用户名: 密码: 验证码:
不同气象条件下太湖底泥再悬浮和水温的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
底泥再悬浮和水温对太湖蓝藻暴发具有重要的生态学意义,而已有的研究多数集中在水槽实验和个别站点的非连续性观测分析,迄今为止,基于实际变化的气象场驱动下底泥再悬浮和水温的时空分布模拟较为鲜见。本文采用中尺度天气研究和预报模式(WRF)提供初始气象场、第三代近岸波浪模型(SWAN)提供初始波浪场,基于非结构有限体积近海海洋模型(FVCOM),对不同气象条件下太湖底泥再悬浮和水温进行了模拟研究,并分析了与底泥再悬浮密切相关的真光层深度的影响因子。主要结论概括如下:
     (1)首先,利用多年平均风速和不同风向驱动FVCOM模式得到16个不同风向下太湖风生流的辐合辐散和垂直运动场,通过统计分析发现风场驱动下流场的辐合和下沉运动与太湖底泥的空间分布有密切关系。
     (2)其次,在实际气象场(温、压、湿、风等)和波浪场驱动下,FVCOM模式对底泥再悬浮的空间模拟结果与卫星反演结果吻合较好,较以往的研究有较大改进。在此基础上,对四种不同风向条件下太湖底泥再悬浮进行了敏感性实验,发现在相同的风速下除了主导风向(东南风和西北风)对太湖底泥再悬浮有重要的作用外,非主导风向(东北风和西南风)对底泥再悬浮也有着不可忽视的作用;在不同的风向条件下,湖心区和西南湖区的悬浮物浓度总是比较大,原因主要是由于湖心区虽然底泥厚度小,但其流场分布总是有利于周围的悬浮物向湖心区输送所致;而在西南湖区,本身就存在较厚的底泥,在波浪和湖流的作用下底泥容易再悬浮。
     (3)再次,对与太湖底泥再悬浮密切相关的吸收系数、散射系数以及太阳高度角对真光层深度的影响进行了深入的研究,首次从理论上得到了这三者对真光层深度的影响关系,并得到了太湖实测站点观测数据的验证。具体为:散射系数与吸收系数的比(b/a)值的大小是决定太阳高度角对真光层深度影响的关键因子,当b/a_>15时,太阳高度角对真光层深度的影响较小,基本可以忽略;而太阳高度角在10~70°之间变化时,真光层深度的变化幅度较大。
     (4)最后,通过中尺度WRF模式提供的气象场并考虑波浪的作用,利用优化后的FVCOM模式对太湖的水温进行了模拟研究,得到了水温的连续空间变化和上下层温差的空间分布,并利用单站实测水温进行了验证;在此基础上通过改变风速、气温、蒸发、短波辐射和增加降水对太湖上下层水温差的影响因子进行了敏感性实验,结果表明风速和太阳短波辐射是影响上下层温差的主要气象因子。
The sediment resuspension and water temperature have important ecological significance on the outbreak of algal blooms in Taihu Lake, but recent studies have mainly concentrated on the flume experiments and individual site observation analysis, whereas the continuous temporal and spatial distribution driven by the real meteorological conditions has been scarcely studied. In this paper, with initial fields provided by Weather Research and Forecasting model (WRF) and Simulating WAves Nearshore (SWAN) model respectively, the spatial distributions of sediment resuspension and water temperature in Taihu Lake were simulated under different meteorological conditions by using Finite Volume Coastal Ocean Model (FVCOM). Meanwhile, the impact factors of the euphotic depth which are closely related to the sediment resuspension were also discussed. The major results are summarized as follows:
     (1) Firstly, the distributions of convergence and subsidence regions driven by the wind fields are closely related to the spatial distribution of sediment in Taihu Lake, deriving from statistic analysis on 16 current fields simulated by FVCOM model which is driven by annual average wind speed and specified different wind directions.
