+) at 1.06 μm in POCl_3,YAG,CaWO_4,ED-2 Glass and LG55 Glass",J.Appl.Phys.,43(5):2335-2338(1972).
    [15]M.J.Weber,T.E.Varitimos,"Optical Spectra and Intensities of Nd~(3+) in YA103",J.Appl.Phys.,42(12):4996-5005(1971).
    [16]S.Singh,R.G.Smith,L.G.Van Uitert,"Stimulated-emission Cross section and fluorescent quantum efficiency of Nd~(3+) in yttrium aluminum garnet at room temperature",Phys.Rev.B,10(6):2566-2572(1974).
    [17]H.G.Danielmeyer,M.Blatte,"Fluorescence Quenching in Nd:YAG",Appl.Phys.,1:269-274(1973).
    [18]R.A.Fields,M.Bimbaum and C.L.Fincher,"Highly efficient Nd:YVO4 diode-laser end-pumped laser",Appl.Phys.Lett.,51(23):1885-1886(1987).
    [19]J.J.Zayhowski and C.Dill Ⅲ,"Coupled-cavity electro-optically Q-switched Nd:YVO_4microchip lasers",Opt.Lett.,20(7):716-718(1995).
    [20]G.J.Friel,R.S.Conroy,A.J.Kemp,B.D.Sinclair and J.M.Ley,"Q-switching of a diode-pumped Nd:YVO_4 laser using a quadruple electro-optic deflector",Appl.Phys.B,67:267-270(1998).
    [21]Y.F.Chen,T.M.Huang and C.L.Wang,"Passively Q-switched diode-pumped Nd:YVO_4/cr~(4+):YAG single-frequency microchip laser",Electron.Lett.,33(22):1880-1881(1997).
    [22]Y.Bai,N.Wu,J.Zhang,J.Li,S.Li,J.Xu and P.Deng,"Passively Q-switched Nd:YVO_4laser with a Cr~(4+):YAG crystal saturable absorber",Appl.Opt.,36(12):2468-2472(1997).
    [23]J.Zheng,S.Zhao,Q.Wang,X.Zhang and L.Chen,"Laser-diode end-pumped passively Q-switched Nd:YVO4 laser with Cr4+:YAG saturable absorber",Opt.Eng.,41(9):2271-2275(2002).
    [24]J.Zheng,S.Zhao and L.Chen,"Laser-diode end-pumped passively Q-switched intracavity doubling Nd:YVO_4/KTP laser with Cr~(4+):YAG saturable absorber",Opt.Eng.,41(8):1970-1975(2002).
    [25]A.I.Zagumennyi,V.G.Ostroumov,I.A.Shcherbakov,T.Jensen,J.P.Meyn,G.Huber,"The Nd:GdVO4 crystal:a new material for diode-pumped lasers",Sov.J.Quantum Electron.,22:1071-1072(1992).
    [26]T.Jensen,V.G.Ostroumov,J.P.Meyn,G.Huber,A.I.Zagumennyi,I.A.Shcherbakov,“Spectroscopic Characterization and Laser Performance of Diode-Laser-Pumped Nd:GdVO_4”,Appl.Phys.B,58:373-379(1994).
    [27]J.H.Liu,B.Ozygus,S.H.Yang,et al.,“Efficient passive Q-switching operation of a diode-pumped Nd:GdVO_4 laser with a Cr~(4+):YAG saturable absorber”,J.Opt.Soc.Am.B,20(4):652-661(2003).
    [28]J.H.Liu,X.Q.Yu,X.G.Xu,et al.,“Diode-laser-array end-pumped actively Q-switched Nd:GdVO_4 laser at 1.06 μm formed with a flat-flat resonator”,Jpn J.Appl.Phys.,39(10A):978-980(2000).
    [29]C.Li,J.Song,D.Shen,et al.,“Diode-pumped passively Q-switched Nd:GdVO_4 lasers operating at 1.06 μm wavelength”,Appl.Phys.B,70:471-474(2000).
    [30]E.Wu,H.Pan,S.Zhang,H.Zeng,“High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO_4 crystal”,Appl.Phys.B,80(4-5):459-462(2005).
    [31]D.Findlay and R.A.Clay,“The measurement of internal losses in a 4-level laser”,Phys.Lett.,20(3):277-278(1996).
    [32]J.Liu,J.Yang and J.He,“Diode-pumped passively Q-switched c-cut Nd:GdVO_4 laser”,Opt.Commun.,219:317-321(2003).
    [33]H.Pan,S.Xu and H.Zeng,“Passively Q-switched Single-longitudinal-mode c-cut Nd:GdVO_4 laser with a twisted-mode cavity”,Opt.Exp.,13(7):2755-2760(2005).
