用户名: 密码: 验证码:
基于糖共轭物的化学生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖类结构在人体生命活动(细胞的信号识别进程、免疫系统功能、维持细胞基本形态及功能等)以及多种重大疾病的病理学(肿瘤、心血管疾病、感染性疾病等)进程中都发挥着至关重要的作用。糖共轭物(糖肽、糖脂)是糖类结构发挥功能的主要存在形式,同时由于糖共轭物结构所蕴含的巨大的多样性,使得其相关的化学生物学研究越来越受到人们的关注。然而十分有限的物质来源却限制对糖共轭物的进一步深入研究。因此,探索能够快速合成以及分离糖共轭物的方法以及发现并探讨基于新颖结构以及新的生物学作用机制的糖共轭物的构效关系研究就具有非常重要的意义。为此,本论文主要研究两方面的内容:1)创建利用氟相化学辅助固相合成〇-连接糖肽的新方法;2)具有链球菌菌属特异性抗菌活性的全新糖脂天然产物TTSG类似物的设计与合成。
     一)氟相化学辅助的固相O-连接糖肽的合成
     由于糖肽结构中寡糖片段的微观不均一性以及生物合成途径中糖基化位点的不可控性,使得通过生化分离手段难以得到结构确定的糖肽,发展一种能够快速合成以及分离得到具有结构特定的糖肽的合成方法以期望在后续研究中能够构建多样化的糖肽库,从而满足基于糖肽结构的药物发现以及全新糖肽疫苗的设计与发展的需求就成为了糖肽研究领域的一个热点。
     目前糖肽合成一种较为普遍采用的策略就是利用预先制备的连有寡糖片段的氨基酸作为一个构建单元,借助于固相多肽合成(SPPS)的逐步合成方法制备目标的糖肽结构并利用色谱方式进行分离纯化。这种方法操作繁琐,合成以及分离效率较低,同时合成结果较大的多变性也限制了其应用。
     因此,本论文探索结合固相糖基化方法、氟相化学中氟标记的糖基供体策略和氟的固相萃取技术(F-SPE)以及固相合成方法学等多种手段设计了一种新颖高效的固相合成以及分离O-连接糖肽的策略。在该策略中,以连有芳基酰肼“安全拉手连接桥的亲水性的TentaGel树脂为固相载体,通过固相多肽合成(SPPS)方法延伸糖肽分子的多肽链,经过选择性脱保护,游离出糖基片段连接位点,利用固相糖基化的方式逐步引入糖基片段,固相糖基化过程中,经过过滤洗涤等固相合成中的简单操作,就可直接进行下一步反应。合成操作结束后,芳基酰肼“安全拉手连接桥的应用使得该策略可以在温和条件下裂解目标的糖肽分子,避免了酸敏以及碱敏连接桥分子对糖肽结构的破坏。再通过氟相化学的固相萃取技术(F-SPE)可以快速简便的分离得到纯的目标糖肽分子。
     本课题通过结合固相合成以及氟相化学的优势,借助于我们课题组发展的氟标记的糖基供体策略以及首次被应用于固相合成O-连接糖肽方法中的芳基酰肼“安全拉手连接桥,创建了一种快速高效的合成O-连接糖肽的方法。该方法操作简便快速,对于实现糖肽的自动化合成起到巨大的推动作用。
     二)具有链球菌菌属特异性杀菌活性的全新糖脂天然产物TTSG类似物的设计、合成、活性评价以及初步的作用机制研究。
     链球菌是一类包含多种重要致病菌的菌属,由其感染所导致的疾病(鼻窦炎、脑膜炎、中耳炎、细菌性肺炎、心内膜炎等)对人类健康造成了极大的危害。目前临床的首选治疗药物通常是青霉素,然而近年来伴随着青霉素耐药的链球菌菌株的出现以及不断传播,使得单纯依靠青霉素进行治疗链球菌感染所引起的疾病已经越来越困难,而联合其他广谱抗生素又会很大程度的破坏人体的菌群平衡,从而对人类健康造成更大的威胁。因此发展一种既能够对抗耐药菌同时又符合个性化治疗理念的具有针对性对抗链球菌活性的新型抗生素,在尽可能不破坏人体菌群平衡的前提下快速的杀灭致病链球菌则是链球菌感染性疾病治疗的最佳选择。
     本课题以首次发现的一种从夏威夷诺丽果果实中提取出来的全新的糖脂类天然产物TTSG的结构为基础,通过逆合成分析,巧妙的设计了该三糖糖脂类结构化合物的合成路线,通过使用包括分子内糖苷传递反应构建海藻糖糖苷键以及高立体选择性构建p-甘露糖苷键等方法首次完成了对该类新颖结构的全合成。除此之外本课题的其他成果包括:
     1)扩展了利用分子内糖苷传递反应构建1,1-α,α-海藻糖苷键以及通过原位活化生成氧蓊离子的方法高立体选择性的构建p-甘露糖苷键等反应的应用范围并且验证了其对于糖脂类结构的适用性。
     2)通过理性的药物分子设计,从不同的角度设计了该天然产物的多个结构类似物。并且通过多条优化的合成路线制备得到了该天然产物结构为基础的20个的结构类似物。
     3)通过活性评价从中发现了多个对于链球菌菌属具有高选择性快速杀菌作用的活性的化合物。
     4)通过检测对多种临床耐药菌的链球菌菌株的杀菌作用,证明了活性化合物54对于临床耐药菌株的高敏感性。并通过化合物对人体红细胞的溶血实验确证了化合物的安全性。
     5)以活性化合物54为研究对象利用DIS-C3-5染色实验进行初步的作用机制研究,证实了化合物54是通过选择性破坏链球菌菌膜通透性起到杀菌作用的活性化合物。并通过原生质体杀菌实验初步验证了化合物54对于菌属的选择性可能是由于该类活性化合物对于不同细菌菌属细胞壁的通透性的差别产生的。
Carbohydrates play a vital role in many physiological processes including cell adhesion, cell differentiation, infected agent that make us ill, as well as in major diseases such as cancer, cardiovascular disease and inflammatory diseases. Glycoconjugate(glycopeptides/glycolipid) are the major bioactive form of oligosaccharide. Scientists have paid more and more attention on glycoconjugate since the huge diversity in it. But the further understanding the functions of glycoproteins and glycopeptides and analyzing their structure-activity relationships (SARs) is restricted by their limited supplemental resources. Therefore exploring rapid and efficiently artificial synthetic approaches to access the target glycopeptides, and finding the novel bioactive glycocongate for vaccine and drug discovery is very important. This thesis pursued the studies on two aspects:(1) A new approach for the synthesis of O-glycopeptides through a combination of solid-phase glycosylation and fluorous tagging (2) Reasonable design and total synthesis of analogues of TTSG from Morinda citrifolia, which act as highly selective antibiotic agent and target the membrane of bacteria.
     1) A new approach for the synthesis of O-glycopeptides through a combination of solid-phase glycosylation and fluorous tagging
     As we all know, it is difficult to separate glycopeptides from natural glycoforms, by means of microheterogeneity at carbohydrate portions and uncontrollable glycosylation in the biosynthetic approach. To overcome these obstacles, there is a need for rapid and efficiently artificial synthetic approaches to access the target glycopeptides, especially methods for preparing pure and structurally well-defined glycopeptides libraries for vaccine and drug discovery.
     Using preformed glycosylated amino acids or oligosaccharides as building blocks during solid-phase synthesis of glycopeptide and purified by the HPLC is currently the most popular method for synthesizing glycopeptides. However, it suffers from cumbersome operation, low efficiency and an apparently variable synthetic outcome from one target product to another.
     Herein, we report the first attempt of solid-phase synthesis of O-linked glycopeptides through the combination of a solid-phase hybrid glycopeptidation procedure and fluorous tagging strategy in this thesis. In this strategy, a TentaGel resin with an aryl hydrazine "safety-catch" linker was selected as the solid phase support, after constructing the peptides portion by the SPPS strategy, the saccharine motif was introduced step by step with the help of the solid-phase glycosylation. the stable aryl hydrazine linker under reactions conditions eliminates the risk of destruction the structure of the desired glycopeptide because of its acidic and/or basic liability to the glycomoiety and side-protection groups of peptides. Finally F-SPE protocol allowed us to purify the target product simply.
     This project report a new and efficient hybrid strategy to synthesize and purify O-glycopeptides was developed via a combination of the advantages of solid-phase glycosylation strategy with the superiority of fluorous chemistry. This approach not only introduces a fluorous-tagged glycosyl donor and aryl hydrazine safety-catch linker into the solid-phase synthesis of O-linked glycopeptides for the first time, but also avoids generation of extra costs with the help of solid-phase glycosylation and F-SPE chemical recycling. This strategy will be a significant advance in realizing automated O-linked glycopeptide synthesis for nonspecialists.
     2) Reasonable design and total synthesis of analogues of TTSG from Morinda citrifolia, which act as highly selective antibiotic agent and target the membrane of bacteria.
     Streptococcus is a kind of Gram-positive bacteria including many pathogenic bacteria which could induce nasosinusitis, bacterial meningitis, otitis media, bacterial pneumonia, endocarditis et. al., it is a huge threat to the health of human being. The first medical choice in clinic is the penicillins'antibiotics. However, the emerging of penicillin resistance streptococcus make it difficult to cure the disease caused by the streptococcus. But combined the broad-spectrum antibiotic could destroy the normal balance of bacteria in human body, which may be even more harmful for the public health. Develop an antibiotic agent which not only have specific killing effect to the streptococcus, but also is sensitive to the clinical drug resistance streptococcus for the harmless of the normal balance of bacteria in human body would be the optimal choice.
     This project syntheses19analogues of a novel glycolipid natural product which was extracted from the fruit of Morinda citrifolia with a wisely designed route, including the IAD reaction for preparing the1,1-α,α trehaloside and the highly stereoselectively constructing the P-mannoside. Besides that, there are still some other valuable results in this part of the thesis:
     1) Largely expanded the application of IAD reaction to establish the trehaloside and the feasibility of using the oxonium which generated in situ to highly stereoselectively construct theβ-mannoside in the synthesis of glycolipid motif.
     2) Rational designed a few analogues of TTSG, and prepare19compounds by means of optimized routes.
     3) Discovering some rapidly and specifically anti-streptococcus bioactive agents.
     4) Identify the sensitivity of our synthetic analogue compound54to the multidrug-resistance streptococcus.
     5) Using the hemolysis assay to identify the safety of our bioactive compounds.
     6) Preliminary demonstrated the mechanism of action is targeting the cell membrane of the bacteria by taking the active compound54as an example. And identify that the reason of the genus selectivity of the killing effect may be the different permeability between the various bacteria according to the protoplast assay.
引文
1) Bertozzi, C. R.; Kiessling, L. L.; Chemical Glycobiology, [J]. Science 2001,291, 2357.
    2) Dwek, R. A., Glycobiology:Toward Understanding the Function of Sugars, [J]. Chem. ReV.1996,96,683.
    3) Rudd, P. M.; Elliot, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. [J]. Science 2001, 291,2370.
