用户名: 密码: 验证码:
阿尔金山南缘晚古生代花岗岩类与成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石沟铜矿区位于阿尔金与南祁连构造带的交汇部位,晚古生代花岗质岩浆作用强烈,伴有Cu-Au矿及W-Sn矿化。长期以来,研究区内花岗岩类的成因及成矿作用一直未能开展系统深入的研究,导致找矿勘探难以取得突破的进展。本文在国内外花岗岩与成矿作用最新研究成果的基础上,以板块构造理论为学术指导,利用岩石地球化学、同位素地球化学及大地构造学等多学科的综合研究方法,采用现代测试技术为手段,以研究区内花岗岩成岩成矿的动力学过程及模式为研究目标,取得了新的认识和进展。
     1)通过野外地质调查,结合前人的研究成果,认为化石沟矿区应属南祁连构造带西端南缘,紧邻中阿尔金和北阿尔金构造带,其构造-岩浆-成矿作用受到阿尔金构造系统和南祁连构造系统演化过程的共同控制;
     2)在花岗岩矿物学、岩石学研究基础上,通过岩石地球化学重新对区内花岗岩类型进行划分,划分出花岗闪长岩(Ⅰ-型)、石英闪长岩(Ⅰ-型)、英云闪长(斑)岩(Ⅰ-型和S-型)、二长花岗岩(Ⅰ-型和S-型)以及蚀变岩(绢英岩);
     3)首次在研究区内开展高精度的花岗岩锆石LA-ICP-MS U-Pb同位素年代学研究,获得分布在F1断裂带西侧的花岗闪长岩(YQ-57)锆石LA-ICP-MS U-Pb加权平均年龄为368.7±3.5Ma;分布在F1、F3断裂带之间的花岗闪长岩(YQ-1)年龄为261.1±3.8Ma、二长花岗岩(YQ-25)年龄为252.0±2.1Ma、石英闪长岩(YQ-81)年龄为261.8±1.5Ma、英云闪长斑岩(YQ-89)年龄为262.2±1.4Ma,上述年龄均代表岩石结晶的时间。同时指出,在晚古生代研究区发生过两次重要的伸展构造-岩浆事件,分别为369Ma和262-252Ma,为构建区域地质事件提供了重要的年代学依据;
     4)通过花岗岩主量元素、微量元素、稀土元素及Sr-Nd-Hf-O同位素地球化学综合研究表明:(1)晚泥盆世花岗闪长岩(368.7±3.5Ma)为高钾钙碱性系列,低Sr高Y(Yb),明显富集Rb、K、Th、Zr-Hf以及LREE,相对亏损Ba、Nb、Ta、Sr、P、Ti,δEu=0.64-0.89;极高的(87Sr/86Sr)I(0.712261-0.712614)和低的(143Nd/144Nd)I(0.511838-0.511825),负εNd(t)值(-6.74804—-6.98879)和(176Hf/177Hf)I=0.282487,εHf(t)=-2.3339,反映源岩为高度富集的地壳物质,岩浆分异程度较低,源区主要残留相为斜长石+角闪石+辉石;(2)中二叠世花岗闪长岩(261.1±3.8Ma)具富钠贫钾,为钙碱性Ⅰ型花岗闪长岩;具高Sr低Y,富集Rb、Th、U、K、Sr、Zr-Hf及LREE,相对亏损Ba、Nb、Ta、P、Ti,δEu平均为0.83;(87Sr/86Sr)I为0.706963-0.706571,(143Nd/144Nd)I为0.512246-0.512266,εNd(t)=-1.23847和-0.84907, (176Hf/177Hf)I=0.282766,以及高的δ18Ov-SMOW值(12.1-12.5%o),指示为下地壳底侵玄武岩石部分熔融的产物,源区残留矿物有角闪石+石榴子石,具Cu-Au矿的成矿潜力;(3)中二叠世石英闪长岩(261.8±1.5Ma)富Na贫K,拉斑-钙碱性系列,属Ⅰ型花岗岩;高Sr高Y、Yb,富集Ba、Rb、Th、U、K、La、Sr、Ce、Sm、Zr-Hf,相对亏损Nb、Ta、P、Ti,δEu=0.87,说明花岗岩浆源区可能具下地壳性质,残留矿物可能既有斜长石又有石榴子石,不具Cu-Au和W-Sn的成矿潜力;(4)晚二叠世二长花岗岩(252.0±2.1Ma)富Na贫K的钙碱性-高钾钙碱性系列,低Sr高Y,富集Rb、Th、U、K、Zr-Hf和LREE,相对亏损Ba、Nb、Ta、P、Ti,δEu平均为0.62,(87Sr/86Sr) I:0.705968-0.706571,(143Nd/144Nd)I=0.512393-0.512404,εNd(t)=+1.89479和+1.69254。总体特征显示花岗岩源岩为新生地壳,部分熔融深度较浅,源区残留斜长石和角闪石,具有W-Sn成矿潜力;(5)中二叠世英云闪长斑岩(262.2±1.4Ma)属高钾钙碱性系列,A/CNK>1.1(1.11-1.34)和A/CNK<1.1(0.99-1.06),分属S型和Ⅰ型,部分样品(Ga/Al)×104>2.6,为A型;低Sr低Yb,大多与我国喜马拉雅地区的淡色花岗岩类似;富集Rb、Th、U、K、Zr-Hf和LREE,相对亏损Ba、Nb、Ta、Sr、P、Ti,δEu=0.42-0.89;Sr-Nd同位素组成可分为两组地球化学端元:一是略富集的Sr-Nd同位素组成,(87Sr/86Sr)I=0.706211-0.706309,(143Nd/144Nd)I=0.512342-0.512344;二是高度富集的,(87Sr/86Sr)I达到0.729009-0.732882,(143Nd/144Nd)I=0.511861-0.511899,εNd(t)<0(-8.55910和-7.80714),表明源于不均一性的下地壳物质,应为含有斜长石-角闪石-石榴子石-辉石的高压麻粒岩部分熔融形成的,岩浆活动有利于Cu-Au矿成矿作用:
     5)通过对英云闪长斑岩与其蚀变形成的绢英岩地球化学和氧同位素对比研究认为,参与蚀变过程的流体(热液)为英云闪长岩浆晚期的热液,并非有其它的流体(热液)参与:
     6)在晚古生代中-晚期研究区发生两次重要的后造山挤压-伸展转换阶段及相应的花岗岩浆-成矿作用:晚泥盆世(369Ma)形成低Sr高Y型花岗闪长岩(YQ57-YQ63),源区深度较浅(<35Km),成矿潜力弱;中-晚二叠世花岗岩浆作用又可分为两个侵入次:在中二叠世(262Ma)形成了高Sr低Y型花岗闪长岩和低Sr低Y型英云闪长斑岩,源于加厚的下地壳(厚度>45Km)底侵玄武质岩石的部分熔融,两者均具有Cu-Au矿的成矿潜力;晚二叠世由于地壳的持续伸展拉张、减薄,下地壳物质再次在底侵玄武岩浆加热作用下发生部分熔融形成了具有W-Sn成矿潜力的二长花岗岩(252Ma)。并据此建立了研究区花岗岩成岩成矿模式,指出了该区的找矿标志。
Located at the intersection between Altun and Southern Qilian tectonic belts, Huashigou Copper ore region contains late Paleozoic granitic magmatism and the related Cu-Au ore and W-Sn mineralized spots. The origins and mineralization of the granitic rocks in the studied area have not been studied systematically for a long time, so that the great development in ore-prospecting has not been made. Based on advance in the research of granites and mineralization, this paper is in the point of the scientific thoughts of tectonic plate theory, and by use of comprehensively studied methods of petrology, petro-geochenmistry, isotopic geochemistry and tectonics, and by the means of the modern test technology, to research tectono-magma-mineralization and tectonic geodynamic processes of the formation and ore-forming of the granites, and then to establish the granites and their metallogenic model. The creative results on the below:
     1) Based on the survey of field geology, together with the studied results, this paper takes Huashigou ore region to the southern margin of west end of the Southern Qilian tectonic belt, closely adjacent to the mid-Altun and northern Altun tectonic belts. Therefore, the tectono-magma-mineralization in the studied area was strictly controlled by the above two tectonic belts.