    [34]N.P.Barnes,Pro.SPIE,2379:2-9(1995).
    [35]O.B.Noel,B.Bellamy,B.Viana et al.,“Correlation between rare-earth oscillator strengths and rare-earth-valence-band interactions in neodymium-doped YMO_4(M=V,P,As),Y_3Al_5O_(12),and LiYF_4 matrices”,Phys.Rev.B,60(3):1668-1677(1999).
    [36]C.Maunier,J.L.Doualan,R.Moncorge,“Growth,spectroscopic characterization,and laser performance of Nd:LuVO_4,a new infrared laser material that is suitable for diode pumping”,J.Opt.Soc.Am.B,19(8):1794-1800(2002).
    [37]赵守仁,张怀金,胡小波等,“Nd:LuVO_4晶体的生长及其性能研究”,人工晶体学报,33:363-366(2004).
    [38]H.J.Zhang,H.K.Kong,S.R.Zhao et al.,“Growth of new laser crystal Nd:LuVO_4 by the Czochralski method", J. Cryst. Growth, 256:292-297 (2003).
    [39] S.R. Zhao, H.J. Zhang, J.H. Liu et al, "Growth of excellent-quality Nd:LuVO_4 single crystal and laser properties", J. Cryst. Growth, 279:146-153 (2005).
    [40] S.R. Zhao, H.J. Zhang, J.Y. Wang, et al., "Growth and characterization of the new laser crystal Nd:LuVO_4", Opt. Mater, 26:319-325 (2004).
    [41] M. Higuchi, T. Shimizu, J. Takahashi et al, "Growth of RE:LuVO_4 (RE=Nd, Tm, Yb) single crystals by the floating zone method and their spectroscopic properties", J. Cryst. Growth, 283:100-107 (2005).
    [42] J. Liu, H. Zhang, Z. Wang et al, "Continuous-wave and pulsed laser performance of Nd:LuVO_4 crystal", Opt. Lett, 29(2): 168-170 (2004).
    [43] S.R. Zhao, H.J. Zhang, Y.B. Lu et al, "Spectroscopic characterization and laser performance of Nd:LuVO_4 single crystal", Opt. Mater, 28:950-955 (2006).
    [44] C.Y. Zhang, L. Zhang, Z.Y. Wei et al, "Diode-pumped continuous-wave Nd:YVO_4 laser operating at 916nm", Opt. Lett, 31(10):1435-1437 (2006).
    [45] F.Q. Liu, H.R. Xia, S.D. Pan, et al, "Passively Q-switched Nd:LuVO_4 laser using Cr~(4+):YAG as saturable absorber", Opt. & laser Tech, 39:1449-1453 (2007).
    [46] M. D. Wei, C. C. Cheng, S. S. Wu, "Instability and satellite pulse of passively Q-switching Nd:LuVO_4 laser with Cr~(4+): YAG saturable absorber", Opt. Commun, 281:3527-3533(2008).
    [47] H. Yu, H. Zhang, Z. Wang, J. Wang, Z. Shao, and M. Jiang, "CW and Q-switched laser output of LD-end-pumped 1.06μm c-cut Nd:LuVO_4 laser", Opt. Exp, 15(6):3206-3211 (2007).
    [48] Z. Wang, H. Zhang, F. Xu, D. Hu, X. Xu, J. Wang, and Z. Shao, "High-power, continuous-wave Nd:LuVO_4 microchip lasers", Laser Phys. Lett, 5(1):25-28 (2008).
    [49] R.J. Lan, M.D. Liao, H.H. Yu, Z.P. Wang, X.Y. Hou, X.G. Xu, H.J. Zhang, D.W. Hu, J.Y. Wang, "3.3 ns Nd:LuVO_4 micro-type laser", Laser Phys. Lett, 6(4):268-271 (2008).
    [50] G.Q. Xie, D.Y. Tang, H. Luo, H.H. Yu, H.J. Zhang, and L.J. Qian, "High-power passive mode locking of a compact diode-pumped Nd:LuVO_4 laser", Laser Phys. Lett, 5(9):647-650 (2008).
    [51] F.Q. Liu, H.R. Xia, Y. Zhong, S.Q. Sun, Z.C. Ling, D.G. Ran, W.L. Gao, J.L. He, H.J. Zhang, J.Y. Wang, "Intracavity optical parametric oscillator at 1.57μm by a diode-pumped Q-switched Nd:LuVO_4 laser", Laser Phys. Lett., 5(8):585-588 (2008).
    [52] R.W. Hellwarth, "Advances in Quantum Electronics", Columbia University Press, New York, 334 (1961).
    [53] F.J. Mccling, R.W. Hellwarth, "Giant Optical Pulsations from Ruby", J. Appl. Phys., 33(3):828-829(1962).