    4) Talbot, P.; Shur, B. D.; Myles, D. G.Cell; Adhesion and Fertilization:Steps in Oocyte Transport, Sperm-Zona Pellucida Interactions, and Sperm-Egg Fusion, [J]. Biol. Reprod,2003,68,1.
    5) Varki, A.; Evolutionary considerations in relating oligosaccharide diversity to biological function [J]. Glycobiology 1993,3,97.
    6) Helenius, A.; How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum, [J]. Mol. Biol. Cell,1994,5,253.
    7) Helenius, A.; Aebi, M.; Intracellular Functions of N-Linked Glycans [J]. Science 2001,291,2364.
    8) Trombetta, E. S.; Helenius, A.; Conformational Requirements for Glycoprotein Reglucosylation in the Endoplasmic Reticulum [J]. Curr. Opin. Struct Biol.1998,8, 587.
    9) Hansen, T. N.; Carpenter J. F.; Calorimetric determination of inhibition of ice crystal growth by antifreeze protein in hydroxyethyl start solutions. [J]. Biophys. J.,1993, 64,1843-1850
    10) Ashwell, G.; Harford, J., Carbohydrate-specific receptors of the liver [J]. Annu. ReV. Biochem.1982,51,531.
    11) Wadhwa, M. S.; Rice, K. G. Receptor mediated glycotargeting [J]. J. Drug Targeting 1995,3,111
    12) Robinson, M. A.; Charlton, S. T.; Gamier, P.; Wang, X.-T.; Davis, S. S.; Perkins, A. C; Frier, M.; Duncan, R.; Savage, T. J.; Wyatt, D. A.; Watson, S. A.; Davis, B. G., Receptor mediated glycotargeting, [J]. Proc. Natl. Acad. Sci., U.S.A.2004,101, 14527
    13) Zhu, Y.; Li, X.; Kyazike, J.; Zhou, Q.; Thurberg, B. L.; Raben, N.; Mattaliano, R. J.; Cheng, S. H., Conjugation of Mannose 6-Phosphate-containing Oligosaccharides to Acid a-Glucosidase Improves the Clearance of Glycogen in Pompe Mice, [J]. J. Biol. Chem.2004,279,50336.
    14) Cohen-Ansfield, S. T.; Lansbury, P. T. A practical, convergent method for glycopeptide synthesis, [J]. J. Am. Chem. Soc.1993,115,10531-10537.
    15) Roberge, J. Y.; Beebe, X.; Danishefsky, S. J., Convergent Synthesis of N-Linked Glycopeptides on a Solid Support, [J]. J. Am. Chem. Soc.1998,120,3915
    16) Boltje T. J., Buskas T. and Boons G.-J., Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research, [J]. nature chemistry 1,611-622
    17) Hart, G.W.; Brew, K.; Grant, G.A.; Bradshaw, R. A.; Lennarz, W. J. Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with natural and synthetic peptides. [J]. J. Biol. Chem.,1979, 254:9747-9753
    18) S. Keil, C. Klaus, W. Dippold and H. Kunz, Angew. Chem.Int. Ed.,2001,40,366.
    19) A. Kaiser, N. Gaidzik, U. Westerlind, D. Kowalczyk, A. Hobel, E. Schmitt and H. Kunz, [J]. Angew. Chem., Int. Ed.,2009,48,7551.
    20) Hollosi, M.; Kollat, E.; Laczko, I.; Medzihradszky, K. F.; Thurin, J.; Otvos, Jr., L. Solid-phase synthesis of glycopeptides:glycosylation of resin-bound serine-peptides by 3,4,6-tri-O-acetyl-D-glucose-oxazoline. [J]. Tetrahedron Lett.,1991,32: 1531-1534.
    21) Seitz, O.; Kunz, H. An allylic anchor for high-efficiency solid phase synthesis of protected peptides and glycopeptides. [J]. J. Org. Chem.,1997,62:813-826.
    22) Paulsen, H; Schleyer, A.; Mathieux, N.; Meldal, M.; Bock, K. New solid-phase oligosaccharide synthesis on glycopeptides bound to a solid phase. [J]. J. Chem. Soc, Perkin Trans.1,1997:281-293.
    23) Schleyer, A.; Meldal, M.; Manat, R.; Paulsen, H.; Bock, K. Direct solid-phase glycsoylations of peptide templates on a novel PEG-based resin. [J]. Angew. Chem. Int. Ed.,1997,36:1976-1978.
    24) Paulsen, H.; Schleyer, A.; Mathieux, N.; Meldal, M.; Bock, K. New solid-phase oligosaccharide synthesis on glycopeptides bound to a solid phase. [J]. J. Chem. Soc, Perkin Trans.1,1997:281-293.
    25) Yao, N.-H.; He, W.-Y.; Lam, K. S.; Liu, G. Solid-phase synthesis of O-glycosylated Na-Fmoc amino acids and analysis by high-resolution magic angle spinning NMR. [J]. J. Comb. Chem.,2004,6:214-219.
    26) M. Meldal, F.-I. Auzanneau, O. Hindsgaul and Monica M. Palcicb A PEGA Resin for use in the Solid-phase Chemical-Enzymatic Synthesis of Glycopeptides[J]. J. Chem Soc, Chem. Commun.1994 1849-1850
    27) T. Buskas, S. Ingale and G.-J. Boons, Glycopeptides as versatile tools for glycobiology [J].Glycobiology,2006,16,113R
    28) Ackes, B. J.; Ellman, J. A. Carbon-carbon bond-forming methods on solid support, utilization of Kenner's "safety-catch" linker. [J]. J. Am. Chem. Soc,1994,116: 11171-11172.
    29) Ackes, B. J.; Virgilio, A. A.; Ellman, J. A. Activation method to prepare a highly reactive acylsulfonamide "safety-catch" linker for solid-phase synthesis. [J]. J. Am. Chem. Soc,1996,118:3055-3056.
    30) Backes, B. J.; Ellman, J. A. An alkanesulfonamide "safety-catch" linker for solid-phase synthesis. [J]. J. Org. Chem.,1999,64:2322-2330.
    31) illington, C. R.; Quarrell, R.; Lowe, G. Aryl hydrazides as linkers for solid phase synthesis which are cleavable under mild oxidative conditions. [J]. Tetrahedron Lett., 1998,39:7201-7204.
    32) Stieber, F.; Grether, U.; Waldmann, H. An oxidation-labile traceless linker for solid-phase synthesis. [J]. Angew. Chem. Int. Ed.,1999,38:1073-1077.
    33) Berst, F.; Holmes, A. B.; Ladlow, M.; Murray, P. J. A latent aryl hydrazine 'safety-catch'linker compatible with N-alkylation. [J]. Tetrahedron Lett.,2000,41: 6649-6653.
    34) Rosenbaum, C; Waldmann, H. Solid phase synthesis of cyclic peptides by oxidative cyclative cleavage of an aryl hydrazide linker--synthesis of Strylostatin 1. [J]. Tetrahedron Lett.,2001,42:5677-5680.
    35) Peters, C; Waldmann, H. Solid-phase synthesis of peptide esters employing the hydrazide linker. [J]. J. Org. Chem.,2003,68:6053-6055.
    36) Albrecht, M.; Stortz, P.; Weis, P. Facile solid-phase synthesis of the WAGV-tetrapeptide front of the cyclopeptides Segetalin A and B terminated by catechol moieties and formation of a metalla-cyclopeptide. [J]. Synlett,2003, 867-869.
    37) Kwon, Y.; Welsh, K.; Mitchell, A. R.; Camarero, J. A. Preparation of peptide p-nitroanilides using an aryl hydrazine resin. [J]. Org. Lett.,2004,6:3801-3804.
    38) Shigenaga, A.; Moss, J. A.; Ashley, F. T.; Kaufmann, G. F.; Janda, K. D. Solid-phase synthesis and cyclative cleavage of quorum sensing depsipeptide analogues by acylphenyldiazene activation. [J]. Synlett,2006,551-554.
    39) Rodenko, B.; Detz, R. J.; Pinas, V. A.; Lambertucci, C; Brun, R.; Wanner, M. J.; Koomen, G.-J. Solid phase synthesis and antiprotozoal evaluation of di-and trisubstituted 5'-carboxamidoadenosine analogues. [J]. Bioorg. Med. Chem.,2006, 14:1618-1629.
    40) Zhang, W. Fluorous synthsis of heterocyclic systems.[J].Chem. Rev.,2004,104: 2531-2556.
    41) Zhang, W. Fluorous linker-facilitated chemical synthesis.[J].Chem. Rev.,2009,109: 749-795.
    42) Kiss, L. E.; Kovesdi, I.; Rabai, J. An improved design of fluorophilic molecules: prediction of the In P fluorous partition coefficient, fluorophilicity, using 3D QSAR descriptors and neural networks, [J]. J. Fluorine Chem 2001,108,95-109.
    43) Huqye, F. T. T.; Jones, K.; Saunders, R. A.; Platts, J. A., Statistical and theoretical studies of fluorophilicity[J]. J. Fluorine Chem.2002,115,119-12.
    44) Duchowicz, P. R.;Fernandez, F. M.; Castro, E. A. Alternative statistical and theoretical analysis of fluorophilicity, [J]. J. Fluorine Chem.2004,125,43-48.
    45) Mercader, A. G.; Duchowicz, P. R.; Sanservino, M. A.; Fernandez, F. M.; Castro, E. A. Fluorocarbon stationary phases for liquid chromatography applications[J]. J. Fluorine Chem.2007,128,484-492.
    46) Zhang, W. Fluorous technologies for solution-phase high-throughput organic synthesis[J]. Tetrahedron 2003,59,4475-4489.
    47) Zhang, W. [M].In Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, D. P., Horvath, I. T., Eds.; Wiley-VCH:Weinheim,2004; 222-236.
    48) Zhang, W. Fluorous tagging strategy for solution-phase synthesis of small molecules, peptides and oligosaccharides, [J]. Curr. Opin. Drug DiscoV. DeVelop.2004,7, 784-797.
    49) Chen, C. H.-T.; Zhang, W. Fluorous reagents and scavengers versus solid-supported reagents and scavengers, a reaction rate and kinetic comparison[J]. Mol. Diversity 2005,9,353-359.
    50) Zhang, W. [M]. In Current Fluoroorganic Chemistry. New Synthetic Directions, Technologies, Materials and Biological Applications;Soloshonok, V. A., Mikami, K., Yamazaki, T., Welch, J. T., Honek, J., Eds.; Oxford University Press:Oxford,2006; 207-220.
    1) Dziadek S., Kowalczyk D., Kunz H.,Synthetic Vaccines Consisting of Tumor-Associated MUC1 Glycopeptide Antigens and Bovine Serum Albumin[J]. Angew. Chem. Int. Ed.2005,44,7624-7630
    2) Hollosi, M; Kollat, E.; Laczko, I.; Medzihradszky, K. F.; Thurin, J.; Otvos, Jr., L. Solid-phase synthesis of glycopeptides:glycosylation of resin-bound serine-peptides by 3,4,6-tri-O-acetyl-D-glucose-oxazoline. [J]. Tetrahedron Lett.,1991,32: 1531-1534.
    3) Andrews, D. M.; Seale, P. W. Solid-phase synthesis of O-mannosylated peptides: two strategies compared. [J]. Int. J. Peptide Protein Res.,1993,42:165-170.