     2) Based on the studies of mineralogy and petrology of the granitoids, the granitoids in the studied area are classified by use of petro-chemistry, and they are granodiorite (Ⅰ-type), quartz-diorite (Ⅰ-type), toellite/porphyry (Ⅰ-and S-type), adamellite (Ⅰ-and S-type) and alterated sericite-quartz rock.
     3) The highly precise isotopic chronology of the zircon LA-ICP-MS U-Pb ages of the granites is first studied, and the results show that the weighted average age of granodiorite (sample No:YQ-57) distributing in the west of fault F1 in the region is 368.7±3.5 Ma, and that granodiorite (YQ-1), adamellite (YQ-25), quartz-diorite (YQ-81), toellite/porphyry (YQ-91) between faults Fl and F3, are ages of 261.1±3.8 Ma,252.0±2.1 Ma,261.8±1.5 Ma, and 262.2±1.4 Ma, respectively. Meanwhile, these indicate that two very important extensional tectono-magmatic events took place in Paleozoic period in the studied area, they are also important chronological evidence for building the regional geological framework.
     4) The studied results of major-, trace-, rare-earth-elements and Sr-Nd-Hf-O isotopic geochemistry show:(1) late Devonian granodiorite (368.7±3.5Ma) is high-K calc-alkaline series, has high-Sr and low-Y (Yb) contents, obviously enriched with Rb, K, Th, Zr-Hf and LREE, relatively depleted in Ba, Nb, Ta, Sr, P, Ti, andδEu= 0.64-0.89; greatly high (87Sr/86Sr), (0.712261-0.712614) and low (143Nd/144Nd)I (0.511838-0.511825), (176Hf/177Hf)I= 0.282487, negativeδNd(t) values (-6.748~-6.989) andδHf(t) (-2.334), characteristic of the highly enriched source rocks with residual minerals of plagioclase+ homblende+pyroxene, and lower differentiation of the magma; (2) Mid-Permian granodiorite (261.1±3.8Ma) dues to calc-alkalineⅠ-type granite, has high-Sr and low-Y (Yb) contents, rich in Rb, Th, U, K, Sr, Zr-Hf and LREE, relatively depleted in Ba, Nb, Ta, P, Ti, and averageδEu value equal to 0.83; (87Sr/86Sr) I= 0.706963-0.706571, (143Nd/144Nd)I=0.512246-0.512266,δNd(t)=-1.23847 and -0.84907, (176Hf/177Hf)1=0.282766, and highδ18OV-smow values (12.1-12.5‰), indicating that the rocks originated from the partial melting of the underplating basaltic rocks, and relic minerals of hornblende+garnet, and that have good Cu-Au metallogenic potentiality; (3) Mid-Permian quartz-diorite (261.8±1.5Ma) is low-K to calc-alkalineⅠ-type, rich in Na, Ba, Rb, Th, U, K, La, Sr, Ce, Sm and Zr-Hf, depleted in Nb, Ta, P, Ti, and averageδEu value equal to 0.87, showing the granitic magma originated from lower crust, has no Cu-Au and W-Sn metallogenic potentiality; (4) late Permian adamellite (252.0±2.1Ma) is calc-alkaline to high-K calc-alkaline series with high-Na and-Y and low-K and-Sr, enriched relatively with Rb, Th, U, K, Zr-Hf and LREE, depleted in Ba,Nb,Ta,P and Ti, and averageδEu value equal to 0.62; (87Sr/86Sr)1,= 0.705968-0.706571, (143Nd/144Nd)I=0.512393-0.512404,εNd(t)=+1.89479 and +1.69254, having characteristic of the source rocks of juvenile crust at relatively shallow level with residual minerals of hornblende+plagioclase, and W-Sn metallogenic potentiality; (5) Mid-Permian toellite/porphyry (262.2±1.4Ma) dues to high-K calc-alkaline series, has two groups of A/CNK>1.1 and A/CNK<1.1, is S- and I-types, respectively, some due to A-type with (Ga/Al)×104>2.6; has low-Sr and -Yb, characteristic of the Miocene leucogranites in higher Himalaya; and enriched relatively with Rb, Th, U, K, Zr-Hf and LREE, depleted in Ba、Nb、Ta、Sr、P、Ti, andδJEu=0.42-0.89; Sr-Nd isotopic composition may be divided into two groups:one is slightly enriched Sr-Nd isotopic composition, (87Sr/86Sr)I=0.706211-0.706309, (143Nd/144Nd)I= 0.512342-0.512344, and the other highly enriched, (87Sr/86Sr)I= 0.729009-0.732882, (143Nd/144Nd)I=0.511861-0.511899, andδNd(t)<0(-8.55910 and -7.80714), showing that the rocks originated from the partial melting of high pressure granulite of the heterogeneous lower crust with minerals of plagioclase+hornblende+garnet+pyroxene, having Cu-Au mineralization.
     5) Compared studies of geochemistry andδ18O of gsericite-quartz rock with toellite/porphyry, this paper points out that the fluids in the alteration-were from the hydrothmermal solution of the late toellitic magmas, not from the other fluids.
     6) Two important granitic magmatic events took place in the region responding to post-orogenic compression-extensional transform periods during Paleozoic:the magmatic source of late Devonian granodiorites (YQ-57-YQ-63,369Ma) with low-Sr and high-Y(Yb) contents located at relatively shallow levels (ca.< 35Km) of continental crust, so they have little metallogenic potentiality; mid-late Permian granitic magmatasm may be divided into two epochs of intrusion:the granodiorites with high-Sr and low-Y contents, and toellite/porphyry with low-Sr and-Y (Yb) formed at 262Ma, and resulted from partial melting of the underplating basaltic rocks of thickened lower crust (>45Km), have good Cu-Au metallogenic potentiality; late Permian adamellite (252Ma) with W-Sn metallogenic capacity originated from partial melting of thinned lower crust due to the long extension of the crust during the late Permian. According to the results, the diagenetic and metalogenic models of the granitoids in the region are scientifically established, and the direction of ore-prospecting is also pointed out.
引文
Abbott D H, Isley A E. The intensity, occurrence, and duration of superplume events and eras over geological time. Journal of geodynamics.2002,34:265-307.
