用户名: 密码: 验证码:
高速列车流固耦合计算方法及动力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全是交通运输的“灵魂”,是速度提高的最重要前提保障。传统的列车空气动力学忽略列车在气动力作用下运行姿态的改变,将气动激励加载到列车动力学模型,进而分析列车的安全运行问题。实际上,列车空气动力学和车辆-轨道耦合动力学是高速铁路大系统动力学中不可分割的两大组成部分,两者是相互耦合、相互影响的。列车流场的变化可能会引起气动力的变化,而在气动力作用下,列车的运行姿态可能会发生改变,进而流场的变化可能会有所加剧,列车运行姿态与空气流场(或列车气动力)的互反馈作用将使空气-列车系统处于特定的耦合振动形态。高速列车流固耦合动力学,即考虑列车在气动作用力下运行姿态的改变,可以更为客观地反映高速列车系统的本质。
     针对气动作用下的高速列车运行安全性问题,本文建立了高速列车流固耦合动力学模型及计算方法,对横风环境、风切变环境和沙尘暴环境下的高速列车运行安全性进行了研究。
     基于计算流体力学和车辆-轨道耦合动力学理论,建立高速列车流固耦合动力学模型。车辆-轨道耦合动力学模型考虑轮轨接触非线性以及悬挂系统等因素,轨道结构简化为双质量三层弹簧阻尼振动模型,其中双质量包括轨枕和道床,三层结构指的是钢轨、轨枕、道床和路基;流体计算模型采用Navier-Stokes方程和k-e两方程湍流模型。基于有限体积法求解技术以及动网格控制技术,利用ALE方法实现列车与气流之间的相互运动。
     利用建立的高速列车流固耦合动力学模型,通过交替求解车辆系统动力学和空气动力学实现了高速列车流固耦合联合仿真计算方法,车辆系统动力学的计算基于列车系统动力学软件Simpack,空气动力学的计算基于空气动力学计算软件Fluent。构建了Fluent和Simpack相结合的联合仿真环境平台,充分发挥各仿真平台的优势并消除在单一平台中进行仿真的局限性。基于空气动力学计算软件Fluent和车辆-轨道耦合动力学自编程序(VTCDP)提出了一种嵌入式的高速列车流固耦合联合仿真计算方法,改善了流固耦合变量通信模式,避免了空气动力学求解器和车辆-轨道耦合动力学求解器之间数据的相互通信,并且避免了车辆-轨道耦合动力学程序计算的等待,有效地节省了计算资源;解决了高速列车流固耦合计算对流体和结构的计算在时间尺度的要求上是不一致的问题。提出了一种基于松弛因子的高速列车流固耦合联合仿真计算方法,通过波动标准差和同步标准差的比较,当λ=0.5时各项气动力的预测值与下一时刻计算得到的气动力之间误差相对较小。
     为了快速分析横风环境下高速列车的安全运行问题,提出了计算横风下高速列车流固耦合动力学性能的同步长和异步长平衡状态方法两种方法。比较了平衡状态方法和联合仿真方法两种方法下列车姿态、安全性和舒适性指标的差异,计算结果差别在3.26%以内。研究结果表明:平衡状态方法相比联合仿真方法,能够节约了流体计算迭代步数,异步长平衡状态方法的计算效率最高。考虑耦合效应后,头车气动力(矩)和安全性指标(轮重减载率、脱轨系数、轮轴横向力)均有所恶化。在横风环境下,列车大部分漩涡分离点位于列车表面,而极少部分涡由两个主涡相互挤压而形成;随着偏航角的减小,列车背风侧脱落的主涡数量减少,列车背风侧第一主涡的分离点越来越远离头车鼻尖处。当列车运行速度大于等于300km/h时,采用轮重减载率和轮轴横向力作为安全评估指标计算得到的最高允许风速最小;当列车运行速度小于等于250km/h时,采用轮轴横向力作为安全评估指标计算得到的最高允许风速最小。
     针对高速列车的典型风切变问题,研究了不同横风速度下高速列车通过挡风墙的流固耦合动力学,分析了高速列车通过挡风墙的气动力和动力学响应,研究了横风速度对高速列车通过挡风墙的动力学影响,提出了一类具有缓冲装置的挡风墙,能够有效地改善高速列车通过挡风墙的安全性和舒适性。针对具有稳定风速区域的线性风切变问题,提出了一种快速计算高速列车流固耦合动力学的方法——准稳态计算方法,基于此方法分析了不同风切变环境下高速列车的动力学性能,结果表明:相比传统横风环境下高速列车的运行安全域,风切变环境下高速列车的运行安全域变差,环境风下列车的安全域不能仅仅考虑传统的横风环境,即风切变下高速列车运行安全的计算是非常有必要的。
     针对沙尘暴环境下的高速列车安全性问题,提出了一种半耦合求解方法,该方法兼顾了计算效率和流固耦合效应两个方面。基于此方法研究了不同沙尘暴环境下高速列车的动力学性能,研究结果表明:列车安全性指标均随着车速的增大而变差,随着沙尘暴强度的增大而变差;轮轴横向力、脱轨系数和轮重减载率出现了超过规定限值的现象,而轮轨垂向力相对较难超标;在沙尘暴环境下,当列车运行速度为350km/h时,最大允许风速仅为9.08m/s;当列车运行速度为300km/h时,最大允许风速仅为15.0m/s。
Safety is the spririt of railway transportation and the most important premise and guarantee to speed up. In the field of traditional train aerodynamics, the change of running attitude of train by the action of aerodynamic forces is neglected. The excitation forces are added to the vehicle dynamics and the running safety is analyzed. In fact, the high-speed train aerodynamics and vehicle-track dynamics, which are inseparable parts of high-speed transportation system, are mutually coupled and influenced. The running attitude of train would be changed by the action of aerodynamic forces and then the running attitude affects the flow field around train. Therefore, the aerodynamic forces of train would change and the train system would be in a particular coupling vibration state under such mutual feedback. High-speed train fluid-structure dynamics considering the change of running attitude of train by the action of fluid forces can reflect the essence of high-speed train system impersonally.