    4) Seitz, O.; Kunz, H. HYCRON, an allylic anchor for high-efficiency solid phase synthesis of protected peptides and glycopeptides. [J]. J. Org. Chem.,1997,62: 813-826.
    5) Paulsen, H.; Schleyer, A.; Mathieux, N.; Meldal, M.; Bock, K. New solid-phase oligosaccharide synthesis on glycopeptides bound to a solid phase. [J]. J. Chem. Soc, Perkin Trans.1,1997:281-293.
    6) Schleyer, A.; Meldal, M.; Manat, R.; Paulsen, H.; Bock, K. Direct solid-phase glycsoylations of peptide templates on a novel PEG-based resin. [J]. Angew. Chem. Int. Ed.,1997,36:1976-1978.
    7) Halkes, K. M.; Gotfredsen, C. H.; Grotli, M.; Miranda, L. P.; Duus, J.O.; Meldal, M. Solid-phase glycosylation of peptide templates and on-bead MAS-NMR analysis: perspectives for glycopeptide libraries. [J]. Chem. Eur. J.,2001,7:3584-3591.
    8) Yao, N.-H.; He, W.-Y.; Lam, K. S.; Liu, G. Solid-phase synthesis of O-glycosylated Na-Fmoc amino acids and analysis by high-resolution magic angle spinning NMR. [J]. J. Comb. Chem.,2004,6:214-219.
    9) Mogemark, M.; Elofsson, M.; Kihlberg, J. Monitoring solid-phase glycoside synthesis with 19F NMR spectroscopy. [J]. Org. Lett.,2001,3:1463-1466.
    10) Mogemark, M.; Gardmo, F.; Tengel, T.; Kihlberg, J.; Elofsson, M. Gel-phase 19F NMR spectral quality for resins commonly used in solid-phase organic synthesis; a studey of peptide solid-phase glycosylations. [J]. Org. Biomol. Chem.,2004,2: 1770-1776.
    11) F. Albericio and E. Giralt, Chemical Approaches to the Synthesis of Peptides and Proteins, ed. P. Lloyd-Williams, [J].,CRC LLC,NY,1997;
    12) T. Conroy, K. A. Jolliffe and R. J. Payne, Efficient use of the Dmab protecting group: applications for the solid-phase synthesis of N-linked glycopeptides Org. Biomol. Chem.,2009,7,2255;
    13) M. Amblard, J.-A. Fehrentz, J. Martinez and G. Subra, Methods and protocols of modern solid phase Peptide synthesis[J]. Mol. Biotechnol.,2006,33,239.
    14) Rademann J., Grotli M., Meldal M., Bock K., SPOCC:A Resin for Solid-Phase Organic Chemistry and Enzymatic Reactions on Solid Phase[J]. J. Am. Chem. Soc,1999,121 (23),5459-5466
    15) Obadiah J. Plante, Emma R. Palmacci, Peter H. Seeberger Automated Solid-Phase Synthesis of Oligosaccharides[J]. science 2001291,1523-1527
    16) P. C. de Visser, M. van Helden, D. V. Filippov, G. A. van der Marel, J. W. Drijfhout, J. H. van Boom, D. Noortand H. S. Overkleeft, A novel, base-labile fluorous amine protecting group:synthesis and use as a tag in the purification of synthetic peptides [J]. Tetrahedron Lett.,2003,44,9013.
    17) E. R. Palmacci, M. C. Hewitt and P. H. Seeberger, "Cap-Tag"-Novel Methods for the Rapid Purification of Oligosaccharides Prepared by Automated Solid-Phase Synthesis [J]. Angew. Chem., Int. Ed.,2001,40,4433;
    18) F. R. Carrel and P. H. Seeberger, Cap-and-tag solid phase oligosaccharide synthesis[J]. J. Org. Chem.,2007,73,2058.
    19) S. Tripathi, K. Misra and Y. S. Sanghvi, FLUOROUS SILYL PROTECTING GROUP FOR 5'-HYDROXYL PROTECTION OF OLIGONUCLEOSIDES Org. Prep. Proced. Int.,2005,37,257;
    20) W. H. Pearson, D. A. Berry, P. Stoy,K.-Y. Jung and A. D. Sercel, Fluorous affinity purification of oligonucleotides. [J].J. Org. Chem.,2005,70,7114
    21) F. Zhang, W. Zhang, Y. Zhang, D. P. Curran and G. Liu, Synthesis and Applications of a Light-Fluorous Glycosyl Donor [J].,J. Org. Chem.,2009,74,2594
    22) Y. Zhang, B. Liu and G. Liu, Facile synthesis of tetrasaccharide aided by fluorous chemistry toward a dengue virus vaccine [J]., Mol. Diversity,2013,17,613
    23) Peter H. Seeberger Automated oligosaccharide synthesis [J]. Chem. Soc. Rev.,2008, 37,19-28
    1) Yao, N.-H.; He, W.-Y.; Lam, K. S.; Liu, G. Solid-phase synthesis of O-glycosylated Nα-Fmoc amino acids and analysis by high-resolution magic angle spinning NMR. [J]. J. Comb. Chem.,2004,6:214-219.
    2) Millington, C. R.; Quarrell, R.; Lowe, G. Aryl hydrazides as linkers for solid phase synthesis which are cleavable under mild oxidative conditions. [J]. Tetrahedron Lett., 1998,39:7201-7204.
    3) Wipf, P.; Reeves, J. T. Synthesis and applications of a fluorous THP protective group[J]. Tetrahedron Lett.1999,40,4649-4652.
    4) Ikeda, K.; Mori, H.; Sato, M. Preparation of a fluorous protecting group and its application to the chemoenzymatic synthesis of sialidaseinhibitor[J]. Chem. Commun.2006,3093-3094
    5) Kojima, M.; Nakamura, Y.; Ishikawa, T.; Takeuchi, S. A practical fluorous benzylidene acetal protecting group for a quick synthesis of disaccharides[J]. Tetrahedron Lett.2006,47,6309-6314.
    6) Dakas, P.-Y.; Barluenga, S.; Totzke, F.; Zirrgiebel, U.; Winssinger, N. Modular Synthesis of Radicicol A and Related Resorcylic Acid Lactones, Potent Kinase Inhibitors [J]. Angew. Chem., Int. Ed.2007,46,6899-6902.
    7) Pearson, W. H.; Berry, D. A.; Stoy, P.; Jung, K.-Y.; Sercel, A. D. Fluorous Affinity Purification of Oligonucleotides[J]. J.Org. Chem.2005,70,7114-7122.
    8) Palmacci, E. R.; Hewitt, M. C; Seeberger, P. H. "Cap-Tag"-Novel Methods for the Rapid Purification of Oligosaccharides Prepared by Automated Solid-Phase Synthesis[J]. Angew. Chem., Int. Ed.2001,40,4433-4437
    9) Zhang, W.; Luo, Z.; Chen, H.-T.; Curran, D. P. Solution-Phase Preparation of a 560-Compound Library of Individual Pure Mappicine Analogues by Fluorous Mixture Synthesis[J]. J. Am. Chem. Soc.2002,124,10443-10450
    10) Carrel, F. R.; Seeberger, P. H. Cap-and-Tag Solid Phase Oligosaccharide Synthesis[J]. J. Org. Chem.2007,73,2058-2065
    11) Kasahara, T.; Kondo, Y. Fluorous-tagged indolylboron for the diversity-oriented synthesis of biologically-attractive bisindole derivatives[J]. Chem. Commn.2006, 891-893.
    12) Dandapani, S.; Jeske, M.; Curran, D. P. Stereoisomer libraries:Total synthesis of all 16 stereoisomers of the pine sawfly sex pheromone by a fluorous mixture-synthesis approach [J]. Proc. Natl. Acad. Sci. U.S.A.2004,101,12008-12012
    13) Manzoni, L.; Castelli, R. Froc:A New Fluorous Protective Group for Peptide and Oligosaccharide Synthesis[J]. Org. Lett.2006,8,955-957.
    14) Luo, Z.; Williams, J.; Read, R. W.; Curran, D. P. Fluorous Boc (F-Boc) Carbamates:New Amine Protecting Groups for Use in Fluorous Synthesis[J]. J. Org. Chem.2001,66,4261-4266.
    15) Zhang, W.; Tempest, P. Highly efficient microwave-assisted fluorous Ugi and post-condensation reactions for benzimidazoles and quinoxalinones[J]. Tetrahedron Lett.2004,45,6757-6760.
    16) Mamidyala, S. K.; Firestine, S. M. Fluorous synthesis of minor groove binding agents related to distamycin[J]. Tetrahedron Lett.2006,47,7431-7434.
    17) Trabanco, A. A.; Vega, J. A.; Fernandez, M. A. Fluorous-Tagged Carbamates for the Pd-Catalyzed Amination of Aryl Halides[J]. J. Org. Chem.2007,72,8146-8148.
    18) Peter H. Seeberger Automated oligosaccharide synthesis[J]. Chem. Soc. Rev.,2008, 37,19-28
    1) Ryan K.J., Ray C.G., ed. [M]. Sherris Medical Microbiology (4th ed.)
    2) Hamadat S.Y., Hutton D. S. Biology, immunology, and cariogenicity of Streptococcus mutans microbiological review[J].,1980,331-384
    3) Patterson M.J. [M]. (1996), Streptococcus, In:Baron's Medical Microbiology (Baron S et al., eds.) (4th ed.). University of Texas Medical Branch
    4) Peter C. Appelbaum Antimicrobial Resistance in Streptococcus pneumoniae:An Overview[J]. Clin Infect Dis. (1992) 15(1),77-83
    5) Conel. A.; Woodard D. R.; Schlievert P. M.; Tomoryg S. Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes[J]. The New England journal of medicine 317,146-149
    6) Loesche W. J. Role of Streptococcus mutans in human dental decay[J]. Microbiol Rev. Dec 1986; 50(4),353-380
    7) Ronit, C.-P.,; Dennis, K. L. "Group A Streptococcus Epidemiology and Vaccine Implications"[J]. Clinical Infectious Diseases(2007)
    8) Schrag S., Gorwitz R., Fultz-Butts K., Schuchat A. (2002). "Prevention of perinatal group B streptococcal disease. Revised guidelines from CDC". [J]. MMWR Recomm Rep 51 (RR-11):1-22.
    9) Royal College of Obstetricians and Gynaecologists, Prevention of Early Onset Neonatal Group B Streptococcal Disease.. [J].2008,150,1120
    10) Davis M.F., Iverson S.A., Bamn P.; Household transmission of meticillin-resistant Staphylococcus aureus and other Staphylococci [J]. Lancet Infect Dis., 2012,12(9),703-716,
    11) Zaph C. which species are in your feces? [J] J Clin Invest,2010,120(12): 4182-4185.
    12) Kumarasamy K.K., Toleman M.A., Walsh T.R.. Emergence of a New antibiotic resistance mechanism in India. Pakistan, and the UK:a molecular biological and epidemiological study[J]. Lancet Infect Dis,2010.10(9):597-602.