    
    [54] G. Suhler, R. Paschotta, R. Fluck, et al, "Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers", J. Opt. Soc. Am. B, 16(3):376-388 (1999).
    [55] R. Felolman, Y. Shimony and Z. Burshtein, "Passive Q-switching in Nd:YAG/Cr~(4+):YAG monolithic microchip laser ", Opt. Mater., 24:393-399 (2003).
    [56] M. Bass, "Electro optic Q switching of the Nd:YVO_4 laser without an intracavity polarizer", IEEE J.Quantum Electron., 11:938-941 (1975).
    
    [57] H. Plaessmann, K.S. Yamada, C.E. Rich, and W.M. Grossman, "Subnanosecond pulse generation from diode-pumped acousto-optically Q-switched solid-state lasers", Appl. Opt., 32:6616-6619 (1993).
    [58] J. Chen, I.K. Fu, and S.P. Lee, "LiF:F/2 as a high repetition rate Nd:YAG laser passive modulator", Appl. Opt., 29:2669-2674 (1990).
    [59] H. Eilers, W.M. Dennis, W.M. Yen, et al., "Performance of a Cr:YAG laser", IEEE J. Quantum Electron., 29(9):2508-2512 (1993).
    [60] Y.K. Kuo, M.F. Huang, and M. Birnbaum, "Turnable Cr~(4+):YSO Q-switched Cr:LiCAF laser", IEEE J. Quantum Electron., 31(4):657-663 (1995).
    [61] L. Pan, X. Hou, Y. Li and Y. Sun, "Passively Q-switched Nd:GdVO_4 laser with GaAs saturable absorber ", Opt.& Laser Tech., 36:121-124 (2004).
    [62] G.Q. Gu, F. Zhou, G. Zhang and M.K. Chin, "Passively Q-switched single frequency Nd:YVO_4 laser with GaAs saturable absorber", IEE Electron Lett., 34:564-565 (1998).
    [63] Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang and X. Ma, "Observation of antiphase states in a passively Q-switched multimode microchip Yb:YAG laser with a GaAs saturable absorber", Opt. Commun., 232:353-356 (2004).
    
    [64] Y. Tsou, E. Garmire, W. Chen, M. Birnbaum and R. Asthana, "Passive Q switching of Nd:YAG lasers by use of bulk semiconductors", Opt. Lett., 18: 1514-1517 (1993).
    [65]B.Braun and U.Keller,"Single-frequency Q-switched ring laser with an antiresonant Fabry-Perot saturable absorber",Opt.Lett.,20:1020-1024(1995).
    [66]B.Braun,F.X.Kartner,U.Keller,J.P.Meyn and G.Huber,"Passively Q-switched 180-ps Nd:LaSc_3(BO_3)_4 microchip laser",Opt.Lett.,21:405-407(1996).
    [67]Y.Shimony,Z.Burshtein,A.Baranga,Y.Kalisky and M.Strauss,"Repetitive Q-switching of a CW Nd:YAG laser using Cr~(4+):YAG saturable absorbers",IEEE J.Quantum Electron.,32(2):305-310(1996).
    [68]Y.Shimony,Z.Burshtein and Y.Kalisky,"Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser",IEEE J.Quantum Electron.,31(10):1738-1741(1995).
    [69]D.Shen,C.Li,J.Song,T.Kobayashi and K.Ueda,"Diode-pumped Nd:S-VAP lasers passively Q-switched with Cr~(4+):YAG saturable absorber",Opt.Commun.,169:109-113(1999).
    [70]J.Liu,B.Ozygus,S.Yang,J.Erhard,U.Seelig,A.Ding and H.Weber,"Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr~(4+):YAG saturable absorber",J.Opt.Soc.Am.B,20(4):652-661(2003).
    [71]J.Dong,P.Deng,Y.Liu,Y.Zhang,J.Xu,W.Chen and X.Xie,"Passively Q-switched Yb:YAG laser with Cr~(4+):YAG as the saturable absorber",Appl.Opt.,40(24):4303-4307(2001).
    [72]W.Chen,K.Spariosu,R.Stultz,"Cr~(4+):GSGG saturable absorber Q-switch for the ruby laser",Opt.Commun.,104:71-74(1993).
    [73]Y.K.Kou,M.F.Huang,M.Birnbaum,"Tunable Cr4+:YSO Q-switched Cr:LiCAF laser",IEEE J.Quantum Electron.31(4):657-663(1995).
    [74]S.Zhou,K.K.Lee and Y.C.Chen,"Monolithic self-Q-switched Cr,Nd:YAG laser",Opt.Lett.,18(7):511-5 l 2(1993).
    [75]S.Li,S.H.Zhou,P.Wang,et al.,"Self-Q-switched diode-end-pumped Cr:Nd:YAG laser with polarized output",Opt.Lett.,18(3):203-204(1993).