     (2) Secondly, under the real meteorological conditions (temperature, pressure, humidity, wind etc.) and the wave action, the simulation result of the sediment resuspension by the FVCOM model is in agreement with the satellite retrieval result, which has a greater improvement than the previous studies. In addition, the sensitivity experiments show that at the same wind speed, not only the dominant winds (northwest and southeast wind directions) play an important role in the sediment resuspension, meanwhile, but also the effect of the non-dominant winds (northeast and southwest wind directions) cannot be ignored. Under different wind conditions, the sediment concentration is always larger in the center and southwest of Taihu Lake due to the fact that although the sediment thickness is small in the center, the flow fields are helpful for the surrounding suspended solids to transport to the central area, while the sediment is thick in the southwest where it is easier to be resuspended by the wave and current.
     (3) Thirdly, investigation is also conducted on the effects of the absorption and scattering coefficients, which are closely related to the sediment concentration, as well as the solar elevation angle on the euphotic depth. The theoretical relationship among them, which is validated by the point observation data, is revealed as follows:the ratio of scattering to absorption coefficients (b/a) is the key factor to determine the extent of the solar elevation angle impacting on the euphotic depth, which would be smaller or even be neglected if the ratio (b/a) is reaching to 15 or larger. The change of euphotic depth is larger when the solar elevation angle varied between 10 to 70°.
     (4) Finally, driven by the simulated meteorological and wave data, the water temperature and the vertical temperature difference were simulated by the optimized FVCOM model in Taihu Lake, which was verified by the in situ data. Based on the above, the sensitivity experiments of vertical temperature difference to the wind speed, temperature, evaporation, solar radiation and precipitation were also conducted. The results show that the wind speed and solar radiation are the main meteorological factors affecting the vertical temperature difference in the lake.
引文
Anis A, Singhal G. Mixing in the surface boundary layer of a tropical freshwater reservoir[J]. Journal of Marine Systems,2006,63(3/4):225-243.
    Austin R W and Petzold T J.'The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner'. In:Oceanography from Space, Gower J.F.R. ed. (Plenum, New York), 1981:239-256.
    Bacon S, Carter D J T. A connection between mean wave height and atmospheric pressure gradient in the North Atlantic[J]. International Journal of Climatology,1993,13 (4):423-436
    Baker K S, Smith R C. Quasi-inherent characteristics of the diffuse attenuation coefficient for irradiance[J], Ocean Optics VI, S.Q.Duntley, ed., Proc.SPIE,1979,208:60-63.
    Bijker E W. The increase of bedshear in a current due to wave motion [J]. Proceedings of 10th Conference on Coastal Engineering, Tokyo, Japan, ICCE,1966,1, chap.43:746-765.
    Blom G, van Duin E H S, Lijklema L. Sediment resuspension and light conditions in some shallow Dutch lakes[J]. Water Science and Technology,1994,30(10):243-252.
    Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains[J]. Limnology and Oceanography,1981,26(1):43-53.
    Booij N, Holthuijsen L H, Ris R C. The SWAN wave model for shallow water[J]. Orlando:Proceedings of the 25th international Conference on Coastal Engineering,1996:668-676.
    Booth J G, Miller R L, Mckee B A, et al. Wind-induced bottom sediment resuspension in a microtidal coastal environment [J]. Continental Shelf Research,2000,20:784-806.
    Bouws E, Jannink D, Komen G J. The increasing wave height in the North Atlantic Ocean[J]. Bulletin of the American Meteorological Society,1996,77 (10):2275-2277.
    Carrick H J, Aldridge F J, Schelske C L. Wind influences phytoplankton biomass and composition in a shallow, productive lake[J]. Limnology and Oceanography,1993,38 (6):1179-1192.
    Cervantes-Duarte R, Mueller J L, Trees C C, et al. Euphotic depth, irradiance attenuation and remote sensing K490 in bio-optical provinces of the Gulf of California[J]. Ciencias Marinas,2000,26 (4): 533-560.
    Cleveland J S, Weidemann A D. Quantifying absorption by aquatic particles:a multiple scattering correction for glass-fiber filter[J]. Limnology and Oceanography,1993,38 (6):1321-1327.