    13) Heim-Duthoy K. L, Caperton E. M., Pollock R., Matzke G. R., Enthoven D., and Peterson P. K.; Apparent biliary pseudo-lithiasis during ceftriaxone therapy. [J]. Antimicrob Agents Chemother,1990,34:1146.1149
    14) Tedesco F.J., Barton R.W., Alpers D.H.;Clindamycin. associated colitis:A prospective studv. [J]. Aan Intern Med.1974,81:429.433
    15) Appel G. B.,Aminoglycoside nephrotoxicity. [J]. Am. J. Med.,1990,88[Suppl 3C]:16S-20S
    16) Hopkins S., Clinical toleration and safety of azithromyein. [J]. Am. J. Med, 1991,91 [Suppl A]75:40S-45S
    17) Jorn A. Aas, Bruce J. Paster, Lauren N. Stokes, Olsen I.,Defining, the Normal Bacterial Flora of the Oral Cavity, [J]. Journal of clinical microbiology,43,11, 5721-5732
    18) Moore, W. E. C; Lillian V., Holdeman, Human Fecal Flora:The Normal Flora of 20 Japanese-Hawaiians, [J]. Applied microbiology,1974,27,5,961-979
    19) Margaret A. Hamburg, M.D., and Francis S. Collins, M.D., Ph.D. The Path to Personalized Medicine[J]. The NEW ENGLAND JOURNAL of MEDICINE 363;4,301-304
    20) Katsios C, Dimitrios H Roukos, Individual genomes and personalized medicine: life diversity and complexity[J]. Personalized Medicine (2010) 7(4),347-350
    21) Geoffrey S. Ginsburg; Jeanette J. McCarthy Personalized medicine: revolutionizing drug discovery and patient care TRENDS in Biotechnology 19,12 491-496
    22) Jain K.K. Personalized medicine Current Opinion in Molecular Therapeutics [J]. 2002,4(6):548-558
    23) Geoffrey S. Ginsburg, Jeanette J. McCarthy Personalized medicine: revolutionizing drug discovery and patient care[J]. TRENDS in Biotechnology 19, 12,2001
    24) Mathivanan N., Surendiran G., Srinivasan K., Sagadevan E. and Malarvizhi K., Review on the current scenario of Noni research:Taxonomy,distribution, chemistry, medicinal and therapeutic values of Morinda citrifolia Intl. [J]. J. Noni Res.2005, 1(1) 1-40
    25) Butler, M.S. (2008) Natural products to drugs:natural product-derived compounds in clinical trials. [J]. Nat. Prod. Rep.25,475-516
    26) Harvey, A.L., (2001) Natural Product Pharmaceuticals:A Diverse Approach to Drug Discovery, Scrip Reports. [J]. PJB Publications
    27) Alan L. Harvey, Natural products in drug discover Drug Discovery Today [J].2008,13,894-901
    28) Saleem M., Nazir M., Shaiq Ali M., Hussain H., Lee Y. S.,Naheed Riaz and Abdul Jabbar Antimicrobial natural products:an update on future antibiotic drug candidates[J]. Nat. Prod. Rep.,2010,27,238-254
    29) Zheng C, Kim C.-J., Bae K. S., Kim Y.-H. and Kim W.-G., Bionectins A-C, Epidithiodioxopiperazines with Anti-MRSA Activity, fromBionectra byssicola F120[J]. J. Nat. Prod.,2006,69,1816-1819.
    30) Zheng C. J., Park S. H., Koshino H., Kim Y. H. and Kim W. G., Verticillin G., a New Antibacterial Compound fromBionectra byssicola[J], J.Antibiot.,2007,60, 61-64.
    31) Sathiamoorthy B., Gupta P., Kumar M., Chaturvedi A. K., Shukla P. K. and Maurya R., New antifungal flavonoid glycoside from Vitex negundo[J]. Bioorg. Med. Chem. Lett.,2007,17,239-242
    32) Tundis R., Loizzo M. R., Menichini F., Statti G. A., Menichini F., Recent Developments. Biological and pharmacological activities of iridoids:recent developments [J]. Mini Reviews in Medicinal Chemistry,2008,8,399-420.
    33) Du X., Lu C, Li Y., Zheng Z., Su W. Shen Y., the new antimicrobial metabolites of Pomopsis sp. [J]. J. Antibiot.,2008,61,250-253.
    34) Debbie Y., Erik G.,'Use of polypeptides having antimicriobial activity', [R]. US Pat., IPC8 class:AA61K3816FI; USPC class:514,12.
    35) H. Hashizume, M. Igarashi, S. Hattori, M. Hori, M. Hamada and T. Takeuchi, [J] J. Antibiot,2001,54,1054-1059.
    36) Neuhof, T., Schmieder P., Preussel K., Dieckmann R., Pham H., Bartl F., von Dohren H., Hassallidin A., a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp[J] J. Nat. Prod.,2005,68,695-700.
    37) T. Neuhof, P. Schmieder, M. Seibold, K. Preussel and H. von Dohren, Hassallidin B-Second antifungal member of the Hassallidin family[J] Bioorg. Med. Chem. Lett.,2006,16,4220-4222
    38) J.-D. Zhang, Z. Xu, Y.-B. Cao, H.-S. Chen, L. Yan, M.-M. An, P.-H. Gao, Y. Wang, X.-M. Jia and Y.-Y. Jiang, Antifungal activities and action mechanisms of compounds fromTribulus terrestris L. [J] J. Ethnopharmacol.,2006,103,76-84.
    39) Y. Zhang, H.-Z. Li, Y.-J. Zhan, M. R. Jacob, S. I. Khan, X.-C. Li and C.-R. Yang, Atropurosides A-G, new steroidal saponins from Smilacina atropurpurea Steroids[J]., J. Nat. Prod.2006,71,712-719
    40) S. Renault, A. J. De Lucca, S. Boue, J. M. Bland, C. B. Vigo and C. P. Selitrennikoff, CAY-I, a novel antifungal compound from cayenne pepper[J]. Med. Mycol,2003,41,75-81.
    41) SolomonN. [M]. The tropical fruitwith 101 medicinal uses, NONI juice.2nd ed. Woodland Publishing; 1999.
    42) Allen W.H., London C. [R]. Some information on the ethnobotanical properties of Noni (Mor inda citr ifolia). In:The useful plants of india; 1873.
    43) Abbott I.A. The geographic origin of the plants most commonly used for medicine by Hawaiians. [J]. J Ethnopharmacol 1985; 14:213-22
    44) Bushnell O.A., Fukuda M., Makinodian T. The antibacterial properties of some plants found in Hawaii. [J]. Pacific Science 1950; 4:167-83.
    45) Wang M.-Y., West B. J., Jensen C. J., Diane NOWICKI.SU Chen, Afa PALU, Gary ANDERS ON Morinda citrifolia (Noni):A literature review and recent advances in Noni research[J]. Acta Pharmacol Sin 2002 Dec; 23 (12):1127-1141
    46) Atkinson N. Antibacterial activity of dried Australian plants by a rapiddirect plate test. Australian[J]. J Exper Biol 1956; 34:17-26.
    47) Leach A.J., Leach DN, Leach G.J.; Antibacterial activity of somemedicinal plants of Papua New Guinea. [J]. Sci New Guinea 1988; 14:1-7.
    48) Locher C.P., Burch M.T., Mower H.F., Beres tecky J., Davis H., Van Poel B., Anti-microbiol activity and anti-complement activity of extract obtained from s elected Hawaiian medicinal plants. [J]. J Ethnopharm 1995,49,23-32
    49) Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. [J]. Nature 406,775-781 (2000)
    50) Opal, S. M., Mayer, K.& Medeiros, [M]. A. in Mechanisms of Bacterial Antibiotic Resistance. Principles and Practice of Infectious Diseases 5th edn Ch.16 (eds. Mandell, G. L.,Bennett, J.& Dolin, R.) 236-253 (Churchill Livingstone, Philadelphia,2000).This chapter details the molecular genetics of resistance as well as the mechanisms of resistance that cover all known antibiotic classes. Rapid development of resistance has limited the duration of the effectiveness of specific agents against specific pathogens.
    51) Sefton, A. M. Mechanisms of antimicrobial resistance:their clinical relevance in the new millennium. [J]. Drugs 62,557-566 (2002).
    52) Jacoby, G. A.& Medeiros, A. A. More extended-spectrum β-lactamases. [J].Antimicrob. Agents Chemother.35,1697-1704 (1994).
    53) Amyes, S. G.& Smith, J. T. R-factor mediated dihydrofolate reductases which confer trimethoprim resistance. [J]. J. Gen. Microbiol.107,263-271 (1978).
    54) Livermore, D. M. Interplay of impermeability and chromosomal β-lactamase activity in impenem resistant Pseudomonas aeruginosa. [J]. Antimicrob. Agents Chemother.36,2046-2048 (1992).
    55) Williams, J. B. Drug efflux as a mechanism of resistance. Br. [J]. J. Biomed. Sci. 53,290-293(1996)
    56) Thornsberry, C. et al. Regional trends in antimicrobial resistance among clinical isolates of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis in the United States:results from the TRUST Surveillance Program, 1999-2000. [J].Clin. Infect. Dis.34, S4-S16 (2002)
    57) Mandell, G. L., Bennett, J.& Dolin, R. (eds) [M].in Principles and Practice of Infectious Diseases 5th edn 261-448 (Churchill Livingstone, Philadelphia, (2000). These chapters cover the mechanisms of action of all the main classes of antibacterial agents.
    58) Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. [J]. Nature 406,775-781 (2000).
    59) Spratt, B. G. Biochemical and genetic approaches to the mechanism of action of penicillin. Phil. [J]. Trans. R. Soc. Lond. B 289,273-283 (1980).
    60) Smith, J. T. The mode of action of 4-quinolones and possible mechanisms of resistance. [J]. J. Antimicrob. Chemother.18,21-29 (1984).
    61) Wehrli, W. et al. Interaction of rifamycin with bacterial RNA polymerase. [J]. Proc. Natl Acad. Sci. USA 61,667-673 (1968).
    62) Goldman, R. C, Fesik, S. W.& Doran, C. Role of protonated and neutral forms of macrolides in binding to ribosomes from Gram-positive and Gram-negative bacteria. [J]. Antimicrob. Agents Chemother.34,426-431 (1990).
    63) Hitchings, G. T. [M]. in Trimethoprim/Sulphamethozale in Bacterial Infections (eds Bernstein, L.& Salter, A.) 7-16 (Churchill Livingstone, Edinburgh and London, 1973).
    64) Woods, D. D. Relation of p-aminobenzoic acid to mechanism of action of sulphanilamide. Br. [J]. J. Exp. Pathol.21,74-90 (1940).
    65) Levin, B. R.; Rozen, D. E. Non-inherited antibiotic resistance. [J]. Nature Rev. Microbiol.4,556-562 (2006). Using mathematical modelling and computer simulations, this paper describes how non-inherited resistance could extend the duration of antibiotic treatment, cause treatment failure and lead to the emergence of genetic resistance.
    66) Lewis, K. Persister cells, dormancy and infectious disease. [J]. Nature Rev. Microbiol.5,48-56 (2007).