    [76]J.Dong,P.Deng,Y.Lu,et al.,"Laser-diode-pumped Cr4+:Nd~(3+):YAG with self-Q-switched laser output of 1.4W",Opt.Lett.,25:1101-1103(2000).
    [77]Z.Hong,H.Zheng,J.Chen,et al.,"Laser-diode-pumped Cr~(4+):Nd~(3+):YAG self-Q-switched laser with high repetition rate and high stability",Appl.Phys.B,73:205-207(2001 ).
    [78]J.Dong,J.Lu and K.Ueda,"Experiments and numerical simulation of a diode-pumped Cr,Nd:YAG self-Q-switched laser",J.Opt.Soc.Am.B,21:2130-2136(2004).
    [79]Z.Hong,H.Zheng,J.Chen,et al.,"Laser-diode-pumped Cr~(4+):Nd~(3+):YAG self-Q-switched laser with high repetition rate and high stability",Appl.Phys.B,73:205-207(2001).
    [80]L.Yang,B.Feng,Z.Zhang,V.Gaebler,B.Liu,H.J.Eichler,"Low mode-locking saturation intensity of co-doped Nd~(3+),Cr~(4+):YAG crystal as saturable absorber",Opt.Mater.,22:59-63(2003).
    [81]L.Zhang,D.Li,Q.Zhang,C.Li,Z.Wei,B.Feng,P.Fu,Z.Zhang,"Diode-pumped passive Q-switched and mode-locked 946 nm Nd:YAG laser with a Nd,Cr:YAG saturable absorber",Opt.Commun.,250:174-177(2005).
    [82]H.Eilers,W.M.Dennis,W.M.Yen,et al.,"Performance of a Cr:YAG laser",IEEE J.Quantum Electron.,29(9):2508-2512(1993).
    [83]T.T.Kajava and A.L.Gaeta,"Q-switching of a diode-pumped Nd:YAG laser with GaAs",Opt.Lett.,21(16):1244-1246(1996).
    [84]T.T.Kajava and A.L.Gaeta,"Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs",Opt.Commun.,137:93-97(1997).
    [85]J.Gu,F.Zhou,W.Xie,S.C.Tam,and Y.L.Lain,"Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler",Opt.Commun.,165:245-249(1999).
    [86]D.Shen,D.Tang and J.Kong,"Passively Q-switched Yb:YAG laser with a GaAs output coupler",Opt.Commun.,211:271-275(2002).
    [87]S.Zhao,X.Zhang,J.Zheng,et al."Passively Q-switched self-frequency-doubling Nd~(3+):GdCa_4O(BO_3)_3 laser with GaAs saturable absorber",Opt.Eng.,41(3):559-560(2002).
    [88]D.Shen,D.Tang and J.Kong,"Passively Q-switched Yb:YAG laser with a GaAs output coupler",Opt.Commun.,211:271-275(2002).
    [89]J.Gu,E Zhou,W.Xie,S.C.Tam,and Y.L.Lain,"Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler",Opt.Commun.,165:245-249(1999).
    [90]张小洁,杨杰,韩汝聪等,“声光-染料双调Q激光器的理论与实验研究”,中国激 光, 19(4):241-246 (1992).
    
    [91] G. Li, S. Zhao, K. Yang and D. Li, "Investigation of a diode-pumped double passively Q-switched Nd:GdVO_4 laser with a Cr~(4+):YAG saturable absorber and a GaAs coupler", J. Opt. A: Appl. Opt., 8:155-163 (2006).
    
    [92] P. Li, Q. Wang, X. Zhang, Y. Wang, S. Li, J. He and X. Lu, "Analysis of a diode-pumped Nd:YVO_4 laser passively Q switched with GaAs", Opt. & Laser Tech., 33:383-387 (2001).
    [93] T. Erneux, P. Peterson and A. Gavrielides, "The pulse shape of a passively Q-switched microchip laser", Eur. Phys. J. D, 10:423-431 (2000).
    
    [94] GQ. Li, S.Z. Zhao, K.J. Yang, D.C. Li and J. Zou, "Pulse shape symmetry and pulse width reduction in diode-pumped doubly Q-switched Nd:YVO_4/KTP green laser with AO and GaAs", Opt. Exp., 13:1178-1187 (2005).
    
    [95] A.L. Smirl, G.C. Valley, K.M. Bohnert and T.F. Boggess, "Picosecond Photorefractive and Free-Carrier Transient Energy Transfer in GaAs at 1μm", IEEE J. Quantum Electron, 24(2):289-303 (1988).
    [96] G.C. Valley and A.L. Smirl, "Theory of transient energy transfer in gallium arsenide", IEEE J. Quantum Electron., 24(2):304-310 (1988).