     For the running safety issue of high-speed train by the action of aerodynamic forces, the dynamic model of high-speed train fluid-structure was established. Based on the model and approaches, the running safety of high-speed train was analyzed under crossind, wind shear and sandstorm environment. In the computational fluid dynamic model, the Navier-Stokes equation and k-e two equations turbulence model were adopted; the Finite Volume Method (FVM) and moving mesh technique were used. The moving boundary between train and air was dealed with arbitrary Lagrangian-Eulerian (ALE) method.
     With the established dynamic model of high-speed train fluid-structure, a co-simulation approach of high-speed train fluid-structure interaction was presented based on the vehicle dynamics software Simpack and computational fluid dynamics software Fluent. The co-simulation platform combined with Fluent and simpack was set up to exert their advantages in separate platform and eliminate the limit with single platform in simulation. Besides, an inserted co-simulation approach of high-speed train fluid-structure interaction was presented. The datum communication of fluid solver and structure solver was avoided by inserting the program of vehicle-track coupling dynamics into the fluid dynamics program. Therefore, the calculation efficiency was improved. Moreover, a co-simulation approach with relaxation factor of high-speed train fluid-structure interaction was presented. By introducing the relaxation factor about load boundary of fluid-structure interface, the fluctuation and convergence of aerodynamic forces were improved. When relaxation factor equaled0.5, the fluctuation and convergence of aerodynamic forces were relative smaller.
     For the running safety issue of high-speed train under crosswind environment, two fast and high-efficiency equilibrium state methods were presented. The differences in aerodynamic forces and safety indexes calculated with equilibrium state method, the alternative co-simulation and off-line simulation were compared. It is shown that there is little difference in results calculated with equilibrium state method and alternative co-simulation; however, the calculation efficiency of asynchronous equilibrium state method is highest in all co-simulations. After considering the interaction effect, the aerodynamic forces and safety indexes of head coach were become larger. That's mean the running safety of high-speed train became worse. In the crosswind environment, most of vortexes were shedding from the surface of train and a few vortexes were generated by extruding between two main vortexes. Besides, with the decrease of yaw angle, the number of main vortexes shedding from train lee side decreased and the first main vortex was shedding more far from the nose of head coach. When the running speed of train is more than300km/h, the wheel unloading and wheelset lateral force are chosen as the safety evaluation indexes, which would get the minimum wind velocity allowed maximumly; when the running speed of train is less than250km/h, the wheelset lateral force is chosen as the safety evaluation index, which would get the minimum wind velocity allowed maximumly.