    67) Bigger, J. W. Treatment of staphylococcal infections with penicillin. [J]. Lancet 244,497-500(1944)
    68) Tuomanen, E., Durack, D. T.& Tomasz, A. Antibiotic tolerance among clinical isolates of bacteria. [J]. Antimicrob. Agents Chemother.30,521-527 (1986).
    69) Coates, A. R.& Hu, Y. Targeting non-multiplying organisms as a way to develop novelantimicrobials. [J]. Trends Pharmacol. Sci.29,143-150 (2008)
    70) Coates, A., Hu, Y., Bax, R.& Page, C. The future challenges facing the development of newantimicrobial drugs. [J]. Nature Rev. Drug Discov.1,895-910 (2002).
    71) Zhang, Y. M.; Rock, C. O. Transcriptional regulation in bacterial membrane lipid synthesis. [J]. J. Lipid Res.50, S115-S119 (2009).
    72) Nolan, E. M.; Walsh, C. T. How nature morphs peptide scaffolds into antibiotics. [J]. Chembiochem.10,34-53 (2009).
    73) Payne, D. J., Gwynn, M. N., Holmes, D. J.; Pompliano, D. L. Drugs for bad bugs:confronting the challenges of antibacterial discovery. [J]. Nature Rev. Drug Discov.6,29-40 (2007).
    74) Verkleij, A. J. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freezeetch electron microscopy. [J]. Biochim. Biophys. Acta 323,178-193 (1973).
    75) Straus, S. K.; Hancock, R. E. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin:comparison with cationic antimicrobial peptides and lipopeptides. [J]. Biochim. Biophys. Acta 1758,1215-1223 (2006). This article presents a useful summary of the daptomycin mode of action.
    76) Straus, S. K.; Hancock, R. E. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin:comparison with cationic antimicrobial peptides and lipopeptides. [J]. Biochim. Biophys. Acta 1758,1215-1223 (2006).This article presents a useful summary of the daptomycin mode of action.
    77) Domenech, O., Dufrene, Y. F., Van Bambeke, F., Tukens, P. M.& Mingeot-Leclercq, M. P. Interactions of oritavancin, a new semi-synthetic lipoglycopeptide, with lipids extracted from Staphylococcus aureus. [J]. Biochim. Biophys. Acta 1798,1876-1885 (2010).
    78) Domenech, O. et al. Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers:Effect on membrane permeability and nanoscale lipid membrane organization. [J]. Biochim. Biophys. Acta 1788, 1832-1840(2009).
    79) Zhang, L., Dhillon, P., Yan, H., Farmer, S.; Hancock, R. E. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. [J]. Antimicrob.Agents Chemother.44,3317-3321 (2000).
    80) Kashket, E. R. Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions. [J]. J. Bacteriol. 146,369-376(1981).
    81) Kashket, E. R. Effects of aerobiosis and nitrogen source on the proton motive force in growing Escherichia coli and Klebsiella pneumoniae cells. [J]. J. Bacteriol. 146,377-384(1981).
    82) Rao, S. P., Alonso, S., Rand, L., Dick, T.& Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. [J]. Proc. Nat. Acad. Sci. USA 105,11945-11950 (2008)..
    83) Vandal, O. H., Nathan, C. F.& Ehrt, S. Acid resistance in Mycobacterium tuberculosis. [J]. J. Bacteriol.191,4714-4721 (2009). Hu, Y., Shamaei-Tousi, A., Liu, Y.& Coates, A. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria:a novel topical antibiotic for staphylococcal infections. [J]. PLoS ONE 5, e11818 (2010).
    84) Pamp, S. J., Gjermansen, M., Johansen, H. K.& Tolker-Nielsen, T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. [J]. Mol. Microbiol.68,223-240 (2008).
    85) McPhee, J. B., Lewenza, S.& Hancock, R. E. Cationic antimicrobial peptides activate a twocomponent regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. [J]. Mol. Microbiol.50,205-217 (2003).
    86) Boshoff, H. I.& Barry, C. E.3rd. Tuberculosis -metabolism and respiration in the absence of growth. [J]. Nature Rev. Microbiol.3,70-80 (2005)
    87) Brogden, K. A. Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria? [J]. Nature Rev. Microbiol.3,238-250 (2005).
    88) M. Debono, M. Barnhart, C. B. Carrell, J. A. Hoffmann, J. L.Occolowitz, B. J. Abbott, D. S. Fukuda, R. L. Hamill, K. Biemann and W. C. Herlihy, A21978C, a complex of new acidic peptide antibiotics:isolation, chemistry, and mass spectral structure elucidation[J]. J. Antibiot,1987,40,761
    89) Zmijewski M. J., Briggs Jr., B. and Occolowitz J., Role of branched chain fatty acid precursors in regulating factor profile in the biosynthesis of A21978 C complex[J]. J. Antibiot.,1986,39,1483.
    90) Miao V., M.-F. LeGal, P. Brian, R. Brost, J. Penn, A. Whiting, S. Martin, R. Ford, R. Parr, M. Bouchard, C. J. Silva, S. K. Wrigley and R. H. Baltz, Daptomycin biosynthesis in Streptomyces roseosporus:cloning and analysis of the gene cluster and revision of peptide stereochemistry[J]. Microbiology,2005,151,1507
    91) Silverman, J. A., Perlmutter, N. G., Shapiro, H. M. (2003). Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. [J]. Antimicrobial Agents and Chemotherapy 47,2538-44.
    92) Canepari, P., Boaretti, M., del Mar Lleo, M. et al. (1990). Lipoteichoic acid as a new target for activity of antibiotics:mode of action of daptomycin (LY146032). [J]. Antimicrobial Agents and Chemotherapy 34,1220-6.
    93) Silverman, J., Harris, B., Cotroneo, N., et al. (2003). [R]. Daptomycin (DAP) treatment induces membrane and cell wall alterations in Staphylococcus aureus. In Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL. Abstract C1-2135, p.103. American Society for Microbiology, Washington, DC, USA
    94) Koeth L.M., THorne G.M. Daptomycin in vitro susceptibility methodology:a review of methods, including determination of calcium in testing meidia clin [J]. Microbiol Newsletter,2010,32(21):161-169
    95) Ooi N., Miller K., Randall C, Rhys-Williams W., Love W., Chopra I.; XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms. [J]. J. Antimicrob. Chemother. 65,72-78(2010)
    96) Ooi N., Miller K., Hobbs J., Rhys-Williams W., Love W., Chopra I.; XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. [J]. J. Antimicrob. Chemother.64,735-740 (2009).
    97) Hurdle, J. G., Yendapally, R., Sun, D.& Lee, R. E. Evaluation of analogs of reutericyclin as prospective candidates for treatment of staphylococcal skin infections. [J]. Antimicrob. Agents Chemother.53,4028-4031 (2009)
    98) Zhanel, G. G. et al. New lipoglycopeptides:a comparative review of dalbavancin, oritavancin and telavancin. [J]. Drugs 70,859-886 (2010).
    99) Savage, P. B. et al. [J]. in Microbial Surfaces:Structure, Interactions, and Reactivity (eds Camesano, T. A.& Mello, C. M.) 65-78 (American Chemical Society, Washington DC,2008).
    100) Hawkey, P. M. Pre-clinical experience with daptomycin. [J]. J. Antimicrob. Chemother.62,7-14 (2008).
    101) Epand, R. F., Pollard, J. E., Wright, J., Savage, P. B.& Epand, R. M. Depolarization, bacterial membrane composition and the antimicrobial action of ceragenins. [J]. Antimicrob. Agents Chemother.54,3708-3713 (2010).
    102) Chin, J. N., Rybak, M. J., Cheung, C. M.& Savage, P. B. Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. [J].Antimicrob. Agents Chemother.51,1268-1273 (2007).
    103) Mishra, N. N. et al. Analysis of cell membrane characteristics of in vitro-selected daptomycinresistant strains of methicillin-resistant Staphylococcus aureus. [J]. Antimicrob. Agents Chemother.53,2312-2318 (2009).
    104) Jones, T. et al. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. [J]. Antimicrob. Agents Chemother.52,269-278 (2008).
    105) Ernst, C. M. et al. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. [J]. PLoS Pathog.5, e1000660 (2009).
    106) Kosowska-Shick, K. et al. Activity of telavancin against staphylococci and enterococci determined by MIC and resistance selection studies. [J]. Antimicrob. Agents Chemother.53,4217-4224 (2009).
    107) Yang, S. J. et al. Enhanced expression of dltABCD is associated with the development of daptomycin nonsusceptibility in a clinical endocarditis isolate of Staphylococcus aureus. [J]. J. Infect. Dis.200,1916-1920 (2009)
    1) Ronnow, T.; Meldal, M.; Bock, K., The use of O-glycosyl trichloroacetimidates in the synthesis of unsymmetrical trehalose analogues[J]. Tetrahedron:Asymmetry 1994,5, 2109-2122.
    2) Cipolla, L.; Lay, L.; Nicotra, F.; Panza, L.; Russo, G. Glycosyl sulfates as glycosyl donors, [J]. Tetrahedron Lett.1994,35,8669-8670.
    3) Posner, G. H.; Bull, D. S., Molecular sieves promote stereocontrolled aa-disaccharide formation via direct dimerization of free sugars[J]. Tetrahedron Lett. 1996,37,6279-6282.
    4) Nicolau, K. C; van Delft, F.L.; Conley, S. R.; Mitchell, H. J.; Jin, Z.; Rodriguez, R. M. New Synthetic Technology for the Stereocontrolled Construction of 1,1'-Disaccharides and 1,2-Trisaccharides. Synthesis of the FG Ring System of Everninomicin 13,384-1 [J]. J. Am. Chem. Soc.1997,119,9057-9058
    5) Bols M. and Skrydstrup T., Silicon-Tethered Reactions[J]. Chem. Rev.,1995,95, 1253-1277.
    6) Stork G., Suh H., Kim G., The temporary silicon connection method in the control of regio-and stereochemistry. Applications to radical-mediated reactions. The stereospecific synthesis of C-glycosides[J]. J. Am.Chem. Soc,1991,113,7054-7055
    7) Ennis S. C, Fairbanks A. J., Tennant-Eyles R. J. and Yeates H. S., Steroselective Synthesis of a-Glucosides and β-Mannosides:Tethering and Activation with N-Iodosuccinimide[J]. Synlett,1999,1387-1390
    8) Bols M., Hansen H. C, Long Range Intramolecular Glycosidation[J]. Chem. Lett., 1994,1049-1052.