    
    [97] K. Yang, S. Zhao, G. Li, H. Zhao, "Theoretical and experimental study of a laser-diode-pumped actively Q-switched Nd:YVO_4 laser with acoustic-optic modulator", Opt. & Laser Tech. 37(5):381-386 (2005).
    [98] P.A. Franken, et al, "Generation of Optical Harmonics", Phys. Rev. Lett, 7(4): 118-119 (1961).
    [99] J.A. Giordmaine, "Mixing of Light Beams in Crystals", Phys. Rev. Lett, 8(1):19-20 (1962).
    [100] P.D. Maker, et al, "Effects of Dispersion and Focusing on the Production of Optical Harmonics", Phys. Rev. Lett, 8(1):21-22 (1962).
    
    [101] L. Chen, S. Zhao and H. Zhao, "Passively Q-switching of a laser-diode-pumped intracavity-frequency-doubling Nd:NYW/KTP laser with GaAs saturable absorber", Opt. & Laser Tech, 35:563-567 (2003).
    
    [102] T. Taira and T. Kobayashi, "Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal", IEEE. J. Quantum Electron, 30(3):800-804 (1994).
    [103] Y.F. Chen, T.M. Huang, C.L. Wang and L.J. Lee, "Compact and efficient 3.2-W diode-pumped Nd:YVO_4/KTP green laser", Appl. Opt., 37(24):5727-5730 (1998).
    [104] J. Liu, C. Wang, C.Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao and M. Jiang, "Diode end-pumped Q-switched high power intracavity frequency-doubled Nd:GdV(VKTP green laser", Appl. Phys. B, 72:171-174 (2001).
    [105] B.J. Le Garrec, G.J. Raze, P.Y. Thro, et al., "high-average-power diode-array pumped frequency-doubled YAG laser", Opt. Lett., 21(24): 1990-1992 (1996).
    [106] K. Tei, M. Kato, Y. Niwa, et al., "LD-pumped 0.62 J, 105 W Nd:YAG green laser", Proceedings of SPIE - The International Society for Optical Engineering, 3265:212-218 (1998).
    [107] S. Konno, T. Kojima, S. Fujikawa et al., "High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser", Opt. Lett, 25(2): 105-107 (2000).
    [108] Y. Hirano, N. Pavel, S. Yamamoto, "100-W, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system", Opt. Commun, 184:231-236 (2000).
    [109] T. Bear, "Large-amplitude fluctuation due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers", J. Opt. Soc. Am. B, 3(9):1175-1180 (1986).
    [110] Michio Oka, Shigeo Kubota, "Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers", Opt. Lett, 13(10):805-807 (1988).
    [111] T.Y. Fan, "Single-axial mode, intracavity doubled Nd:YAG laser", IEEE J. Quantum Electron, 27(9):2091-2093 (1991).
    [112] Volker Gaebler, Baining Liu, Hans Joachim Eichler, "Efficient blue cw Nd:YAG microchip laser with two intracavity frequency doublers", Opt. Lett, 25(18): 1343-1345 (2000).
    [113] J. Armstrong, N. Bloembergen, J. Ducuing and P.S. Pershan, "Interactions between light waves in a nonlinear dielectric", Phys. Rev, 127(6): 1918-1939 (1962).
    [114] L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg and J.W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO_3", J. Opt. Soc. Am. B, 12(11):2102-2116 (1995).
    [115]M.Yamada,N.Nada,M.Saitoh and K.Watanabe,"First-order quasi-phase matched LiNbO_3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation",Appl.Phys.Lett.,62(5):435-436(1993).
    [116]Q.Chen and W.P.Risk,"Periodic poling of KTiOPO_4 using an applied electric field",Electron.Lett.,30(18):1516-1517(1994).
    [117]S.Wang,V.Pasiskevicius,F.Laurell and H.Karlsson,"Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4",Opt.Lett.,23(24):1883-1885(1998).
    [118]A.A.Vuylsteke,"Theory of laser regeneration switching",J.Appl.Phys.,34(6):1615-1622(1963).
    [119]W.G.Wagner and B.A.Lengyel,"Evolution of the giant pulse in a laser",J.Appl.Phys.,34(7):2040-2046(1963).
    [120]A.Szabo and R.A.Stein,"Theory of laser giant pulsing by a saturable absorber",J.Appl.Phys.,36(5):1562-1566(1965).
    [121]L.E.Erickson and A.Szabo,"Effect of saturable absorber lifetime on the performance of giant-pulse lasers",J.Appl.Phys.,37(13):4953-4961(1966).
    [122]L.E.Erickson and A.Szabo,"Behavior of saturable-absorber giant-pulse lasers in the limit of large absorber cross section",J.Appl.Phys.,38(6):2540-2542(1967).