     For the running safety issue of high-speed train under typical wind shear environment, dynamics of high-speed train passing the windbreak in crosswind were numerical simulated based on the train aerodynamics and train dynamics. The aerodynamic forces and dynamic responses of high-speed passing the windbreak were analyzed. The dynamics on crosswind velocity were analyzed. Besides, a kind type of windbreak with buffer equipment was advanced, which could improve the safety and comfort effectively when the high-speed train passed the windbreak. For the issue of linear wind shear with a steady region, a fast approach of high-speed train fluid-structure dynamic, namely quasi-steady approach was presented. Based on that approach, the dynamic performances of high-speed train were analyzed under different wind shear environment. It found that the region of safety running speed under wind shear environment is smaller than that under traditional crosswind environment, viz. the running safety becomes worse under wind shear environment.
     For the running safety issue of high-speed train under sandstorm environment, a half interaction approach was present with the consideration of calculation effencicy and fluid-structure interaction effect. Based on that approach, the dynamic performances of high-speed train were analyzed under different sandstorm environment. It is concluded that the safety indexes become worse with the incremental of train speed and the intensity of sandstorm. Wheelset lateral force, derailment coefficient and wheel unloading are beyond the allowed values in some cases, besides, the wheel rail vertical force is relative hard to go beyond the allowed values.In the sandstorm environment, when the running speed of train is350km/h, the allowed crosswind velocity is only9.08m/s; when the running speed of train is300km/h, the allowed crosswind velocity is15m/s. Those results should be attracted some relational department's attention.
引文
1. 张卫华.机车车辆动态模拟.中国铁道出版社,2006.
    2. 沈之介.加快我国高速铁路的发展.中国铁路.1993,(7):1-4.
    3. 百度百科.高速铁路.http://baike.baidu.com/view/3743.htm.
    4. 郎茂祥.世界高速铁路的发展趋势.世界铁路报道.1997,(2):35-41.
    5. 谢贤良.时速574.8公里-法国高速列车再创世界纪录.铁道知识.2007,(5):32-37.
    6. 李宜.科技部与铁道部签署中国高速列车自主创新联合行动计划合作协议.中国科技产业.2008,3:90.
    7. 田红旗.列车空气动力学.中国铁道出版社,2007.
    8. 牧野宏美.台風13号宫崎ぞ竜卷3人死亡100人けが特急毛横転.每日新聞,2006
    9. 刘庆宽,杜彦良,乔富贵.日本列车横风和强风对策研究.铁道学报.2008,30(1):82-88
    10. Diedrichs, Ben. Studies of Two Aerodynamics Effects on High-Speed Trains Crosswind Satbility and Discomforting Car Body Vibrations Inside Tunnels. Royal Institute of Technology Doctoral Thesis, 2006
    11. R.G. Gawthorpe. Wind effects on ground transportation. Journal of Wind Engineering and Industrial Aerodynamics.1994,52 (1994):73-92
    12. T. Johnson. Strong wind effects on railway operations-16th October 1987. Journal of Wind Engineering and Industrial Aerodynamics.1996,60 (1996):251-266
    13.葛盛昌,蒋富强.兰新铁路强风地区风沙成因及挡风墙防风效果分析.铁道工程学报.2009(5):1-4.
    14.高广军,田红旗,姚松,刘堂红,毕光红.兰新线强横风对车辆倾覆稳定性的影响[J].铁道学报,2004,26(04):36-40.
    15.百度百科.百里风区.http://baike.baidu.com/view/814072.htm
    16.百度百科.沙尘暴.http://baike.baidu.com/view/2097.htm
    17. Burkhard Schulte-Werning. TRANSAERO:a European initiative on transient aerodynamics for railway system optimization. Sperling.2002.