    Abbott D.,Spakers D, Herzberg C, Mooney W, Nikishin A and Zhang Y S. Quantifying Precambrian crustal extraction:the root is the answer. Tectonphysics,2000,322:163-190.
    Ajaji T,Weis D,Giret A,Bouabdellah M.1998.Coeval potassic and sodic calc-alkaline series in the post-collisional Hereynian Tanncherfi intrusive complex,northeastern Morocco:geochemical,isotopic and geochronological evidence.Lithos,45:371-393
    Alfredo CJ, James KWL, Bastiaan JH and Jean B.2005. Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids. Nature,435:1191-1196
    Amelin Y, Lee D, Halliday AN, Pidgeon R T. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons.Nature.1999,399:252-255.
    Anderson, T.,2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology 193,59-79
    Armstrong, R L.1981. Comment on " crustal growth and mantle evolution:inferred from models of element transport and Nd and Sr isotopes". Geochimca et Cosmochimca Acta.45:1-251.
    Armstrong, R L. A1968. model for the evolution of strontium and lead isotopes in a dynamic earth. Review of Geophysics.6:175-199.
    Arth,J G.1976a.Behaviour of trace elements during magmatic process——a summary of theoretical model and their applications,J.Res.USGS,4(1):41-47
    Atherton MP, Sanderson LM.1985. The chemical variation and evolution of the superunits of the segmented Coastal Batholith. In:Pitcher WS, Atherton MP,Cobbing EJ and Beckinsale RD (eds): Magmatism at Plate Edge:the peruvian Andes. Glasgon:Blackie Halstead Press,207-228
    Atherton MP, Sanderson LM.1987. The Cordillera Blanca Batholith:a study of granite and the relation of crustal thinning to peraluminosity. Geologische Rundschau,76:213-232
    Atherton, M. P. and Petford, N.,1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature,362:144-146
    Barbarin B.1999.A review of the relationship between granitoid types, their origins and their geodynamic environments.Lithos,46:605-626
    Barth MG, McDonough WF, Rudnick RL.2000.Tracking the budget of Nb and ta in the continental crust. Chem.Geol.,165:197-213
    Becker H, Jochum K P, Carlson R W.2000. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chemical Geology,163:65-99
    Bellon H, Yumul Jr GP.2001.Miocene to Quaternary adakites and related rocks in Western Philippine arc sequences. Earth and Planetary Sciences,333:343-350
    Blichert-Toft J,Albarede F.1997.The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet,Sci.Letters,148:243-258
    Bogaerts M, Scaillet B, Liegeois JP, Auwera JV.2003.Petrology and geochemistry of the Lyngdal granodiorite(Southern Norway)and the role of fractional crystallisation in the genesis of Proterozoic ferro-potassic A-type granites. Precambrian Research,124:149-184
    Bonin B.2007. A-type granites and related rocks. Evolution of a concept, problems and prospects. Lithos, 96:18-31
    Bonin B.1990.From orogenic to anorogenic settings:evolution of granitoid suites after a major ougenesis. Geol J,25:261-270
    Camus F and Dills JH.2001. A special issue devoted to porphyry deposits of northern Chile-Preface. Econ. Geol.,96:233-238
    Castillo PR.2002. The origin of some of the adakite-like and Nb-enriched lavas in southern Philippines. Acta Petrologica Sinica,18:143-151.
    Castro A, Moreno-Ventas I and de la Rosa JD.1991. H-type (hybrid) granitoids:a proposed revision of the granite-type classification and nomenclature. Earth Sci. Rev.31:237-253
    Chappell BW and White AJR,1992. Ⅰ- and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinburgh, Earth Sci.83:1-26
    Chappell BW and White AJR,1974. Two contrasting granite types. Pacific Geol.8:173-174
    Chappell BW, Bryant CJ, Wybom D, White AJR and Williams IS.1998. High- and low-temperature granites. Resource Geol.48:225-236
    Chappell BW, White AJR, Wyborn D.1987. The importance of residual source material(restite) in granite petrogenesis. J. Petrol.28:1111-1138
    Chappell BW.1999. Aluminium saturation in Ⅰ- and S-type granites and the characterization of fractionated haplogranites. Lithos,46:535-551
    Chen JF, Jahn BM.1998.Crustal evolution of Southeastern China:Nd and Sr isotopic evidence. Tectonphusics,284:101-133
    Chung SL, Chu MF, Zhang YQ, Xie YW, Lo GH, Lee CY, Li XH, Zhang Q and Wang YZ.2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci. Rev.,68:173-196
    Cocherie A,Rossi P H,Fouillac A M,Vidal P H.1994.Crust and mantle contributions to granite genesis:an example from the Variscan batholith of Corsica,France,studied by trace element and Nd-Sr-O-isotopic systematics.Chem.Geol.115:173-221
    Coleman DS, Gray W and Glazna AF.2004. Rethinking the emplacement and evolution of the zoned plutons:Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology,32:433-436
    Coleman RG 1989. Continental growth of northwest China. Tectonics,8:621-635
    Collerson,K D and Kamber, B S.1999. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science,283,1519-1522.
    Collins WJ, Beams SD, White AJR, Chappell BW.1982.Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology,80:189-200
    Collins WJ.1996.S- and Ⅰ-type granites of the eastern Lachlan fold belt:products of three-component mixing. Transaction of the Royal Society of Edinburgh Earth Sciences,88:171-179
    Condie K C.1999. Mafic crustal xenoliths and the origin of the lower continental crust. Lithos.46: 95-101.
    Condie KC, Beyer E, Belousva E., et al.2005. U-Pb isotopic ages and Hf isotopic composition of single zircon:the search for juvenile Precambrian continental crust. Precambr. Res.,139:42-100
    Davies GR and Macdonald R.1987. Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex:Combined trace element and Sr-Nd-Pb isotope constraints. J Petrol, 28(6):1009-1031
    Defant M J.2002. Reply for comment by R. Conner on the "Evidence suggests slab melting in arc magmas" by M. Defant and P. Kepezhinskas (EOS,2001,82:65,68-69). EOS,66:256-257.
    Defant MJ, Jackson TE, Drummond MS et al.1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica:An overview. J Geol Soc (London),149:569-579
    Defant MJ, Drummond MS.1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,347:662-665
    Defant MJ, Maury RC, Ripley EM, Feigenson MD, Jacques D.1991. An example of island-arc petrogenesis:geochemistry and petrology of the southern Luzon arc, Philippines. Journal of Petrology, 32:455-500
    Deines P.1989. Stable isotope variations in carbonatites. In Carbonatites:genesiss and evolution, Bell K.(ed), London:Unwin Hyman,301-359
    Drummond MS, Defant MJ.1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting:Archean to modern comparisons. J. Geophys. Res.,95 (B13):21503-21521
    Eby G N.1990.The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J].Lithos,26(1/2):115-134
    Eiler JM.2007. On the origins of granites. Science,315:951-952
    Faure G. Principles of isotope geology. Second edition. New York:Wiley and Sons,1986.1-589
    Fitton J G. 1997. Earth Planet. Sci. Lett,153:197-208.