    [123]X.Zhang,S.Zhao,Q.Wang,B.Ozygus and H.Weber,"Modeling of diode-pumped actively Q-switched lasers",IEEE J.Quantum Electron.,35(12):1911-1918(1999).
    [124]张行愚,赵圣之,王青圃,“腔内光强空间分布对被动调Q激光器速率方程解的影响”,光子学报,28(7):651-653(1999).
    [125]X.Zhang,S.Zhao,Q.Wang,B.Ozygus,and H.Weber,"Modeling of passively Q-switched lasers",J.Opt.Soc.Am.B,17(7):1166-1175(2000).
    [126]张其第,王青圃,张行愚,赵圣之,“考虑腔内光强高斯分布时调Q激光器的速率方程及其解”,激光杂志,21(6):25-27(2000).
    [127]X.Zhang,S.Zhao,Q.Wang,S.Zhang,L.Sun,X.Liu,S.Zhang and H.Chert,"Passively Q-switched self-frequency-doubled Nd~(3+):GdCa_4O(BO_3)_3 laser",J.Opt.Soc.Am.B,18(6):770-779(2001).
    [128]G.Li,S.Zhao,H.Zhao,K.Yang and S.Ding,"Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial distribution",Opt.Commun.,234:321-328(2004).
    [129]G.Li,S.Zhao,K.Yang and J.Liu,"Analysis of a laser-diode end-pumped passively Q-switched Nd:GdVO_4 laser with Cr~(4+):YAG saturable absorber",Opt.Mater.,27:719-723(2005).
    [130]G.Li,S.Zhao,K.Yang and H.Zhao,"Theoretical and experimental study of a laser-diode end-pumped passively Q-switched Nd:YVO_4 laser with Cr~(4+):YAG saturable absorber",Opt.Eng.,43(11):2762-2768(2004).
    [131]D.Li,S.Zhao,G.Li and K.Yang,"Optimization of peak power of doubly Q-switched lasers with both an acoustic-optic modulator and a Cr~(4+)-doped saturable absorber",Appl.Opt.,45:5767-5776(2006).
    [132]A.Sennaroglu and C.R.Pollock,"Efficient continuous-wave chromium-doped YAG laser",J.Opt.Soc.Am.B,12(5):930-937(1995).
    [133]S.H.Yim,D.R.Lee,B.K.Rhee,et al.,"Nonlinear absorption of Cr:YAG studied with lasers of different pulse widths",Appl.Phys.Lett.,73:3193-3195(1998).
    [134]R.L.Fork,B.I.Green and C.V.Shank,"Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking",Appl.Phys.Lett.,38:671-672(1981).
    [135]欧阳斌,丁彦华,万小珂,林礼煌,邓佩珍,“Cr~(4+):YAG的可饱和吸收特性与被动Q开关性能研究”,光学学报,16(12):1665-1670(1996).
    [136]S.Zhao,L.Chen,H.Zhao,G.Li,L.Zhang,Z.Chen,H.Chen and K.Yang,"Laser-diode pumped passively Q-switched Nd~(3+):NaY(WO_4)_2 laser with Cr~(4+):YAG saturable absorber",Opt.Mater.,27:481-486(2004).
    [137]M.O.Manasreh,W.C.Mitchel and D.W.Fischer,"Observation of the second energy level of the EL2 defect in GaAs by the infrared absorption technique",Appl.Phys.Lett.,55(9):864-866(1989).
    [138]P.Silverberg,P.Omling and L.Samuelson,"Hole photoionization cross sections of EL_2in GaAs",Appl.Phys.Lett.,52(20):1689-1691(1988).
    [139]J.Zheng,S.Zhao and L.Chen,"Influence of thermal effect on KTP type-Ⅱphase-matching second-harmonic generation",Opt.Commun.,199:207-214(2001).
    [140]张小洁,杨杰,韩汝聪等,“声光-染料双调Q激光器的理论与实验研究”,中国激光,19(4):241-246(1992).
    [141]A.G.Fox and T.Li,"Modes in a maser interferometer with curved and tilted mirrors",in Proc. IEEE, 51:80-89(1963).
    [142] S.C. Tidwell, J.F. Seamans, M.S. Bower, and A.K. Cousins, "Scaling CW diode-end-pumped Nd:YAG lasers to high average powers", IEEE J. Quantum Electron., 28(4):997-1009 (1992).
    [143] J.L. Blows, G.W. Forbes, J.M. Dawes, "Cavity modes in diode-array end-pumped planar lasers with aberrated thermal lenses", Opt. Commun., 186:111-120 (2000).
    [144] Y.F. Chen, T.M. Huang, C.L. Wang and L.J. Lee, "Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect", IEEE J. Quantum Electron., 33 (8):1424-1429 (1997).