    18. European Standard. Railway applications-Aerodynamics-Part 6:Requirements and test procedures for cross wind assessment.2010.1 (BS EN 14067-6:2010)
    19. Cooper R.K.. Tests on a 1/5th scale APT-P in the MIRA wind tunnel. British Rail Research Division Technical Memorandum TMAERO 28,1978
    20. Cooper R.K.. Wind tunnel tests on a 1/25th scale APT-P model. British Rail Research Division Technical Memorandum TMAERO 43,1982
    21. Cooper R.K.. The probability of trains overturning in high winds, Proc.5th Int. Conf. on Wind Engineering, Fort Collins, CO, USA, Pergamon,1979,1185-1194
    22. Copley J.M. The three-dimensional flow around railway trains. Journal of Wind Engineering and Industrial Aerodynamics.1987,26(1):21-52
    23. Chiu T.W. A two-dimensional second-order vortex panel method for the flow in a cross-wind over a train and other two-dimensional bluff bodies. Journal of wind engineering and industrial aerodynamics.1991,37:43-64.
    24. Chiu T.W. Prediction of the aerodynamic loads on a railway train in a cross-wind atlarge yaw angles using an integrated two-and three-dimensional source/vortex panelmethod. Journal of wind engineering and industrial aerodynamics.1995,57:19-39.
    25. Chiu T.W., Squire L.C. An experimental study of the flow over a train in a crosswindat a large yaw angle up to 90°. Journal of wind engineering and industrialaerodynamics.1992,45:47-74.
    26. Khier W, Breuer M, Durst F. Flow structure around trains under side wind conditions:anumerical study. Computers&Fluids.2000,29(2):179-195.
    27. Khier,W., Breuer, M., and Durst, F. Numerical computation of 3-D turbulent flow around high-speed trains under side wind conditions. TRANSAERO-a Europeaninitiative on transient aerodynamics for railway system optimization, Springer-Verlag,2002,75-84.
    28. Fauchier C, Devehat Le E., Gregoire R. Numerical study of the turbulent flow around the reduced-scale model of an inter-Regio. In TRANSAERO-A European initiative on transient aerodynamics for railway system optimization. Springer-Verlag,2002,61-74.
    29. Baker C. J. Ground vehicles in high cross winds. Part Ⅰ:steady aerodynamic forces.Journal of Fluids and Structures.1991,5:69-90.
    30. Baker C. J. Ground vehicles in high cross winds. Part Ⅱ:unsteady aerodynamic forces.Journal of Fluids and Structures.1991,5:91-111.
    31. Baker C. J. Ground vehicles in high cross winds. Part Ⅲ:The interaction of aerodynamic forces and the vehicle system. Journal of Fluids and Structures.1991,5:221-241.
    32. Baker C. J. and N. Humphreys. Assessment of the adequacy of various wind tunnel techniques to obtain aerodynamic data for ground vehicles in cross winds. Journal of Wind Engineering and Industrial Aerodynamics.1996,60:49-68
    33. Baker C. J. The effects of high winds on vehicle behaviour. Conference on Bridge Aerodynamics, Copenhagen,1998:267-282
    34. Baker C. J., F. Lopez-Calleja, J. Jones, and J. Munday. Measurements of the cross windforces on trains. Journal of Wind Engineering and Industrial Aerodynamics.2004,92:547-563
    35. Baker, C.J. The simulation of unsteady aerodynamic crosswind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics,2010,98:88-99.
    36. Baker, C.J., Hemida, H., Iwnicki, S., Xie, G., Ongaro, D. Integration of crosswind forces into train dynamic modelling. Proc. IMechE Part F:J. Rail and Rapid Transit,2011,225:154-164.
    37. Ding, Y., Sterling,M., Baker, C.J. An alternative approach to modeling train stability in high cross winds. Proc. IMechE Part F:J. Rail and Rapid Transit,2008,222:85-97.