    9) Seward C. M. P., Cumpstey I., Aloui M., Ennis S. C, Redgrave A. J., Fairbanks A. J., Stereoselective cis glycosylation of 2-O-allyl protected glycosyl donors by intramolecular aglycon delivery (IAD) [J]. Chem. Commun.,2000,1409-1410
    10) Clifton D. Leigh and Carolyn R. Bertozzi Synthetic Studies toward Mycobacterium tuberculosis Sulfolipid-I[J]. J. Org. Chem.2008,73,1008-1017
    11) Pratt M. R., Leigh C. D., Bertozzi C.R. Formation of 1,1-a, a-Glycosidic Bonds By Intramolecular Aglycone Delivery. A Convergent Synthesis of Trehalose[J]. Org. Lett., 5,18,3185-3188
    12) Ishiwata A., Lee Y. J., Ito Y. Recent advances in stereoselective glycosylation through intramolecular aglycon delivery[J]. Org. Biomol. Chem.,2010,8,3596-3608
    13) Cumpstey I., Intramolecular aglycon delivery[J]. Carbohydrate Research 343 1553-1573
    14) lemieux R U,koto S The conformational properties of glycosidic linkages[J]. Ttetrahedron 1974,30,1933-1944
    15) Crich, D.; Sun, S. Formation of beta-Mannopyranosides of Primary Alcohols Using the Sulfoxide Method[J]. J. Org. Chem.1996,61,4506-4507
    16) Crich,D.; Sun, S. Direct Synthesis of P-Mannopyranosides by the Sulfoxide Method[J]. J. Org. Chem.1997,62,1198-1199.
    17) Crich, D.; Sun,S. Direct Formation of β-Mannopyranosides and Other Hindered Glycosides from Thioglycosides[J]. J. Am. Chem. Soc.1998,120,435-436.
    18) Crich, D.; Sun, S. Direct Formation of β-Mannopyranosides and Other Hindered Glycosides from Thioglycosides[J]. Tetrahedron 1998,54,8321-8348.
    19) Huang, X.; Huang, L.; Wang, H.; Ye, X. S. Iterative One-Pot Synthesis of Oligosaccharides [J]. Angew. Chem. Int. Ed.,2004,43:5221-5224.
    20) Martichonok, V.; Whitesides, G. M. Stereoselective a-Sialylation with Sialyl Xanthate and Phenylsulfenyl Triflate as a Promotor [J]. J. Org. Chem.; 1996,61, 1702-1706.
    21) Kim K. S. Fulse D. B., Baek J. Y., Lee B.-Y., Jeon H. B. Stereoselective Direct Glycosylation with Anomeric Hydroxy Sugars by Activation with Phthalic Anhydride and Trifluoromethanesulfonic Anhydride Involving Glycosyl Phthalate Intermediates[J]. J. AM. CHEM. SOC.2008,130,8537-8547
    22) Debono M., Barnhart M., Carrell C. B., Hoffmann J. A., Occolowitz J. L., Abbott B. J., Fukuda D. S., Hamill R. L., Biemann K. and Herlihy W. C, A21978C, a complex of new acidic peptide antibiotics:isolation, chemistry, and mass spectral structure elucidation[J]. J. Antibiot,1987,40,761
    23) Zmijewski M. J.,. Briggs Jr., B and Occolowitz J., Role of branched chain fatty acid precursors in regulating factor profile in the biosynthesis of A21978 C complex[J]. J. Antibiot.,1986,39,1483.
    24) Miao V., LeGal M.-F., Brian P., Brost R., Penn J., Whiting A., Martin S., Ford R., Parr R., Bouchard M., Silva C. J., Wrigley S. K., Baltz R. H., Daptomycin biosynthesis in Streptomyces roseosporus:cloning and analysis of the gene cluster and revision of peptide stereochemistry[J]. Microbiology,2005,151,1507
    25) Rawicz W., Olbrich K.C., Mclntosh T., Needham D., Evans E. (July 2000). "Effect of chain length and unsaturation on elasticity of lipid bilayers". Biophys. J.79 (1):328-39
    26) Saleem M., Nazir M., Ali M. S., Hussain H., Lee Y. S., Riaza N., Jabbara A. Antimicrobial natural products:an update on future antibiotic drug candidates[J]. Nat. Prod. Rep.,2010,27,238-254
    27) Protopopova M., Hanrahan C, Nikonenko B., Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines[J]. J Antimicrob Chemother 2005,56,968-974.
    28) Suami T. Synthetic ventures in pseudo-sugar chemistry, [J]. Pure Appl. Chem.1987,59,1509
    29) Hanessian S., Ernet A. G. Synthesis of naturally occurring C-nucleosides, their analogs, and functionalized C-glycosyl precursors. [J]. Adv Carbohydr Chem Biochem, 1976,33,111
    1) Valerio S., Iadonisi A., Adinolfi M., Ravida A. Novel Approaches for the Synthesis and Activation of Thio-and Selenoglycoside Donors[J]. J. Org. Chem.2007, 72,6097-6106,
    2) Hadd, M. J.; Gervay, J. Glycosyl iodides are highly efficient donors under neutral conditions[J]. Carbohydr. Res.1999,320,61-69.
    3) Polt, R.; Szabo'. L.; Treiberg, J.; Li, Y.; Hruby, V. General methods for alpha.-or.beta.-O-Ser/Thr glycosides and glycopeptides Solid-phase synthesis of O-glycosyl cyclic enkephalin analogs, [J]. J. Am. Chem Soc.1992,114,10249-10258.
    4) Matthew R. Pratt, Clifton D. Leigh, and Carolyn R. Bertozzi Formation of 1,1-α,α-Glycosidic Bonds By Intramolecular Aglycone Delivery. A Convergent Synthesis of Trehalose[J]. Org. Lett.,2003,5,3185-3188
    5) Bernlind C, Homans S. W., Field R. A., Synthesis of prospective disaccharide ligands for Escherichia coli 0157 verotoxin[J]. Tetrahedron Lett.,2009,50, 3397-3339.
    6) Crich D., Susantha N., Rasekera C. Mechanism of 4,6-O-Benzylidene-Directed b-Mannosylation as Determined by a-Deuterium Kinetic Isotope Effects[J]. Angew. Chem. Int. Ed.2004,43,5386-5389
    7) Baek J. Y., Choi T. J., Jeon H. B., Kim K. S., A Highly Reactive and Stereoselective b-Mannopyranosylation System:Mannosyl 4-Pentenoate/PhSeOTf [J]. Angew. Chem. Int. Ed.2006,45,7436-7440
    8) Huang, X.; Huang, L.; Wang, H.; Ye, X. S. Iterative One-Pot Synthesis of Oligosaccharides [J]. Angew. Chem. Int. Ed.,2004,43:5221-5224.
    9) Martichonok, V.; Whitesides, G. M. Stereoselective a-Sialylation with Sialyl Xanthate and Phenylsulfenyl Triflate as a Promotor [J]. J. Org. Chem.; 1996,61: 1702-1706
    10) Kim K. S., Fulse D. B., Baek J. Y., Lee B.-Y.,Heung Bae Jeon(?) Stereoselective Direct Glycosylation with Anomeric Hydroxy Sugars by Activation with Phthalic Anhydride and Trifluoromethanesulfonic Anhydride Involving Glycosyl Phthalate Intermediates[J]. J. AM. CHEM. SOC.2008,130,8537-8547
    11) Sarpe, V. A., Kulkarni, S. S. Synthesis of Maradolipid[J]. J. Org. Chem.2011, 76,6866-6870
    12) M. Nishizawa, H. Yamamoto, H. Imagawa,V. B.-C.,E. Petit, I. Azuma, D. P.-Garcia Efficient Syntheses of a Series of Trehalose Dimycolate (TDM)/Trehalose Dicorynomycolate (TDCM) Analogues and Their Interleukin-6 Level Enhancement Activity in Mice Sera[J]. J. Org. Chem.2007,72,1627-1633
    13) Boros C, Katz B., Mitchell S., Pearce C, Swinbank K., Taylor D. Emmyguyacins A and B:Unusual Glycolipids from a Sterile Fungus Species That Inhibit the Low-pH Conformational Change of Hemagglutinin A during Replication of Influenza Virus [J]. J. Nat. Prod.2002.65.108-114
    14) Passler U., Gruner M., Penkov S., Kurzchalia, T. V. H.-J. Knolker Department Chemie, Technische Universitat Dresden, Bergstr.66,01069 Dresden, Germany Synthesis of Ten Members of the Maradolipid Family; Novel Diacyltrehalose Glycolipids from Caenorhabditis elegans [J]. Synlett.2011,17,2482-2486
    15) L. Barbieri, V. Costantino, E. Fattorusso,and A. Mangoni Glycolipids from Sponges. Part 16.1 Discoside, a Rare myo-Inositol-Containing Glycolipid from the Caribbean Sponge Discodermia dissoluta J. Nat. Prod. [J].2005,68,1527-1530
    16) Y. Herrera-Salgado, M. L. G.-Ramirez, L. Vazquez, M. Y. Rios and L.Alvarez Myo-inositol-Derived Glycolipids with Anti-inflammatory Activity from Solanum lanceolatum [J]. J. Nat. Prod.2005,68,1031-1036
    17) Corey, E. J.; Posner, G. H. (19 July 1967). Selective formation of carbon-carbon bonds between unlike groups using organocopper reagents. [J]. Journal of the American Chemical Society 89 (15):3911-3912.
    18) House, H. O..; Respess, W. L.; Whitesides, G. M.. The Chemistry of Carbanions. XII. The Role of Copper in the Conjugate Addition of Organometallic Reagents [J]. The Journal of Organic Chemistry 31 (10):3128-3141.
    19) Boullanger, P., Chatelard, P., Descotes G.., Kloosterman M. Van Boom J. H. Use of the Allyloxycarbonyl Protective Group in Carbohydrate Chemistry[J]. Journal of Carbohydrate Chemistry 5,4,1986
    20) Jensen, H. H.; Bols, M. Steric effects are not the cause of the rate difference in hydrolysis of stereoisomeric glycosides [J]. Org. Lett.2003,5,3419-3421
    21) Dennis C. Koester, Markus Leibeling, Roman Neufeld, and Daniel B. Werz A Pd-Catalyzed Approach to 1,6-Linked C-Glycosides [J]. Org. Lett.,12,17,3934-3937
    22) Hancock, R. E. W., Falla, T., and Brown, M. H. Cationic Bactericidal Peptides[J]. AdV. Microb. Physiol.37,135-175.
    1, A. Varki, R. D. Cummings, J. Esko, H. Freeze, G. W. Hart and J. Marth, [M]. Essentials of Glycobiology, ed. Cold Spring Harbor Labs,Cold Spring Harbor, NY,1999.
    2 M. Fukuda and O. Hindsgaul, ed., [M]. Molecular and Cellular Glycobiology, Oxford University Press,Oxford,2000.,
    3, P. M. Rudd and R. A. Dwek, Glycosylation:heterogeneity and the 3D structure of proteins [J].Crit. Rev. Biochem. Mol. Biol.,1997,32,1.
    4, T. S. Raju, J. B. Briggs, S. M. Chamow, M. E. Winkler and A. J.S. Jones, Glycoengineering of therapeutic glycoproteins:in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues [J]. Biochemistry,2001,40,8868.
    5, S. Weikert, D. Papac, J. Briggs, D. Cowfer, S. Tom, M. Gawlitzek, J. Lofgren, S. Mehta, V. Chisholm, N. Modi, S. Eppler, K. Carroll, S. Chamow, D. Peers, P. Berman and L. Krummen, Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. [J]. Nat.Biotechnol.,1999,17,1116.
    6,B. G. Davis, Synthesis of glycoproteins[J]. Chem. Rev.,2002,102,579.
    7, B. Ernst and J. L. Magnani, From carbohydrate leads to glycomimetic drugs[J].Nat. Rev. Drug Discovery,2009,8,661-677.