    [145] G. Li, S. Zhao, K. Yang, W. Wu, "Pulse width reduction in diode-pumped Nd:LuVO_4 laser with AO and GaAs double Q-switches", Jpn J. Appl. Phys., 44:3017-3021 (2005).
    [146] J.J. Degnan, "Effects of thermalization on the Q-switched laser properties", IEEE J. Quantum Electron., 34:887-899 (1998).
    [147] C. Lu, M. Gong, Q. Liu, L. Huang, and F. He, "16.4 W laser output at 1.34μm with twin Nd:YVO4 crystals and double-end-pumping structure", Laser Phys. Lett., 5(1):21-24 (2007).
    [148] F. He, L. Huang, M. Gong, Q. Liu, and X. Yan, "Stable acousto-optics Q-switched Nd:YVO_4 laser at 500 kHz", Laser Phys. Lett., 4(7):511-514 (2007).
    [149] Y. Liu, L. Sun, H. Qiu, Y. Wang, Q. Tian, and X. Ma, "Bidirectional operation and gyroscopic properties of passively mode-locked Nd: YVO_4 ring laser", Laser Phys. Lett., 4(3): 187-190 (2007).
    [150] V.A. Orlovich, V.N. Burakevich, A.S. Gravtchikov, V.A. Lisinetskii, A.A. Demidovich, H.J. Eichler, and P.-Y. Turpin, "Continuous-wave intracavity Raman generation in PbWO_4 crystal in the Nd:YVO_4 laser", Laser Phys. Lett., 3(2):71-74 (2006).
    [151] A. Zavadilova, V. Kubecek, and J.-C. Diels, "Picosecond optical parametric oscillator pumped synchronously, intracavity, by a mode-locked Nd:YVO_4 laser", Laser Phys. Lett, 4(2):103-108 (2007).
    [152] M. Tsunekane, N. Taguchi, and H. Inaba, "Efficient 946-nm laser operation of a composite Nd:YAG rod with undoped ends", Appl. Opt., 37: 5713-5719 (1998).
    [153] F. Hanson, "Improved laser performance at 946 and 473 nm from a composite Nd:Y_3Al_5O_(12) rod", Appl. Phys. Lett., 66:3549-3551 (1995).
    [154]M.Tsunekane,N.Taguchi,T.Kasamatsu,and H.Inaba,"Analytical and Experimental Studies on the Characteristics of Composite Solid-State Laser Rods in Diode-End-Pumped Geometry",IEEE J.Selected Topics in Quantum Electron.,3:9-18(1997).
    [155]M.Tsunekane,N.Taguchi and H.Inaba,"Improved laser performance at 946 and 473nm from a composite Nd:Y_3Al_5O_(12) rod",Electron.Lett.,32:40-42(1996).
    [156]Z.Zhuo,T.Li,X.Li,H.Yang,"Investigation of Nd:YVO_4/YVO_4 composite crystal and its laser performance pumped by a fiber coupled diode laser",Opt.Commun.,274:176-181(2007).
    [157]T.Li,Z.Zhuo,X.Li,H.Yang,and Y.Zhang,"Study on optical characteristics of Nd:YVO_4/YVO_4 composite crystal laser",Chin.Opt.Lett.,5:175-177(2006).
    [158]U.O.Farrukh,A.M.Buoncristiani,and C.E.Byvik,"An Analysis of the Temperature Distribution in Finite Solid-State Laser Rods",IEEE J.Quantum Electron.,24:2253-2263(1988).
    [159]J.A.Zheng,S.Z.Zhao,Q.P.Wang,X.Y.Zhang,and L.Chen,"Influence of thermal effect in gain media on optimum design of LD-end-pumped solid-state laser",Acta Photon.Sin.,30:724-729(2001;in Chinese).
    [160]W.Koechner,Solid-State Laser Engineering,fifth ed.,Springer Verlag,Berlin,1999,Chapter 8.
    [161]柳强,巩马理,闫平,贾维溥,崔瑞祯,王东生,“GaAs被动调Q兼输出耦合Nd:YVO_4激光特性研究”,物理学报,51(1 2):2756-2760(2002).
    [162]J.Gu,F.Zhou,K.Wan,T.Lim,S.Tan,Y.Lan,D.Xu and Z.Cheng,"Q-switching of a diode-pumped Nd:YVO_4 laser with GaAs nonlinear output coupler ",Opt.Laser Eng.,35:299-307(2001).
    [163]K.Yang,S.Zhao,G.Li,and H.Zhao,"Passive Q-switching of a Laser-Diode End-pumped Nd:GdVO_4Laser with a GaAs output Coupler in a short Cavity",Jpn J.Appl.Phys.,43:8053-8058(2004).