    38. Krajnovic Sinisa, Hemida Hassan, and Diedrichs, Ben:Time-Dependent Simulations for the Directional Stability of High Speed Trains under the Influence of Cross Winds or Cruising Inside Tunnels. Fluid Dynamics Applications in Ground Transportation:Simulation, a primary delepment tool in the automotive industry, Lyon, France,2005
    39. Krajnovic, Sinisa; Hemida, Hassan:On The Aerodynamics of High Speed Trains using Computer Simulations. Proceedings of the EURNEX-ZEL 2007,15th International Symposium, towards more competitive European rail systems, Zilina, Zlovakia,2007
    40. Krajnovic, Sinisa:Numerical Simulation of the Flow Around an ICE2 Train Under the Influence of a Wind Gust. International Conference on Railway Engineering 2008 (IET ICRE2008), Challenges for Railway Transportation in Information Age, China,2008
    41. Hemida, Hassan; Krajnovic, Sinisa:Parallel CFD Computations of Cross-Wind Stability on an ICE2 Train. PARA'06:Workshop on State-of-the-art in Scientific and Parallel Computing, Sweden,2006, 1-4
    42. Hemida, Hassan; Krajnovic, Sinisa:Numerical Study of the Unsteady Flow Structures Around Train-Shaped Body Subjected to Side Winds. ECCOMAS CFD 2006. The Netherlands,2006,1-14
    43. Hemida, H. Large-eddy simulation of the flow around simplified high-speed trains under side wind conditions. Chalmers University of Technology Doctoral Thesis.2006:19-35
    44. Hemida, Hassan; Krajnovic, Sinisa; Davidson, Lars:Large-Eddy Simulation of the Flow Around a Simplified High Speed Train Under the Influence of a Cross-Wind.17th AIAA Computational Fluid Dynamic conference. Canada,2005
    45. Hemida, Hassan:Krajnovic, Sinisa:Exploring the Flow Around a Generic High-Speed Train Under the Influence of Side Winds Using LES. Fourth International Symposium on Computational Wind Engineering. Japan,2006.
    46. Dierichs, B. On computational fluid dynamics modeling of crosswind effects for high-speed rolling stock, Proc. IMechE Part F:Journal of Rail of Rapid Transit,2003,217:203-226.
    47. Dierichs, B., Sima, M., Orellano, A. Tengstrand, H. Crosswind stability of a high-speed train on a high embankment, Proc. IMechE Part F:Journal of Rail of Rapid Transit,2007,221:205-225.
    48. Thomas, D., Diedrichs, B., Berg, M., Stichel, S. Dynamics of a high-speed rail vehicle negotiating curves at unsteady crosswind. Proc. IMechE Part F:Journal of Rail of Rapid Transit,2010, 224:567-579.
    49. Cheli F., Belforte P., Melzi S., Sabbioni E., Tomasini G.,2006. Numerical-experimental approach for evaluating crosswind aerodynamic effects on heavy vehicles, Vehicle System Dynamics 44 Supplement,791-704.
    50. Bocciolone, M., Cheli, F., Corradi, R., Muggiasca, S., Tomasini. G. Crosswind action on rail vehicles: Wind tunnel experimental analyses. Journal of Wind Engineering and Industrial Aerodynamics,2008, 96:584-610.
    51. Cheli, F., Ripamonti, F., Rocchi, D., Tomasini,G. Aerodynamic behaviour investigation of the new EMUV250 train to cross wind. Journal of Wind Engineering and Industrial Aerodynamics,2010, 98:189-201.
    52. Suzuki, M., Tanemoto,K., Maeda,T. Aerodynamic characteristics of train/vehicles under cross winds. Journal of Wind Engineering and Industrial Aerodynamics,2003,91:209-218.
    54.福地合一,林田千秋,西泽正一,土屋恂.横風による列転倒の静力学的检讨.铁道技術研究报告,1973,(6):1-42
    55.餘部事故技衍调查委员会.餘部事故技術调查委具会告害.束京,财团法人铁道総合技衍研究所,1988
    56.日比野有,石田弘明.車両の転覆限界風速に関よる静解析法.铁道総研報告,2003,17(4):39-44
    57.梁习锋,熊小慧,4种车型横向气动性能分析与比较,中南大学学报(自然科学版),2006,37(3):607-612.
    58.梁习锋,熊小慧,易仕和,强侧风作用下棚车气动外形优化,国防科技大学学报,2006,28(2):26-30.
    59.梁习锋,沈娴雅,环境风与列车交会耦合作用下磁浮列车横向气动性能.中南大学学报(自然科学版),2007,38(4):751-757.