    Furman T, Frey FA and Meyer PS.1992. Petrogenesis of evolved basalts and rhyolites at Austurhorn, Southeastern Iceland:The role of fractional crystallization.J.Petrol,33:1405-1445
    Ge Xiaohong, Ye Huiwen, Liu Yongjiang, et al.2000. Researth progress of Altyn fault in western China, Earth Science Frontiers,7(Suppl.):243-244
    Gormet L P,Silver L T.1983.Rare earth element distribution among minerals in a granodiorite and their petrogenetic implications.Geochim Cosmochim Acta,47:925-939
    Green TH, Pearson NJ. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure ad temperature [J]. Geochim Cosmocim Acta,1987,51(1):55-62
    Green TH. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system [J]. Chem Geol,1995,120(3/4):347-359
    Griffiths JR, Godwin CL.1983. Metallogeny and tectonics of porphyry copper-molybdenum deposits in British Columbia. Canada Jour. Earth Sci.,20:1000-1018
    Han BF, Guo ZJ, Zhang L, Chen JF, Song B.2010. Age, geochemistry, and tectonic implications of a late Paleozoic stitching plutton in the North Tian Shan suture zone, western China. Geological society of America Bulletin Bulletin 122,627-640
    Harrison TM, M Grove, OM Lovera, et al.1998. A model for the origin of Himalayan anatexis and inverted metamorphism. J. Geophys. Res.,103(270):17-32
    Hawkesworth CJ and Kemp AIS.2006. The differentiation and rates of generation of the continental crust. Chem. Geol.226:134-143
    Hawkesworth CJ and Kemp AIS.2006b. Using Hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol.226:144-162
    Heurley, RM and Rand, JR. Pre-drift continental nuclei. Science,1968,164:1229-1242.
    Hofmann AW.1997. Mantle geochemistry:the message from oceanic volcanism. Nature,385:219-229.
    Hofmann AW, et al.,1986. Nd-Pb in oceanic basalts:new constrains on mantle evolution. Earth Planet Sci. Lett.79:33-45.
    Hofmann AW. Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust [J]. Earth Planet Sci Lett,1988,90(3):297-314
    Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo MM.2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet. Sci Lett.,220:139-155
    Hou ZQ, Ma HW, Khin Z, Zhang YQ, Wang Z, Pan GT, Tang RL.2003. The Himalayan Yulong porphyry copper belt:product of large-scale strike-slip faulting in eastern Tibet. Economic Geology,98: 125-145
    Kay RW, Kay SM.1993. Delamination and delamination magmatism. Tectonophysics,219:177-189.
    Kemp AIS, Hawkesworth CJ and Foster GL, et al.2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotope in zircon. Science,315:980-983.
    Kemp AIS, Hawkesworth CJ and Peterson BA et al.,2006. Episodic growth of the Gondawana supercontinent from hafnium and oxygen isotope ratios. Nature,439:580-583
    Kepezhinkas PK, Defant M S.1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Gosmochim Acta,60:1217-1229
    Kepezhinkas PK, Defant MJ, Drummond MS.1995. Na metasomatism in the island-arc mantle by slab melt-peridotite interaction:evidence from mantle xenoliths in the North Kamchatkan Arc. Journal of Petrology,36:1505-1527
    King PL, Chappell BW, Allen CM and White AJR.2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian J. Earth Sci.48: 501-514
    King PL, White AJR, Chapell BW and Allen CM.1997. Characterization and origin of aluminous A-type granites from Lachlan Fold Belt, Southeastern Australia. J. Petrol.38:371-391
    Le Fort P.1996. Evolution of the Himalaya. In:Yin A and Harrison TM (des.). The tectonic evolution of Asia. Cambridge University Press,95-109
    Li XH, Li ZX, Ge WC, Zhou HW, Li WX, Liu Y and Wingate MTD.2003. Neoproterozoic granitoids in south China:crust melting above a mantle plume at ca.825 Ma? Precambrian Res.,122:45-83
    Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS.2007. U-Pb zircon, geochenmical and Sr Nd Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China:A major igneous event in response to foundering of a sunbducted flat-slab? Lithos,96:186-204
    Maniar PD, Piccoli PM.1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin,101:635-643
    Mao JW, Zhang ZH, Yu JJ, et al.2003. Geodynamic setting of Mesozoic large scale mineralization in North China and vicinity:revealed from the accurate age determination of ore deposits [J].Sci. in China (Series D),33(4):289-299(in Chinese)
    Martin H.1999. Adakitic magmas:modern analogues of Archean granitoids. Lithos.,46:411-429
    Matte Ph,Tapponnier P,Arnaud N,et al.Tectonics of Western Tibet between the Tarim and Indus[J].Earth and Planet.Sci.Lett.1996,142:311-330.
    Mattey D, Lowry D, Macpherson C.1994. Oxygen isotope composition of mantle peridotite. Eart Planet. Sci. Lett.,128:231-241
    Maury RC, Fefant MJ, Joron J-L.1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature,260:661-663
    McCulloch, M T and Bennett, V C.1994. Progressive growth of the Earth's continental crust and depleted mantle:geochemical constraints. Geochimca et Cosmochimca Acta.58:197-214.
    Miller CF, Mittlefehldt DW.1982. Depletion of light rare-earth elements in felsic magmas. Geology, 10:129-133
    Morris J D and Hart S R.1983. Isotopic and incompatible trace element conrtraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochim. Cosmochim. Acta 47,2015-2030.
    Morris J D, Leeman W P, Tera F.1990. The subducted component in island arc lavas:constraints from Be isotopes and B-Be systematics. Nature,344,31-36.
    Morris PA.1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology,23:395-398
    Murphy MA and TM Harrison.1999. The relationship between leucogranites and the South Tibetan detachment system, Rongbuk Valley. Southern Tibet. Geology.27(8)31-34
    Niu YL.2005.Generation and evolution of basaltic magmas:Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China高校地质学报,11:9-46
    Oyarzun R, Marquez A, Lillo J, Lopez I, Sergio R.2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:adakitic versus normal calc-alkaline magmatism. Mineralium Deposita,36:794-798
    Pal N,Pal D C,Mishral B and Meyer F M.2001.The evolution of the Palim granite in the Bastar tin province,Central India.Mineralogy and Petrology,72:281-304
    Paterson B A,Stephens W E,Rogers G,etal.1992.The nature of zircon inheritance in two granite plutons.Earth Science,83:459-471
    Peacock SM, Rushmer T, Thompson AB.1994. Partial melting of subducting oceanic crust. Earth Plant. Sci. Lett.,121:227-144
    Pearce JA, Harris Nigel BW and Tindle AG. 1984. Trace element discrimination diagram for the tectonic interpretation of granitic rocks. Journal of Petrology,25(4):956-983
    Pitcher W S.1979.The nature,ascent and emplacement of grantic magmas.Journal of the Geological Society,London,136:627-662
    Pitcher WS.1983. Granite type and tectonic environment[A]. HSU K. Mountain Building Processes[C]. London:Academic Press,19-40
    Pitcher WS.1997. The nature and origin of granite (2nd edition). Chapman and Hall, Landon,386
    Poli G and Tommasini S.1999. Geochemical modeling of acid-basic magma interaction in the Sardinia-Corsica Batholith:the case study of Sarrabus, southeastern Sardinia, Italy. Lithos,46:553-571
    Raymer, A and Schubert, G. 1984. Phamerozoic addition reates to the continental crust and crust growth. Tectonics,3,63-77.