    [164]K.Yang,S.Zhao,G.Li,D.Li,J.Wang,J.An,and M.Li,"Doubly passively self-Q-switched Cr~(4+):Nd~(3+):YAG laser with a GaAs output coupler in a short cavity",IEEE J.Quantum Electron.,43(2):109-115(2007).
    [165]D.A.Bryan,R.Gerson,H.E.Tomaschke,"Increased optical damage resistance in lithium niobate", Appl. Phys. Lett., 44:847-849 (1984).
    [166] A. Kuroda, S. Kurimura, and Y. Uesu, "Domain inversion in ferroelectric MgO:LiNbO_3 by applying electric fields", Appl. Phys. Lett., 69:1565-1567 (1996).
    [167] K. Niwa, Y. Furukawa, S. Takekawa, K. Kitamura, "Growth and characterization of MgO doped near stoichiometric LiNbO_3 crystals as a new nonlinear optical material", J. Cryst. Growth, 208:493-500 (2000).
    [168] R.K. Choubey, P. Sen, P.K. Sen, R. Bhatt, S. Kar, V. Shukla, K.S. Bartwal, "Optical properties of MgO doped LiNbO_3 single crystals", Opt. Mater., 28(5):467-472 (2006).
    [169] K. Sakai, Y. Koyata, and Y. Hirano, "Planar-waveguide quasi-phase-matched second-harmonic-generation device in Y-cut MgO-doped LiNbO_3", Opt. Lett., 31:3134-3136(2006).
    [170] K. Sakai, Y. Koyata, and Y. Hirano, "Blue light generation in a ridge waveguide MgO:LiNbO_3 crystal pumped by a fiber Bragg grating stabilized laser diode", Opt. Lett, 32:2342-2344 (2007).
    [171] Y. Chen, J. Yao, B. Yan, H. Deng, Y. Kong, S. Chen, J. Xu, G. Zhang, "Harmonic violet light generation in periodically poled bulk near-stoichiometric MgO-doped LiNbO_3", Opt. Commun, 224:149-153 (2003).
    [172] N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita and K. Yamamoto, "Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO_3 crystal", Opt. Lett, 29:830-832 (2004).
    [173] Hideki Ishizuki, Ichiro Shoji and Takunori Taira, "Periodical poling characteristics of congruent MgO:LiNbO_3 crystals at elevated temperature", Appl. Phys. Lett, 82(23):4062-4064 (2003).
    [174] Pratima Sen, Namita Sisodia, K.S. Bartwal, "Influence of MgO doping on spontaneous polarization and second-order susceptibility in LiNbO_3 crystals", Opt. Mater, 29:206-210(2006).
    [175] V. Pruneri, J. Webjorn, P.St.J. Russell, J.R.M. Barr, D.C. Hanna, "Intracavity second harmonic generation of 0.532μm in bulk periodically poled lithium niobate", Opt. Commun, 116:159-162 (1995).
    [176] N. D. Lai, M. Brunei, F. Bretenaker, and O. Emile, "Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers," Eur.Phys.J.D,19:403-410(2002).
    [177]G.Li,S.Zhao,et al.,"Control of the pulse width in a diode-pumped passively Q-switched Nd:GdVO_4/KTP green laser with a Cr~(4+):YAG saturable absorber",Appl.Opt.,44:5990-5995(2005).
    [178]G.Li,S.Zhao,et al.,"Control of the pulse width in a diode-pumped passively Q-switched Nd:GdVO_4 laser with GaAs saturable absorber",Opt.Mater.,29:425-430(2006).
    [179]D.G.Hall,R.J.Smith,R.Rice,"Pump-size effects in Nd:YAG lasers",Appl.Opt.,19(18):3041-3043(1980).
    [180]Y.F.Chen,C.F.Kao,S.C.Wang,"Analytical model for the design of fiber-coupled laser-diode end-pumped lasers",Opt.Commun.,133:517-524(1997).
    [181]P.Laporta and M.Brussard,"Design criteria for mode size optimization in diode-pumped solid-state lasers",IEEE J.Quantum Electron.,27(10):2319-2326(1991).
    [182]W.KOECHNER,"Solid-State Laser Engineering",438-442(2002).
    [183]K.Yang,S.Zhao and G.Li,"Diode-pumped actively Q-switched Nd:GdVO_4 green laser with periodically poled KTP",Opt.Quantum Electron.,37:875-887(2005).
    [184]X.Zhang,J.Yang,R.Han,J.Yao,"Acoustic-optic-dye double Q-switched laser:theory and experiment",Chin J.Laser,19:241(1992).
    [185]W.Qiao,S.Zhao,G.Li,et al.,"Effect of turnoff time on characteristics of the output pulse in an AO Q-switched laser",Optik,In Press(2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700