    60.周丹,张健,横风对双层集装箱平车气动特性的影响,铁道机车车辆,2004,24(3):17-20
    61.周丹,田红旗,鲁寨军,大风对路堤上运行的客运列车气动性能的影响,交通运输工程学报,2007,7(4):6-9
    62.周丹,田红旗,杨明智等,强侧风作用下不同类型铁路货车在青藏线路堤上运行时的气动性能比较,铁道学报,2007,29(5):32-36
    63.何华,田红旗,熊小慧等.横风作用下敞车的气动性能研究.中国铁道科学.2006,27(3):73-77
    64.熊小慧,梁习锋,高广军等,兰州2新疆线强侧风作用下车辆的气动特性,中南大学学报(自然科学版),2006,37(6):1183-1188
    65.张健,路堤上铁道车辆的横风气动特性试验研究,国外铁道车辆,2007,44(1):26-28
    66.张健,梁习锋.铁道车辆通过桥梁的横风气动特性试验研究.国外铁道车辆.2003,40(3):23-25
    67.张健,铁路防风栅抗风性能风洞试验研究与分析,铁道科学与工程学报,2007,4(1):13-17
    68.李燕飞,梁习锋,刘堂红,环境风对路堤上快运集装箱平车气动力性能影响,铁道科学与工程学报,2007,4(5):78-82
    69.高广军,李鹏.青藏线上集装箱平车在强横风下的稳定性.中南大学学报(自然科学版),2011,42(02):533-538.
    70.高广军,田红旗,张健.横风对双层集装箱平车运行稳定性的影响.交通运输工程学报,2004,4(2):45-48.
    71.高广军.强侧风作用下列车运行安全性研究.中南大学博士论文,2008.
    72.任尊松,徐宇工,王璐雷,邱英政.强侧风对高速列车运行安全性影响研究.铁道学报.2006,28(6):46-50.
    73.宋洋,任尊松.强侧向风作用下的高速列车动力学性能研究.铁道车辆,2006,44(10):4-7.
    74.马静,张杰,杨志刚.横风下高速列车非定常空气动力特性研究.铁道学报,2008,30(6):109-114.
    75.杨志刚,马静,陈羽,张杰.横风中不同行驶工况下高速列车非定常空气动力特性.铁道学报,2010,32(02):18-23
    76.李雪冰.高速列车交会时的气流诱发振动研究.西南交通大学硕士学位论文,2009.
    77.李雪冰,张继业,张卫华.高速列车交会时气流诱发振动的仿真研究.铁道车辆,2009,47(12):9-13.
    78.李雪冰,侯传伦,张曙光,张继业,张卫华,高速列车交会时的风致振动研究,振动与冲击,2009,28(7):81-86.
    79.冯志鹏,张继业,张卫华.高速列车在隧道内和明线上交会时的气动性能研究。铁道车辆.2010,48(12):1-6.
    80. Feng Zhipeng, Zhang Jiye and Zhang Weihua. The Vehicle Dynamical Analysis of a High-speed Train Passing through a Tunnel. Applied Mechanics and Materials Vols.29-32 (2010):835-840.
    81.冯志鹏.高速列车气动性能与外形设计.西南交通大学硕士学位论文,2011.
    82.郑循皓,张继业,张卫华.高速列车转向架空气阻力的数值模拟.交通运输工程学报.2011,11(2):45-51.
    83.刘加利.高速列车气动噪声的理论研究与数值模拟.西南交通大学硕士学位论文,2009.
    84.刘加利,张继业,张卫华.高速列车车身表面气动噪声源研究.铁道车辆.2010,48(5):1-5.
    85.刘加利,张继业,张卫华.高速列车车内中高频气动噪声研究.交通运输工程学报,2011,11(3):55-60.
    86.刘加利,张继业,张卫华.高速列车车头气动噪声分析.铁道学报,2011,33(9):19-26
    87.谭深根.侧风下高速列车气动性能分析.西南交通大学硕士学位论文,2008.
    88.于梦阁.高速列车风致安全研究.西南交通大学硕士学位论文,2010.
    89.谭深根,李雪冰,张继业,张卫华.路堤上运行的高速列车在侧风下的流场结构及气动性能,铁道车辆,2008,46(8):4-8.
    90.谭深根,李雪冰,张继业,张卫华.高速列车在不同路况下的横向气动性能比较, 四川大学学报(工程科学版),2008, vol.40(Supp.)89-92.
    91.李雪冰,张继业,谭深根,张卫华.强横风下高速列车曲线通过气动特性分析,四川大学学报(工程科学版),2008,vol.40(Supp.)166-168.