    Roowley DB.1996. Age of initiation of collision between India and Asia:A review of stratigraphic data. Earth Planet. Sci. Lett.,145:1-13
    Rudnick RL, Barth M, Horn I, McDonough WF. Rutile-bearing refractory eclogites:missing lind between continents and depleted mantle [J]. Science,2000,287(5451):278-281
    Rudnick RL, Fountain DM.1995. Nature and composition of the continental crust:a lower crustal perspective. Review in Geophysics 33:267-309
    Sajona FG, Maury RC.1998.Association of adakites with gold and copper mineralization in the Philippines. CR ACAD SCI Ⅱ A,326(1):27-34
    Sillitoe BH and Camus F.1991. A special issue to devote to gold deposits in the Chilean Andes. Econ. Geol. 86:1153-1345
    Sun S S and Mcdonough W F.1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders A D and Norry M J (des.). Magmatism of the ocean basins. Geol. Soc. London Spec. Publ.,42:325-345.
    Sylvester P J, Campbell I H and Bowyer D A.1997. Niobium/Uranium evidence for early formation of the continental crust. Science,275,521-523
    Taylor S R. Growth of planetary crust. Tectonophysics,1989,161:147-156.
    Taylor SR, McLennan SM. The Continental Crust:Its Composition and Evolution [M]. Oxford:Blackwell, 1985:57-114
    Thieblemont D, Stein G, Lescuyer JL.1997. Epithermal and porphyry deposits:the adakite connection. Earth Planet. Sci.,325:103-109
    Thompson AB.1999. Some time-space relationships for crustal melting and granitic intrusion at varies depth. In Castro A, Fernandez C and Vigeneresse JL (eds). understanding granites:intergrating new and classical techniques. Geol. Soc. Landon. Spec. Publ.,168:7-25
    Vavra G.1990.On the kinematics of zircon growth and its petrogenetic significance:A cathodoluminescence study.Contribution to Mineralogy and Petrology,106:90-99
    Verplanck PL,Farmer GL,McCurry M,Mertzman SA.1999.The chemical and isotopic differentiation of an epizonal magma body:Organ Needle pluton,New Mexico.Journal of Petrology,40:633-678
    Wang Jinrong et al.2007.Early Paleozoic adakitic rocks in Heishishan, Gansu and their significance for tectonodynamics.The Proceedings of the China Association for Science and Technology, Beijing: Science Press,USA Inc. Science Press,3(1):702-710
    Wang XL, Zhou JC, Qiu JS, Zhang WL, Liu XM and Zhang GL.2006. La-ICP-Ms U-Pb zircon geochronology of the Neoproterozoic igneous rocks from northern Guangxi, South China: Implications for tectonic evolution. Precambrian Res.,145:111-130
    Watson EB, Harrison TM.1983. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett,64:295-304
    Watson EB, Harrison TM.2005.Zircon thermometer reveals minimum melting conditions on earliest Earth: Science.v.308:841-844
    Whalen JB, Currie KL and Chappell BW.1987. A-type granite:geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol.,95:407-419
    White WM, Tapia MDM, Schilling J-G 1979. The petrology and geochemistry of the Azores islands. Contrib. Mineral. Petrol.,69:201-213
    Wilson M. Igneous petrogenesis. London:Unwin Hyman,1989,1-466
    Windley BF.1995.The evolving continents. New York:John Wiley,1-526
    Woodcock N H.1986. The role of strike-slip fault system at plate boundaries. Phil. Trans. R. Soc. Landon, A317:13-29.
    Wu FY, Lin JQ, Wilds SA, Sun DY and Yang JH.2005a. Nature and significance of the early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett.233:103-119
    Wu FY, Yang JH, Wilde SA and Zhang XQ.2005b. Geochronology, petrogenesis and tectonic implications of the Jurrassic granites in Liaodong Peninsula, NE China. Chem. Geol.221:127-156
    Xie Z, Zheng YF, Zhao ZF, Wu YB, Wang ZR, Chen JF, Liu XM and Wu FY. 2006. Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chem. Geol.,231:214-235
    Xiong XL 2006. Trace element for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology,34:945-948
    Xu F, Rowley DB, Tucker RD and Peng ZX.1997. U-Pb zircon ages of granitoids rocks in the north Dabie complex, eastern Dabie Shan, China. J. Geol.105:744-753
    Xu HJ, Ma CQ and Ye K.2007. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China:SHRIMP zircon U-Pb dating and geochemistry. Chem. Geol. 240:238-259
    Xu JF, Shinjo R., Defant M. J., Wang Q., Rapp R. P.,2002, Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust? Geology,30: 1111-1114
    Xu Wenliang, Wang Qinghai, Wang Dongyan, et al.,2006. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China:Evidence for partial melting of delaminated lower continental crust. Journal of Asian Earth Sciences,27:454-464
    Xu ZQ, Zhang JX, Li HB.Architecture and orogeny of the Northern Qilian Orogenic Belt,Notrhwestern China[J.Journal of the Geological Society of China,2000,43:125-141.
    Yang JH, Wu FY, Wilde SA, Xie LW Yang YH and Liu XM.2007. Tracing magma mixing in granite genesis:in situ U-Pb dating and Hf-isotope analysis of zircons. Contrib. Mineral. Petrol.,153:177-190
    Yang Jingsui, Xu Z Q, Zhang J X,et al.,2002. Early Paleozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan plateau and a paired subduction model. Terra Nova.14:397-404
    Yin A, Kapp PA, Murphy MA, Harrison TM, Grove M, Ding L, Deng X, Wu C.1999. Significant late Neogene east-west extension in northern Tibet. Geology 27:787-790
    Zhai MG, Zhao GC, Zhang Q.2002. Is the Dongwanzi complex an Archean ophiolite? Science,295:923a
    Zhang HF, Sun M, Lu FX, Zhou XH, Zhou MF, Liu YS, Zhang GH.2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochemical Journal,35:315-331
    Zhang J X, Yang J S, Xu Z Q, Zhang Z M, Li H B, Chen W.2000.U-Pb and Ar-Ar ages of ecologites from the northern margin of the Qaldam basin, northwestern China.Journal of "the Geological Society of China" (Taipei),43(1):161-169.