    Chen C S, Beardsley R C, Franks P J S, et al. Influence of diurnal heating on stratification and residual circulation of Georges Bank[J]. J. Geophys. Res.,2003a,108 (C11):1-21.
    Chen C S, Liu H D, Robert C B. An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model:Application to Coastal Ocean and Estuaries[J]. Journal of Atmosphere and Oceanic Technology,2003b,20(1):159-186.
    Chen C S, Robert C B, Beardsley, Cowles G. An Unstructured Grid, Finite-Volume Coastal Ocean Model FVCOM User Manual[M]. http://fvcom.smast.umassd.edu/FVCOM/index.html, Second Edition, 2006.
    Chen F, Zhang Y M, Guo S Y. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture[J]. Biotechnology Letters,1996,18 (5):603-608.
    Chen G, Chapron B, Ezraty R, et al. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer[J]. J. Atmos. Oceanic. Technol,2002,19(11):1849-1859.
    Chen Z Q, Muller-Karger F E, Hu C M. Remote sensing of water clarity in Tampa Bay[J]. Remote Sensing of Environment,2007,109 (2):249-259.
    Churchill J H, Kerfoot W C. The impact of surface heat flux and wind on thermal stratification in Portage lake, Michigan[J]. Journal of Great Lake Research,2007,33:143-155.
    Cozar A, Galvez J A, Hull V, et al. Sediment resuspension by wind in a shallow of Esteros del Ibera(Argentina):a model based on turbidimetry[J]. Ecological Modelling,2005,186(1):63-76.
    Eduardo von Sperling. The process of biomass formation as the key point in the restoration of tropical eutrophic lakes[J]. Hydrobiologia,1997,342/343(0):351-354.
    Eduardo von Sperling, Da Silva Ferreira A C, Nunes Ludolf Gomes L. Comparative eutrophication development in two Brazilian water supply reservoirs with respect to nutrient concentrations and bacteria growth[J]. Desalination,2008,226 (1-3):169-174.
    Eppley R W. Temperature and phytoplankton growth in the sea[J]. Fish. Bull.,1972,70 (4):1063-1085.
    Fan C X, Zhang L, Qin B Q, et al. Estimation on dynamic release of Phosphorus from wind-induced suspended particulate matter in Lake Taihu[J]. Science in China Ser. D Earth Sciences,2004,47(8): 710-719.
    French T D, Petticrew E L. Chlorophyll a seasonality in four shallow eutrophic lakes (northern British Columbia, Canada) and the critical roles of internal phosphorus loading and temperature[J]. Hydrobiologia,2007,575 (1):285-299.
    Giffin D, Corbett D R. Evaluation of sediment dynamics in coastal systems via short-lived radioisotopes[J]. Journal of Marine Systems,2003,42(3/4):83-96.
    Gill A E. Atmosphere-Ocean dynamics[M]. Academic Press,1982:33-36.
    Goldman J C, Carpenter E J. A kinetic approach to the effect of temperature on algal growth[J]. Limnology and Oceanography,1974,19(5):756-766.
    Gordon H R. Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?[J]. Limnology and Oceanography,1989,34:1389-1409.
    Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. J Geophys Res., 1979,84:1797-1808.
    Hadfield M G, Sharples J. Modeling mixed layer depth and plankton biomass off the west coast of South Island, New Zealand[J]. Journal of marine systems,1996,8:1-29
    Hamilton D P, Mitchell S F. An empirical model for sediment resuspension in shallow lakes [J]. Hydrobiologia,1996,317:209-220.
    Hassan H, Hanaki K, Matsuo T. A modeling approach to simulate impact of climate change in lake water quality phytoplankton growth rate assessment J]. Water Science and Technology,1998,37 (2):177-185.
    Havens K E, Schelske C L. The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in lakes and reservoirs [J]. Environmental Pollution, 2001,113:1-9.
    Holmesr W. The secchi disk in t urbid coastal waters[J]. Limnol. Oceanogr.,1970,15:688-694.