    92. Tan Shengen, Li Xuebing, Zhang Jiye, Zhang Weihua. Flow Structure and Aerodynamic loads of High-Speed Train Running on bridges under crosswind. Innovation & Sustainability of Modern Railway Proceeding of ISMR:2008, pp.623-626.
    93. Li Xuebing, Tan Shengen, Zhang Jiye, Zhang Weihua. A Numerical Study on Aerodynamics of High-Speed Train Focus on Different Ground Condition. Innovation & Sustainability of Modern Railway Proceeding of ISMR'2008, pp.601-606.
    94. Li Tian, Zhang Jiye, Zhang Weihua, An investigation on numerical simulation of flow over cross-section of train under crosswind condition, Innovation & Sustainability of Modern Railway Proceeding of ISMR'2008,pp.607-611.
    95.李雪冰,杨征,张继业,张卫华.强风中高速列车空气动力学性能.交通运输工程学报.2009,9(2):66-73.
    96.于梦阁,张继业,张卫华.侧风下高速列车车体与轮对的运行姿态[J].交通运输工程学报,2011,11(4):48-55.
    97.刘加利,于梦阁,张继业,张卫华.基于大涡模拟的高速列车横风运行安全性研究.铁道学报,2011,33(4):13-21.
    98.于梦阁,张继业,张卫华.侧风下350km/h高速列车运行安全性研究.机械设计与制造,2011,5:174-176.
    99.李田,张继业,张卫华.横风下车辆轨道耦合动力学性能研究.交通运输工程学报.2011,11(5):55-60.
    100. Li Tian, Zhang Jiye, Zhang Weihua. An Improved algorithm for fluid-structure interaction of high-speed trains under crosswind. Journal of modern transportation.2011,9(2):75-81.
    101.于梦阁,张继业,张卫华.平地上高速列车的风致安全特性.西南交通大学学报.2011,46:989-995.
    102.王永冠,陈康.横风对高速动车曲线通过性能的影响.西南交通大学学报,2005,40(2):224-227.
    103.陈康,罗赟.横风对液力传动动车直线运行性能的影响.铁道车辆,2003,(6):22-24.
    104.杨吉忠.考虑空气动力效应时高速列车运行安全平稳性研究.西南交通大学博士学位论文,2009.
    105.杨吉忠,翟婉明,毕海权.横风环境下铁路车辆振动响应分析.系统仿真学报,2010,22(9):2080-2084.
    106.杨吉忠,毕海权,翟婉明.基于ALE方法的列车横风绕流动力学分析.铁道学报,2009,31(2):120-124.
    107.崔涛,张卫华.基于姿态变化的列车侧风安全性研究.铁道学报,2010,32(5):25-29.
    108.俞飞,姬鸿丽.低空风切变的分析与预报.四川气象,2001,21(03):18-19.
    109.梁爱民,陈露.低空风切变与飞行安全.中国民用航空,2009,105(09):32-33.
    110.李秀连,付强,王科,丁叶风.风切变对飞行的影响及其预报时效分析.气象科技,2010,38(02):170-174.
    111.彭笑非.低空风切变对飞机进近着陆的影响分析.科技经济市场,2010,15(07):34-36.
    112.程勇.风切变与飞行.中国民用航空,2008,87(03):62-64.
    113.陈扬鉴,李翰芝,吕玉虎.飞机在风切变下进场的模拟试验研究.飞行力学,1995,13(01):75-83.
    114.程小慷.水平风的垂切变对飞机纵向稳定性的影响.成都信息工程学院学报,2002,17(1):20-23.
    115.张序,刘岷江.飞行中风切变的判断及处置.中国民用航空,2008,90(06):62-63.
    116.肖正明,刘昕.风切变对飞行安全的危害及预防.中国民用航空,2010,117(09):58-59.
    117.庄卫方.香港新机场风切变与湍流警报系统简介.民航经济与技术,1999,(09):24-25.
    118.胡朝江,李晓冲,袁有志.大飞机风切变探测告警系统.中国民航大学学报,2008,26(05):23-25.
    119.张鲁民.航天飞机空气动力学分析国防工业出版社.2009.
    120.刘磊,石可重,杨科,徐建中.风切变对风力机气动载荷的影响.工程热物理学报,2010,(10)
    121. Duce RA, Unni CK, Ray BJ, et al. Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific:temporal variability.Science,1980,209 (4464):1522-1524.