    Zhao Zf, Zheng YF, Wei CS and Wu YB.2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93:248-272
    Zhao ZF, Zheng YF, Wei CS, Wu YB, Chen FK and Jahn BM.2005. Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos,83:1-28
    Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li XH, Li Zx and Wu FY.2007. Contrasting zircon Hf anf O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust. Lithos,96:127-150
    Zhong H, Zhu WG, Chu Zy, He DF and SONG XY.2006. Shrimp U-Pb zircon geochronology, geochemistry, and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chem. Geol.236:112-133
    Zhou XM, and Li WX.2000. Origin of Late Mesozoic igneous rocks in southeastern China:implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics,326:269-287
    Zhou XM, Li WX and Xu XS.2002. Late Mesozoic calc-alkaline magmatism in coast area of Zhejiang and Fujian Province[A]. In:Wang DZ and Zhou XM, ed. Origin of Late Mesozoic granitic volcanic-intrusive complex and crust evolution in Southeastern China[C]. Beijing:Sci. Press.74-92(in Chinese)
    常承法,R. M. Shackleton, J. F. Dewey,孙亦因.1990.青藏高原的构造演化.中英青藏高原科学考察队,青藏高原地质演化,第384-415页,科学出版社
    车自成,刘良,刘洪福,罗金海.1996.论伊犁裂谷.岩石学报,12(3):478-490
    车自成,刘良,罗金海.2002.中国及其邻区区域大地构造学.北京:科学出版社
    车自成.刘良.孙勇.1995.阿尔金铅、钕、锶、氩、氧同位素研究及其早期演化.地球学报,3:597-605
    陈富文,付建明.2005.南岭地区中生代主要成锡花岗岩地质地球化学特征与锡矿成矿规律.华南地质与矿产,(2):12-21
    陈培荣,华仁民,章邦桐,陆建军,范春方.2002.南岭燕山早期后造山花岗岩类:岩石学制约和地球化学背景.中国科学(D),32:279-289
    陈培荣,周新民,张文兰,李惠民,范春方,孙涛,陈卫锋,张敏.2004.南岭东段燕山早期正长岩-花岗岩杂岩的成因和意义.中国科学(D),34:493-503
    陈宣华,G.Gehrels,王小凤,扬风,陈正乐.2003.阿尔金山北缘花岗岩的形成时代及其构造环境探讨.矿物岩石地球化学通报.22(4):294-298
    陈衍景,肖文交,张进江.2008.成矿系统:地球动力学的有效探针.中国地质,6(6):1059-1073
    陈衍景,Franco PIRAJNO,赖勇,李超.2004.胶东矿集区大规模成矿时间和构造环境.岩石学报,20(4):907-922
    陈衍景,陈华勇,K. ZAW, F. PIRAJNO,张增杰.2004.中国陆区大规模成矿的地球动力学:以夕卡岩型金矿为例.地质前缘(中国地质大学.北京),11(1):57-83
    陈衍景,倪培,范洪瑞,F Pirajno,赖勇,苏文超,张辉.2007.不同类型热液金矿系统的流体包裹体特征.岩石学报,23(9):2085-2108
    陈衍景,欧阳自远,杨秋剑,邓健.1994.关于太古宙——元古宙界线的新认识.地质论评,6:483-488
    陈衍景.1992.火山岩建造的性质与构造环境之关系的重新认识—DI频率分布图的启示. 地质地球化学,2(2):21-25
    陈衍景.2000.中国西北地区中亚型造山——成矿作用的研究意义和进展.高校地质学报,6(1):17-22
    陈衍景.2006.造山型矿床、成矿模式及找矿潜力.中国地质.33(6):1181-1195
    陈雨,周德进,王二七,等.1995.北祁连肃南县大岔大坂蛇绿岩中的玻安岩的发现及其地球化学特征.岩石学报,11(增刊):147-153.
    程建萍,凌文黎.Lu-Hf同位素体系对若干基础地质问题的新制约(之二)-大洋地幔端元.地质科技情报,1999,18(2):80-84
    崔军文,1987,藏南超基性岩的塑性流变.中国地质科学院院报,17:89-101
    崔军文,唐哲民,邓晋福,等.1999.阿尔金断裂系.北京:地质出版社。39-49
    崔军文.1992.青藏高原的伸展构造及对建立陆内碰撞模式的意义.中国地质学会主编,“七五”地质科技重要成果学术交流会议论文选集,第152-155页,北京科学技术出版社.
    范春方,陈培荣.2000.赣南陂头A型花岗岩的地质地球化学特征及其形成的构造环境.地球化学,29:358-366
    高剑峰,凌洪飞,沈渭洲,陆建军,张敏,黄国龙,谭正中.2005.粤西连阳复式岩体的地球化学特征及其成因研究.岩石学报,21(6):1645-1656
    葛良胜,邹依林,李振华,张学军,黄辉,李兴谋,马建文.2003.西藏崩纳藏布和甲岗雪山地区花岗岩的地球化学特征及成因初探.矿物岩石,23:55-61
    葛文春,林强,方占仁.1991.宽甸环斑花岗岩的同化混染成因.长春地质学院学报,21(2):135-141
    葛文春,吴福元,周长勇,张吉衡.2007. 兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其动力学意义.科学通报.52:2407-2417
    葛小月,李献华,陈志刚等,2002.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报,47:474—484
    葛肖虹,刘永江,任收麦,叶慧文,刘俊来,潘宏勋.2001.对阿尔金断裂科学问题的再认识.地质科学,36(3):319-325
    葛肖虹、张梅生、刘永江、叶慧文、石采东,阿尔金断裂研究的科学问题与研究思路,现代地质,1998,12(3):295-301
    顾连兴,张遵忠,吴昌志,王银喜,唐俊华,等.2006.关于东天山花岗岩与陆壳垂向增生的若干认识.岩石学报,22:1103—1120
    郭召杰,张志诚,王建君.1998.阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义.科学通报,43(18):1981-1984
    韩宝福,郭召杰,何国琦.2010.“钉合岩体”与新疆北部主要缝合带的形成时限.岩石学报,26(8):1-14
    韩宝福,何国琦,王式洗.1999a.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质.中国科学,D辑,29:17—21
    韩宝福,王式洗,孙元林,洪大卫.1999b.正εNd(T)值的准铝—过铝花岗岩:新疆也布山岩体.科学通报,43:1323—1328
    洪大卫,王涛,童英.2007.中国花岗岩概述.地质论评,s1(4):9-16