    8, T. J. Boltje, T. Buskas and G.-J. Boons, Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research[J]. Nat. Chem.,2009,1,611-622.
    9, D. R. Mootoo, P.Konradsson,U. Udodong and B. Fraser-reid, Armed and disarmed n-pentenyl glycosides in saccharide couplings leading to oligosaccharides[J]. J. Am.Chem. Soc,1988,110,5583-5584.
    10, Z. Y. Zhang, I. R. Ollmann, X. S. Ye, R. Wischnat, T. Baasov and C. H. Wong, Programmable One-Pot Oligosaccharide Synthesis[J]. J. Am. Chem. Soc,1999,121, 734-753.
    12, N. L. Douglas, S. V. Ley, U. Lucking and S. L. Warriner, Tuning glycoside reactivity: New tool for efficient oligosaccharide synthesis [J]. J. Chem.Soc, Perkin Trans.1,1998, 51-66.
    13, Z. Y. Zhang, I. R. Ollmann, X. S. Ye, R. Wischnat, T. Baasov and C. H. Wong, Programmable One-Pot Oligosaccharide Synthesis[J]. J. Am. Chem. Soc,1999,121, 734-753.
    14, X. Huang, L. Huang, H.Wang and X.-S. Ye,; Iterative one-pot synthesis of oligosaccharides [J]. Angew. Chem., Int. Ed.,2004,43,5221-5224.
    15, Wang, Z., Zhou, L. Y., El-Boubbou, K., Ye, X. S.& Huang, X. F. Multi-component one-pot synthesis of the tumor-associated carbohydrate antigen Globo-H based on preactivation of thioglycosyl donors. [J]. J. Org. Chem.72,6409-6420 (2007).
    16, H. M. I. Osborn and T. H. Khan, Recent developments in polymer supported syntheses of oligosaccharides and glycopeptides[J]. Tetrahedron,1999,55,1807-1850.
    17, P. H. Seeberger and W. C. Haase, Solid-Phase Oligosaccharide Synthesis and Combinatorial Carbohydrate Libraries[J]. Chem. Rev.,2000,100,4349-4393.
    18, P. H. Seeberger, Automated oligosaccharide synthesis [J]. Chem. Soc. Rev.,2008,37, 19-28.
    19, J. D. C. Codee, L. Krock, B. Castagner and P. H. Seeberger, Automated solid-phase synthesis of protected oligosaccharides containing beta-mannosidic linkages[J]. Chem.-Eur. J.,2008,14,3987-3994
    20, Seeberger, P. H. Automated oligosaccharide synthesis.[J]. Chem. Soc. Rev.2008 37, 19-28.
    21, X. He and T. H. Chan, Ionic-Tag-Assisted Oligosaccharide Synthesis Synthesis, [J].Synthesis,2006,1645-1651.
    22, A. K. Pathak, C. K. Yemeni, Z. Young and V. Pathak, Oligomannan synthesis using ionic liquid supported glycosylation [J]. Org. Lett.,2007,10,145-148.
    23, C. K. Yemeni, V. Pathak and A. K. Pathak, Imidazolium cation supported solution-phase assembly of homolinear alpha(1-6)-linked octamannoside:an efficient alternate approach for oligosaccharide synthesis [J]. J. Org. Chem.,2009,74,6307-6310.
    24, J. Y. Huang, M. Lei and Y. G. Wang, A novel and efficient ionic liquid supported synthesis of oligosaccharides[J]. Tetrahedron Lett.2006,47,3047-3050.
    25, J. R. Bishop, M. Schuksz and J. D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology [J]. Nature,2007,446,1030-1037.
    26, N. S. Gandhi and R. L. Mancera, The structure of glycosaminoglycans and their interactions with proteins[J].Chem. Biol. Drug Des.,2008,72,455-482.
    27, X. X. Xu and Y. Dai, The structure of glycosaminoglycans and their interactions with proteins[J]. J. Cell. Mol. Med.,2010,14,175-180.
    28, K. D. Johnstone, T. Karoli, L. G. Liu, K. Dredge, E. Copeman, C. P.Li, K. Davis, E. Hammond, I. Bytheway, E. Kostewicz, F. C. K. Chiu,D. M. Shackleford, S. A. Charman, W. N. Charman, J. Harenberg,T. J. Gonda and V. Ferro, Synthesis and biological evaluation of polysulfated oligosaccharide glycosides as inhibitors of angiogenesis and tumor growth [J]. J. Med. Chem.,2010,53,1686-1699.
    29, M. de Kort, R. C. Buijsman and C. A. A. van Boeckel, Synthetic heparin derivatives as new anticoagulant drugs [J]. Drug Discovery Today,2005,10,769-779.
    30, M. Petitou, C. A. A. van Boeckel, A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? [J]. Angew. Chem., Int. Ed.,2004,43, 3118-3133
    31, S. Arungundram, K. Al-Mafraji, J. Asong, F. E. Leach, I. J. Amster, A. Venot, J. E. Turnbull and G. J. Boons, Modular synthesis of heparan sulfate oligosaccharides for structure-activity relationship studies [J]. J. Am. Chem. Soc,2009,131,17394-17405.
    32, F. Baleux, L. Loureiro-Morais, Y. Hersant, P. Clayette, F. Arenzana-Seisdedos, D. Bonnaffe and H. Lortat-Jacob, A synthetic CD4-heparan sulfate glycoconjugate inhibits CCR5 and CXCR4 HIV-1 attachment and entry [J]. Nat. Chem. Biol.,2009,5,743-748.
    33, M. Rawat, C. I. Gama, J. B. Matson and L. C. Hsieh-Wilson, Neuroactive chondroitin sulfate glycomimetics [J]. J. Am.Chem. Soc,2008,130,2959-2961.
    34, S. Peterson, A. Frick and J. Liu, Design of biologically active heparan sulfate and heparin using an enzyme-based approach[J]. Nat. Prod. Rep.,2009,26,610-627.
    35, Z.Q. Zhang, S. A. McCallum, J. Xie, L. Nieto, F. Corzana, J. Jimenez-Barbero, M. Chen, J. Liu and R. J. Lindhardt, Solution structures of chemoenzymatically synthesized heparin and its precursors [J]. J. Am.Chem. Soc,2008,130,12998-13007.
    36,C. Torres and G. Hart, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc[J]. J. Biol. Chem.,1984,259,3308-3317.
    37, R. S. Haltiwanger, M. A. Blomberg and G. W. Hart, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc[J]. J. Biol. Chem.,1992,267,9005-9013.
    38, L.Wells, Y. Gao, J. A.Mahoney, K. Vosseller, C. Chen, A. Rosen andG. W. Hart, Dynamic O-glycosylation of nuclear and cytosolic proteins:further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase[J]. J. Biol. Chem., 2002,277,1755-1761.
    39, G. W. Hart, K. D. Greis, L. Y. Dong, M. A. Blomberg, T. Y. Chou,M. S. Jiang, E. P. Roquemore,D. M. Snow, L. K. Kreppel, R.N. Cole,F. I. Comer, C. S. Arnold and B. K. Haynes, O-linked N-acetylglucosamine:the "yin-yang" of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation[J]. Adv. Exp. Med. Biol.,1995,376,115-123.
    40, J. J. Kohler, Post-translational modifications:A shift for the O-GlcNAc paradigm[J]. Nat. Chem. Biol.,2010,6,634-635.
    41, C. Slawson and G. W. Hart, Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation[J]. Curr. Opin. Struct. Biol.,2003,13,631-636.
    42, C. F. Teo, S. Ingale, M. A. Wolfert, G. A. Elsayed, L. G. N" ot, J. C.Chatham, L. Wells and G.-J. Boons, Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc[J]. Nat. Chem. Biol.,2010,6,338-343.
    43, D. C. Love and J. A. Hanover, The hexosamine signaling pathway:deciphering the "O-GlcNAc code"[J]. Sci. STKE,2005,2005,13.
    44, L. Wells and G. W. Hart, O-GlcNAc turns twenty:functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar[J]. FEBS Lett.,2003,546,154-158.
    45, L. Wells, S. A. Whelan and G. W. Hart, O-GlcNAc:a regulatory post-translational modification[J].Biochem. Biophys. Res. Commun.,2003,302,435-441.
    46, N. E. Zachara and G. W. Hart, O-GlcNAc a sensor of cellular state:the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress [J].Biochim. Biophys. Acta, Gen. Subj.,2004,1673,13-28.
    47, M. K. Park, M. D'Onofrio, M. C. Willingham and J. A. Hanover, A monoclonal antibody against a family of nuclear pore proteins (nucleoporins):O-linked N-acetylglucosamine is part of the immunodeterminant[J]. Proc. Natl. Acad. Sci. U. S. A., 1987,84,6462-6466.
    48, C. M. Snow, A. Senior and L. Gerace, Monoclonal antibodies identify a group of nuclear pore complex glycoproteins[J]. J. Cell Biol.,1987,104,1143-1156.
    49, Y. Sakaidani, K. Furukawa and T. Okajima, in Methods in Enzymology, ed. F. Minoru, O-GlcNAc modification of the extracellular domain of Notch receptors[J]. Academic Press,2010,480,355-373.
    50, P. M. Clark, J. F. Dweck, D. E. Mason, C. R. Hart, S. B. Buck, E. C.Peters, B. J. Agnew and L. C. Hsieh-Wilson, Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins [J].J. Am. Chem. Soc.,2008,130, 11576-11577.
    51, N. Khidekel, S. B. Ficarro, E. C. Peters and L. C. Hsieh-Wilson, Exploring the O-GlcNAc proteome:direct identification of O-GlcNAc-modified proteins from the brain[J]. Proc. Natl. Acad. Sci. U. S. A.,2004,101,13132-13137.
    52, B. J. Gross, B. C. Kraybill and S. Walker, Discovery of O-GlcNAc transferase inhibitors[J]. J. Am. Chem. Soc,2005,127,14588-14589.
    53, D. J.Vocadlo, H.C. Hang,E.-J. Kim, J. A. Hanover andC. R. Bertozzi, A chemical approach for identifying O-GlcNAc-modified proteins in cells[J]. Proc. Natl. Acad. Sci. U. S. A.,2003,100,9116-9121.
    54, C. Gurcel, A.-S. Vercoutter-Edouart, C. Fonbonne,M.Mortuaire, A.Salvador, J.-C. Michalski and J. Lemoine, Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging[J]. Anal. Bioanal. Chem.,2008,390,2089-2097.
    55, J. E. Rexach, C. J. Rogers, S. H. Yu, J. F. Tao, Y. E. Sun and L. C.Hsieh-Wilson, Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags[J]. Nat. Chem. Biol,2010,6,645-651.
    56, D. Macmillan, R. M. Bill, K. A. Sage,D. Fern and S. L. Flitsch, Selective in vitro glycosylation of recombinant proteins:semi-synthesis of novel homogeneous glycoforms of human erythropoietin[J]. Chem.Biol.,2001,8,133-145.
    57, G. M. Watt, J. Lund, M. Levens, V. S. K. Kolli, R. Jefferis and G. J.Boons, Site-specific glycosylation of an aglycosylated human IgGl-Fc antibody protein generates neoglycoproteins with enhanced function[J]. Chem. Biol.,2003,10,807-814.