    122. Xuan, J,I. N Sokolik. Characteristics of sources and emission rates of mineral dust in Northern China.Atmos. Environ.2002,36:4863-4876.
    123. Joseph P H. Influence of vegetation cover and crust type on wind-blown sediment in a semi-arid climate J Arid Environ,2004,58:167-179.
    124.袁薇.中国沙尘天气对区域环境影响的初步研究.兰州大学,2006.
    125.任玉新,陈海昕.计算流体力学基础.清华大学出版社,2006
    126.陈卓如,金朝铭,王洪杰等.工程流体力学(第2版).高等教育出版社,2004
    127.蔡树棠,刘宇陆.湍流理论.上海:上海交通大学出版社,1993
    128.苏铭德,黄素逸.计算流体力学基础.清华大学出版社,1997
    129.林建忠,阮晓东,陈邦国等.流体力学.清华大学出版社,2005
    130.苏铭德,黄素逸.计算流体力学基础.清华大学出版社,1997
    131.翟婉明.车辆—轨道垂向耦合动力学成都:西南交通大学博十学位论文,1991
    132.翟婉明.车辆—轨道耦合动力学.第三版.北京:中国铁道出版社,2007
    133.翟婉明.车辆—轨道垂向系统的统一模型及其耦合动力学原理.铁道学报,1992,14(3):10-21
    134. Zhai, W., Sun, X.,1994. A detailed model for investigating interaction between railway vehicle and track. Vehicle System Dynamics 23(Suppl),603-614.
    135. Zhai, W.M., Cai, C.B., Guo, S.Z.,1996. Coupling model of vertical and lateral vehicle/track interactions. Vehicle System Dynamics 26(1),61-79.
    136. Zhai Wan-ming. Two simple fast integration methods for large-scale dynamic problems in engineering. International Journal for Numerical Methods in Engineering,1996,39(24):4199-4214
    137.翟婉明.非线性结构动力分析的Newmark预测—校正积分模式.计算结构力学及其应用,1990,7(2):51-58
    138.陈果.车辆—轨道耦合系统随机振动分析.成都:西南交通大学博十学位论文,2000
    139.张雄,陆明万,王建军.任意拉格朗日—欧拉描述法研究进展.计算力学学报.1997,14(1):91-102
    140.李保卫,苍大强,Y.Sahai.任意欧拉—拉格朗日耦合框架下三维非定态可压缩流体流动的数值模拟.1999,18(2):87-90
    141. T.Nomura, T.J.R.Hughes, An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Comput. Methods Appl. Mech. Engrg.1992,95:115-138
    142. J.Sarrate, A.Huerta, J.Donea, Arbitrary Lagrangian-Eulerian Formulation for fluid-rigid body interaction, Comput. Methods Appl. Mech. Engrg.2001,190:3171-3188
    143.蒋莉,沈孟育.求解流体与结构相互作用问题的ALE有限体积方法.水动力学研究与进展.2000,15(2):148-155
    144. Li Tian, Zhang Jiye, Zhang Weihua. Nonlinear characteristics of vortex-Induced vibration at low Reynolds number. Communications in Nonlinear Science and Numerical Simulations,2011,16: 2753-2771.
    145.李田,张继业,张卫华.二维弹性圆柱涡致振动的尾涡模态.空气动力学学报,2010,28(6):691-698.
    146. Mistsuhiro M, Kazuhiro N, Kisa M. Unstructured dynamic mesh for large movement and deformation. AIAA 2002;40:1-11.
    147.铁道部.高速动车组整车试验规范.2008年2月20日.
    148.TB/T 2360-93,铁道机车动力学性能试验鉴定方法及评定标准,1993.
    149.GB 5599-85,铁道车辆动力学性能评定和试验鉴定规范,1985.
    150. Fluent.Inc. FLUENT User's Guide. Fluent Inc.,2003.
    151.江帆,黄鹏.Fluent高级应用与实例分析.清华大学出版社.2008.
    152.GB/T 20480,沙尘暴天气等级,2006.
    153.万本太,康晓风,张建辉.基于颗粒物浓度的沙尘天气分级标准研究,中国环境监测,2004,3:8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700