    洪大卫,王式洗,韩宝福,靳满元.1995.碱性花岗岩的构造环境分类及其鉴别标志.中国科学(B辑),25(4):418-426
    洪大卫,王式洗,谢锡林,张季生,等.2003.从中亚正εNd值看超大陆演化和大陆地壳生长的关系.地质学报,77-203—209
    洪大卫,谢锡林,张季生.1999.从花岗岩的Sm-Nd同位素探讨华南中下地壳的组成、性质和演化.高校地质学报.5(4):361-371
    侯增谦,高永丰,曲晓明,孟祥金.2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,20:239-248
    侯增谦,吕庆田,王安建, 李晓波,王宗起, 王二七.2003b.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质,4:319-333
    侯增谦,莫宣学,高永丰,曲晓明,孟祥金.2003a.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质,1:1-12
    胡建,邱检生,王德滋,王汝成,张晓琳.2005.中国东南沿海与南岭内陆A型花岗岩的对比及其构造意义.高校地质学报,11:404-414
    胡受奚,叶瑛.1997.苏-鲁超高压变质岩带从上地幔返回地表的证据.地质学报,71(3):245-253
    黄美化,巫建华,管太阳.2006.赣南余田群双峰式火山岩地球化学特征及构造环境.桂林工学院学报,26:320-327
    姜耀辉,郭坤一,贺菊瑞,芮行健,杨万志.1999.青藏高原大同西侧石英二长岩体地球化学及岩石系列.地球化学.28:542-550
    李昌年.1992.构造岩浆判别的地球化学方法及其讨论.地质科技情报,3(17)
    李承东,张旗,苗来成,孟宪锋.2004.冀北中生代高Sr低Y和低Sr低Y型花岗岩:地球化学、成因及其与成矿作用的关系.岩石学报,20:269-284
    凌文黎,程建萍.1999.Lu-Hf同位素体系对若干基础地质问题的新制约(之一)——早期地球演化.地质科技情报.8(1):79-84
    刘昌实,陈小明,陈培荣,王汝成,胡欢.2003.A型岩套的分类、判别标志和成因.高校地质学报,9(4):573-591
    刘昌实,陈小明,王汝成,张爱铖,胡欢.2005.下地壳部分熔融的产物:燕山早期广东腊圃花岗岩成因.高校地质学报,11:343-357
    刘红涛,张旗,刘建明,叶杰,曾庆栋,于昌明.2004.埃达克岩与Cu-Au成矿作用:有待深入研究的岩浆成矿关系.岩石学报,20:205-218
    刘良,车自成,王焰,罗金海,陈丹玲.1999.阿尔金高压变质岩带的特征及其构造意义.岩石学报,15(1):57-64
    刘良,车自成,王焰,罗金海,王建其,高章鉴.1998.阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据.科学通报,43(8):880-883
    刘良,孙勇,肖培喜,车自成,罗金海,陈丹玲,王焰,张安达,陈亮,王永合.2002.阿尔金发现超高压(>3.8GPa)石榴二辉橄榄岩.科学通报,47(9):657-662
    刘晔,柳小明,胡兆初,第五春荣,袁洪林,高山.2007.ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析.岩石学报,23(5):1203-1207
    卢欣祥,董有,常秋岭,肖庆辉,李晓波,王晓霞.1996.秦岭印支期沙河湾奥长环斑花岗岩及其动力学意义.中国科学(D辑:地球科学).3(7)
    卢欣祥,尉向东,肖庆辉,李荣社,杨永成.1998.西秦岭发现奥长环斑花岗岩带. 地质论评,5(13):535-540
    陆松年,袁桂邦.2003.阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据.地质学报,77(1):61-68
    马昌前,杨坤光,明厚利.2003.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学,13:818-827
    马昌前.2003.造山岩套中镁铁质和长英质岩浆的相互作用岩浆进展.地质科技情报,22:1-8
    马铁球,邝军,柏道远,王先辉.2006.南岭中段诸广山南体燕山早期花岗岩地球化学特征及其形成的构造环境分析.中国地质,33:119-131
    莫宣学,赵志丹,Don J DEPAOLO,周肃,董国臣.2006.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报,22(4):795-803
    戚学祥,李海兵,吴才来,杨经绥,张建新,孟繁聪,史仁灯,陈松永.2005.北阿尔金恰什坎萨依花岗闪长岩的锆石SHRIMP U-Pb定年及其地质意义.科学通报,50(6):571-576
    戚学祥,吴才来,李海兵.2005.北阿尔金喀孜萨依花岗岩锆石SHRIMP U-Pb定年及其构造意义.岩石学报.21(3):859-866
    芮宗瑶,王福同,李恒海,董连慧,王磊,姜立丰,刘玉琳,王龙生,陈伟.2001.新疆东天山斑岩铜矿带的新进展.中国地质,10:11-16
    芮宗瑶,张立生,陈振宇,王龙生,刘玉琳,王义天.2004.斑岩铜矿的源区或源区探讨.岩石学报,20:229-238
    森格.1992.板块构造学与造山运动.上海:复旦大学出版社
    史仁灯,杨经绥,吴才来,Tsuyoshi IIZUKA, Takafumi HIRATA.2004.柴达木北缘超高压变质带中的岛弧火山岩.地质学报,78(1):52-64
    孙涛,周新民,陈培荣,等.2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学D辑,33:1209-1218
    孙勇,刘池阳,车自成.1997.阿尔金山拉配泉地区元古宙裂谷火山岩系及其构造意义.地质论评,43 (1):17-24
    索书田,钟增球,周汉文,游振东.2004.中国中央造山带内两个超高压变质带关系.地质学报,78(2):156-165
    汤中立,等.2002.华北古陆西南缘(龙首山—祁连山)成矿系统及成矿构造动力学.北京:地质出版社.
    童劲松,钟华明,夏军,鲁如魁,杨世学.2003.藏南洛扎地区过铝质花岗岩的地球化学特征及构造背景.地质通报,22:308-318
    王德滋,舒良树.2007.花岗岩构造岩浆组合.高校地质学报,13(3):362-370
    王海坡,张永正,张炯飞,邵军.2007.与埃达克岩有关的白音宝力道金矿床.地质与资源,16:34-37
    王鸿祯,刘本培,李思田.1990.中国及临区大地构造划分和构造发育阶段.王鸿祯,杨森南,刘本培主编,中国及临区构造古地理和生物古地理,第3-34页,地质出版社.
    王金荣,等.2007.北祁连造山带东段早古生代构造岩浆作用与成矿的研究.矿物岩石地球化学通报,26(增刊):31-32
    王金荣,郭原生,付善明等.2005a.甘肃黑石山早古生代埃达克质岩的发现及其构造动力学意义.岩石学报,21(3):977-985
    王金荣,郭原生,翟新伟,等.2003.白银矿田早中寒武世火山岩形成的构造环境.高校地质学报,9(1):89-98
    王金荣,王廷印等,甘肃金塔南山斜长角闪岩的地球化学特征及其构造意义.岩石学报,2002,18(2):231-237
    王金荣,吴春俊,蔡郑红,等.2006.北祁连山东段银洞粱早古生代高镁埃达克岩:大陆动力学及成矿意义.岩石学报,22:2655-2664
    王金荣等,2008.北祁连山东段苏家山高Mg埃达克岩:地球动力学意义.兰州大学学报,44(3):16-23
    王乃文.1984.青藏印度古陆及其与华夏古陆的拼合.中法喜马拉雅考察结果,第39-62页,地质出版社.