    58, D. P. Gamblin, E.M. Scanlan and B. G. Davis, Glycoprotein synthesis:an update[J]. Chem. Rev.,2009,109,131-163.
    59, B. G. Davis, Sugars and proteins:New strategies in synthetic biology, [J]. Pure Appl. Chem.,2009,81,285-298.
    60, P. E. Dawson, T. W. Muir, I. Clarklewis and S. B. H. Kent, Synthesis of proteins by native chemical ligation, [J].Science,1994,266,776-779.
    61, T.W. Muir, D. Sondhi and P. A. Cole, Expressed protein ligation:a general method for protein engineering, [J].Proc. Natl. Acad. Sci. U. S. A.,1998,95,6705-6710.
    62, Shao, N.; Xue, J.; Guo, Z. Chemical synthesis of CD52 glycopeptides containing the acid-labile fucosyl linkage[J]. J. Org. Chem.2003,68,9003.
    63, Ansfield, S. T.; Lansbury, P. T., A convergent approach to the chemical synthesis of asparagine-linked glycopeptides [J]. J. Org. Chem.1990,55,5560.
    64, Cohen-Anisfeld, S. T.; Lansbury, P. T., Jr A practical, convergent method for glycopeptide synthesis[J]. J. Am. Chem. Soc.1993,115,10531.
    65, Miller, J. S.; Dudkin, V. Y.; Lyon, G. J.; Muir, T. W.; Danishefsky,S. J., Toward fully synthetic N-linked glycoproteins, [J]. Angew. Chem., Int. Ed.2003,42,431.
    66, Dudkin, V. Y.; Miller, J. S.; Danishefsky, S. J., Chemical synthesis of normal and transformed PSA glycopeptides, [J]. J. Am. Chem. Soc.2004,126,736.
    67.B.Liu, F,zhang,Y,zhang,G,liu A new approach for the synthesis of O-glycopeptides through a combination of solid-phase glycosylation and fluorous tagging chemistry (SHGPFT) [J]. Org. Biomol. Chem.,2014,12 (12),1892-1896
    68, F. Zhang, W. Zhang, Y. Zhang, D. P. Curran, G. Liu, Synthesis and applications of a light-fluorous glycosyl donor [J]. J. Org. Chem.2009,74,2594.
    69, Y. Zhang, B. Liu, G. Liu, Facile synthesis of tetrasaccharide aided by fluorous chemistry toward a dengue virus vaccine, [J]. Mol Divers 2013,17,613.
    70, R. Roychoudhury, N.L.B., Pohl; Synthesis of Fluorous Photolabile Aldehyde and Carbamate and Alkyl Carbamate Protecting Groups for Carbohydrate-Associated Amines[J]. Org. Lett.2014,16,1156-1159
    71, Plotkin, S. A. Vaccines:correlates of vaccine-induced immunity. Vaccines:correlates of vaccine-induced immunity [J]. Clin. Infect. Dis.47,401-409 (2008).
    72, J. J. Mond, A. Lees and C. M. Snapper, T cell-independent antigens type 2 [J]. Annu. Rev. Immunol.,1995,13,655-692.
    73, J. Lue, M. Hsu, D. Yang, P. Marx, Z. Chen and C. Cheng-Mayer, Addition of a single gpl20 glycan confers increased binding to dendritic cell-specific ICAM-3-grabbing nonintegrin and neutralization escape to human immunodeficiency virus type 1, [J]. J. Virol.,2002,76,10299-10306.
    74, R. D. Astronomo, E. Kaltgrad, A. K. Udit, S. K.Wang, K. J. Doores, C. Y. Huang, R. Pantophlet, J. C. Paulson, C. H. Wong, M. G. Finn and D. R. Burton, Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds [J]. Chem. Biol.,2010,17,357-370.
    75, K. J. Doores, Z. Fulton, V. Hong, M. K. Patel, C. N. Scanlan, M. R.Wormald, M. G. Finn, D. R. Burton, I. A. Wilson and B. G. Davis, A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity [J]. Proc. Natl. Acad. Sci. U. S. A.,2010,107, 17107-17112.
    76, T.W. Muir, D. Sondhi and P. A. Cole, Expressed protein ligation:a general method for protein engineering [J]. Proc. Natl. Acad. Sci. U. S. A.,1998,95,6705-6710
    77, S.-K. Wang, P.-H. Liang, R. D. Astronomo, T.-L. Hsu, S.-L. Hsieh, D. R. Burton, C.-H. Wong, Targeting the carbohydrates on HIV-1:Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN [J]. Proc. Natl. Acad. Sci. U. S. A.,2008,105,3690-3695.
    78, D. A. Calarese, C. N. Scanlan, M. B. Zwick, S. Deechongkit, Y.Mimura, R. Kunert, P. Zhu, M. R. Wormald, R. L. Stanfield, K. H.Roux, J.W.Kelly, P.M. Rudd, R. A. Dwek, H.Katinger,D. R. Burtonand I. A. Wilson, Antibody domain exchange is an immunological solution to carbohydrate cluster recognition [J]. Science,2003,300, 2065-2071
    79, V. Pozsgay,; Recent developments in synthetic oligosaccharide-based bacterial vaccines[J]. Curr. Top. Med. Chem.,2008,8,126-140.
    80, P. Simerska, H. Lu and I. Toth,; Synthesis of a Streptococcus pyogenes vaccine candidate based on the M protein PL1 epitope [J]. Bioorg. Med. Chem. Lett.,2009, 19,821-824
    81, A. Bongat, R. Saksena, R. Adamo, Y. Fujimoto, Z. Shiokawa, D.Peterson, K. Fukase, W. Vann and P. Kov'avc, Multimeric bivalent immunogens from recombinant tetanus toxin HC fragment, synthetic hexasaccharides, and a glycopeptide adjuvant [J]. Glycoconjugate J.,2010,27,69-77
    82, O. Renaudet, L. BenMohamed,G. Dasgupta, I. Bettahi and P. Dumy, Towards a self-adjuvanting multivalent B and T cell epitope containing synthetic glycolipopeptide cancer vaccine. [J]. Chem Med Chem,2008,3,737-741
    83,1. Bettahi, G. Dasgupta, O. Renaudet, A. Chentoufi, X. Zhang, D.Carpenter, S. Yoon, P. Dumy and L. BenMohamed, Antitumor activity of a self-adjuvanting glyco-lipopeptide vaccine bearing B cell, CD4+and CD8+T cell epitopes [J]. Cancer Immunol. Immunother.2009,58,187-200.
    84, J. Zhu, Q. Wan, D. Lee, G. Yang, M. K. Spassova, O. Ouerfelli, G. Ragupathi, P. Damani, P. O. Livingston and S. J. Danishefsky, From synthesis to biologics:preclinical data on a chemistry derived anticancer vaccine [J]. J. Am.Chem. Soc,2009,131, 9298-9303
    85, C. Geraci,G. M. L. Consoli, E. Galante, E. Bousquet,M. Pappalardo and A. Spadaro, Calix[4]arene decorated with four Tn antigen glycomimetic units and P3CS immunoadjuvant:synthesis, characterization, and anticancer immunological evaluation. [J]. Bioconjugate Chem.,2008,19,751-758.
    86, A. Miermont, H. Barnhill, E. Strable, X. Lu, K. A. Wall, Q. Wang, M. G. Finn and X. Huang, Cowpea mosaic virus capsid:a promising carrier for the development of carbohydrate based antitumor vaccines. [J]. Chem.-Eur. J.,2008,14,4939-4947.
    87, A. Hoffmann-R"oder,A.Kaiser, S.Wagner,N.Gaidzik,D.Kowalczyk, U. Westerlind, B. Gerlitzki, E. Schmitt and H. Kunz, Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen-Friedenreich antigen and a fluorine-substituted analogue. [J]. Angew. Chem., Int. Ed.,2010,49,8498-8503
    88,F. Yang, X.-J. Zheng, C.-X. Huo, Y. Wang, Y. Zhang, X.-S. Ye, Enhancement of the immunogenicity of synthetic carbohydrate vaccines by chemical modifications of STn antigen[J]. ACS Chemical Biology,2011 18):252-259
    89,S. Sahabuddin, T.-C. Chang, C.-C. Lin, F.-D. Jan, H.-Y. Hsiao, K.-T. Huang, J.-H. Chen, J.-C. Horng, J. A. Ho, C.-C. Lin [J]. Tetrahedron,2010,66,7510-7519
    90, Chatterjee, D. The mycobacterial cell wall:structure, biosynthesis and sites of drug action [J]. Curr. Opin. Chem. Biol.1997,1,579-588.
    91, Indrigo, J.; Hunter, R. L., Jr.; Actor, J. K., Cord factor trehalose 6,6'-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages, [J]. Microbiology 2003,149,2049-2059
    92,Nishikawa, Y.; Katori, T.; Kukita, K.; Ikekawa, T. [J]. Nippon Kagaku Kaishi 1982, 10,1661-1666.
    93,Toubiana, R.; Ribi, E.; McLaughlin, C; Strain, S. M. [J].Cancer Immunol. Immunotherapy.1977,2,189-193
    94, Parant, M.; Audibert, F.; Parant, F.; Chedid, L.; Soler, E.; Polonsky, J.; Lederer, E., Nonspecific immunostimulant activities of synthetic trehalose-6,6'-diesters (lower homologs of cord factor) [J]. Infect. Immun.1978,20,12-19.
    95, Olds, G. R.; Chedid, L.; Lederer, E.; Mahmoud, A. A. F. J., Induction of resistance to Schistosoma mansoni by natural cord factor and synthetic lower homologues [J]. Infect. Dis.1980,141,473-478
    96, Parant, M.; Audibert, F.; Parant, F.; Chedid, L.; Soler, E.; Polonsky, J.; Lederer, E., Nonspecific immunostimulant activities of synthetic trehalose-6,6'-diesters (lower homologs of cord factor) [J]. Infect. Immun.1978,20,12-19.
    97, Yarkoni, E.; Bekierkunst, A., Nonspecific resistance against infection with Salmonella typhi and Salmonella typhimurium induced in mice by cord factor (trehalose-6,6'-dimycolate) and its analogues [J]. Infect. Immun.1976,14,1125-1129.
    98, Guiard, J.; Collmann, A.; Gilleron, M; Mori, L.; De Libero, G.; Prandi, J.; Puzo, G. Synthesis of diacylated trehalose sulfates:candidates for a tuberculosis vaccine [J]. Angew. Chem., Int. Ed.2008,47,9734-9738
    99, Goren, M. B.; Hart, P. D.; Young, M. R.; Armstrong, J. A., Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis [J]. Proc. Natl. Acad. Sci.1976,73,2510-2514
    100, Brozna, J. P.; Horan, M.; Rademacher, J. M.; Pabst, K. M.; Pabst, M. J., Monocyte responses to sulfatide from Mycobacterium tuberculosis:inhibition of priming for enhanced release of superoxide, associated with increased secretion of interleukin-1 and tumor necrosis factor alpha, and altered protein phosphorylation [J]. Infect. Immun.1991, 59,2542-2548

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700