    王强,赵振华,熊小林,等.2001.底侵玄武质下地壳的熔融:来自沙溪埃达克质富钠石英闪长玢岩的证据.地球化学,30:353-362
    王强,赵振华,许继峰,白正华,王建新,刘成新.2004.鄂东南铜山口、殷祖埃达克质岩(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因.岩石学报,20:351-360
    王强,赵振华,许继峰,白正华,王建新,刘成新.2004.鄂东南铜山口、殷祖埃达克质岩(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因.岩石学报,20:351-360
    王强,赵振华,许继峰等.2002,扬子地块东部埃达克质与成矿.中国科学(D辑),32(增刊):127-136
    王强,许继峰,赵振华,熊小林,包志伟.2003a.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约.中国科学(D),33:323-334
    王强,赵振华,简平,熊小林,包志伟,等.2005.华南腹地白垩纪A型花岗岩或碱性侵入岩年代学及对华南晚中生代构造演化的制约.岩石学报,21:795-808
    王强,赵振华,许继峰,Wyman DA,熊小林,资峰,白正华.2006.天山北部石炭纪埃达克岩—高镁安山岩—富铌岛弧玄武岩:对中亚造山带显生宙地壳增生与铜金成矿的意义.岩石学报,22:11—30
    王强,赵振华,许继峰,等.2002.扬子地块东部燕山期埃达克质(adakite-like)岩与成矿.中国科学D辑(增刊),32:128-136
    王荃,刘雪亚等.1976.我国西部祁连山区的古海洋地壳及其大地构造意义.地质科学,(1):42-55
    王式洗,韩宝福,洪大卫,等.1994.新疆乌伦古碱性花岗岩的地球化学及其构造意义.地质科学,29:373-383
    王焰,刘良,车自成,等.1999.阿尔金茫崖地区早古生代蛇绿岩的地球化学特征.地质论评,45(增刊):1010-1014
    吴才来,杨经绥,J. Wooden, J. G. Liou,李海兵,孟繁聪,H.Persing, A. Meibom.2001.柴达木山花岗岩锆石SHRIMP定年.科学通报,46(20):1743-1747
    吴才来,杨经绥,王志红,乔德武,李海兵,史仁灯.2001.柴达木盆地北缘西端冷湖花岗岩.中国区域地质,20(1):73-81
    吴才来,杨经绥,杨宏仪,等.2004.北祁连东部两类Ⅰ型花岗岩定年及其地质意义.岩石学报,20:425-432
    吴才来,杨经绥,姚尚志,等.2005.北阿尔山巴什考供盆地南缘花岗杂岩体特征及锆石SHRIMP定年.岩石学报.21(3):846-858
    吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若干问题.岩石学报,23:1217—1238
    吴俊,兰朝利,李继亮,俞良军.2002.阿尔金红柳沟蛇绿混杂岩中MORB与OIB组合的地球化学证据.岩石矿物学杂志,21(1):24-30
    吴俊,李继亮,兰朝利,俞良军.2001.阿尔金红柳沟蛇绿岩研究进展.地质科学.36(3):342-349
    肖庆辉,卢欣祥,王菲,孙延贵,尉向东,邢作云.2003.柴达木北缘鹰峰环斑花岗岩的时代及地质意义.中国科学(D辑),33(12):1193—1200
    肖序常,陈国铭,朱志直.1974.关于北祁连古板块构造的几点认识.地质科技。(3):73-78.
    肖序常,陈国铭,朱志直.1978.祁连山古蛇绿岩带的地质构造意义.地质学报,52:281-295.
    许志琴,李海兵,陈文,吴才来,杨经绥,金小赤,陈方远.2002.中国西部祁连山南缘大型韧性左行走滑剪切带及其活动时限.地质学报(英文版),76(2):288
    许志琴,许慧芬,张建新,等.1994.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报,68(1):1-15
    杨经绥,宋述光,许志琴,等。2001.柴北缘早古生代高压—超高压变质带中发现典型的超高压矿物—柯石英.地质学报,75(2):175—179
    杨经绥,吴才来,史仁灯.2002.阿尔金山米兰红柳沟的席状岩墙群:海底扩张的重要证据.地质通报,21(2):69-74
    杨经绥,许志琴,裴先治,等.2002a;秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别.地质学报,76(2):484—495
    杨经绥,许志琴,宋述光,等.2000a,青海都兰榴辉岩的发现及对中国中央造山带内高压—超高压变质带研究的意义.地质学报,74(2):175—179
    杨经绥,许志琴,李海兵,吴才来,崔军文,张建新,陈文.1998.我国西部柴北缘地区发现榴辉岩.科学通报,43:1544—1548
    姚红,赵华,薜红梅.2007.新疆青河县喀腊萨伊斑岩铜矿含矿岩体的地球化学特征.新疆有色金属,(3):7-10
    郁建华,傅会芹,张凤兰,等.1996.华北地台北部非造山带环斑花岗岩及有关岩石.北京:中国科学技术出版社,44-61
    翟明国,樊祺诚,张宏福,隋建立.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用.岩石学报,6:1509-1526
    翟明国.2004.埃达克岩和大陆下地壳重熔的花岗岩类.岩石学报,20:193-194
    张宏飞,靳兰兰,张利,Harris N,周炼,胡圣虹,张本仁.2005b.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制.中国科学(D),35:914-926
    张建新,许志琴,徐惠芬,李海兵.1998.北祁连加里东期俯冲—增生楔结构及动力学.地质科学,3:290-299
    张建新,杨经绥,许志琴,张泽明,陈文,李海兵.2000.柴北缘榴辉岩的峰期和退变质年龄:来自U-Pb及Ar-Ar同位素测定的证据.地球化学,3(1):217-222
    张建新,张泽明,许志琴,杨经绥,崔军文.1999.阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄——阿尔金构造带中加里东期山根存在的证据.科学通报,10(20):
    张金阳,廖群安,李德威.2003.西藏定结地区高喜马拉雅淡色花岗岩的地球化学特征与岩浆源区研究.地质科技情报,22:9-14
    张连昌,陈志广,周新华,英基丰,王非,张玉涛.2007.大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约.岩石学报,23:2823-2835
    张敏,陈培荣,黄国龙,凌洪飞.2006.南岭龙源坝复式岩体岩体的地球化学特征研究.铀矿地质,22:336-344
    张敏,陈培荣,张文兰,陈卫锋,李惠民,张孟群.2003.南岭中段大东山花岗岩体的地球化学特征和成因.地球化学,32:529-539
    张旗,潘国强,李承东,金帷俊,贾秀琴.2007.花岗岩结晶分离作用问题—关于花岗岩研究的思考之二.岩石学报,23:1239-1251
    张旗,钱青,王二七等.2001.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学,36(2):248-255
    张旗,郭原生,王岳明,等.1997c.祁连山地区镁铁—超镁铁岩的多样性.地球科学进展,12:324-330.
    张旗,孙晓猛,周德进等.1997a.北祁连蛇绿岩特征、形成环境及其构造意义.地球科学进展,12(4):366-393.
    张旗,王焰,熊小林,李承东.2008.埃达克岩和花岗岩:挑战与机遇.北京:中国大地出版社,179-256
    张旗,王岳明,钱青等.1997b.甘肃景泰县老虎山地区蛇绿岩及其上覆岩系中枕状熔岩的地球化学特征.岩石学报,13(1):92-99.
    张旗.1995.蛇绿岩研究中的几个问题.岩石学报,11(增刊):228-240
    张宗清,张国伟,唐索寒,等.1999.秦岭沙河湾奥长环斑花岗岩的年龄及其对秦岭造山带主造山期时间的限制.科学通报,44(9):981-983
    赵振华,熊小林,王强,白正华,梅厚均.2004.新疆西天山莫斯早特石英钠长斑岩铜矿床—一个与埃达克质岩石有关的铜矿实例.岩石学报,20:249-258
    周新民,姚玉鹏,徐夕生.1992.浙江大巨山花岗岩中淬冷包体及其成因机制.岩石学报,8:234—242
    朱金初,张佩华,谢才富,张辉,杨策.2006.南岭西段花山——姑婆山A型花岗质杂岩带:岩石学、地球化学和岩石成因.地质学报,80:529-542
    邹光富,朱同兴,冯心涛,李建忠,贾保江,周铭魁.2003.藏南岗巴——定日地区花岗岩单元特征及构造环境.沉积与特提斯地质,23:16-26
    左国朝,吴汉泉.1997.北祁连中段早古生代双向俯冲—碰撞造山模式剖析.地球科学进展,12(4):315-323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700