    Irigoiena X, Castel J. Light Limitation and Distribution of Chlorophyll Pigments in a Highly Turbid Estuary:the Gironde (SW France)[J]. Estuarine, Coastal Shelf Science,1997,44(4):507-517.
    Jackson D F. Ecological factors governing blue-green algal blooms. Purdue University Extension, Series 117,1964:402-420.
    James W F, Best E P, Barko J W. Sediment resuspension and light attenuation in Peoria Lake:can macrophytes improve water quality in this shallow system[J]. Hydrobiologia,2004,515:193-201.
    Jerome P Y Maa, Larry Sanford, Jeffery P Halka. Sediment resuspension characteristics in Baltimore Harbor, Maryland[J]. Marine Geology,1998,146(1-4):137-145.
    Ji R, Chen C, Budd J W, et al. Influences of suspended sediments on the ecosystem in Lake Michigan:a 3-D coupled bio-physical modeling experiment[J]. Ecological Modeling,2002,152:169-190.
    Jin K R, Ji Z G. Calibration and verification of spectral wind-wave model for Lake Okeechobee[J]. Ocean Engineering,1999,28:571-584.
    Kara A B, Helber R W, Boyer T P, et al. Mixed layer depth in the Aegean, Marmara, Black and Azov sea: Part Ⅰ:General features [J]. Journal of Marine Systems,2009,78:169-180.
    Kim T A, Cho Y K. Calculation of heat flux in a macrotidal flat using FVCOM[J]. Journal of Geophysical Research,2011,116:C03010
    Kirk J T O. Dependence of Relationship between Inherent and Apparent Optical Properties of water on Solar Altitude[J]. Limnol. Oceanogr.,1984,29 (2):350-356.
    Kirk J T O. Volume scattering function, average cosine, and the underwater light field[J]. Limnol.Oceanogr., 1991,36:455-467.
    Kirk J T O. Light and Photosynthesis in Aquatic Ecosystems[M]. Cambridge:Cambridge University Press, 1994.
    Kirstensen P M, Spndergaard M, Jeppesen E. Resuspension in a shallow eutrophic lake[J]. Hydrobiologia, 1992,228:101-109.
    Kjaran S P, Holm S L, Myer E M. Lake circulation and sediment transport in lake Myvatn[J]. Aquatic Ecology,2004,38:145-162.
    Kratzer S, Hkansson B, Sahlin C. Assessing secchi and photic zone depth in the Baltic Sea from satellite data[J]. Ambio,2003,32 (8):577-585.
    Krinner G. Impact of lakes and wetlands on boreal climate[J]. Geophysical Research,2003,108 (16):4520.
    Kushnir Y, Cardone V J, Greenwood J G, et al. The recent increase in North Atlantic Wave Height[J]. Journal of climate,1997,10 (8):2107-2113.
    Lancelot C, Becquevort S, Menon P, et al. Ecological modeling of the planktonic microbial food-web[J]. Marine Biogeochemistry and Eeodynamies,1997,1:1-71.
    Lewis W M. Basis for the Protection and management of tropical lakes[J]. Lakes and Reservoirs: Researehand Management,2000,5:35-48.
    Lee C, D J Schwab, D Beletsky, J Stroud, B Lesht. Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake Michigan[J]. J. Geophys. Res.,2007,112:1 - 17.
    Liang B C, Li H J. Bottom shear stress under wave-current interaction[J]. Journal of Hydrodynamics,2008, 20(1):88-95.
    Liu P C, Ross D B. Airborne Measurements of wave Growth for Stable and unstable Atmospheres in Lake Michigan[J]. Journal of Physical Oceanography,1980,10:1842-1853.
    Longuet H, Smith N D. Measurement of breaking waves by a surface jump meter[J], J. Geophys. Res., 1983,88 (4):9823-9831.
    Lovstedt C, Bengtsson L. The role of non-prevailing wind direction on resuspension and redistribution of sediments in a shallow lake[J]. Aquatic sciences,2008,70:304-313.
    Luettich R A, Harleman D R, Somlyody L. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events[J]. Limnol. Oceanogr.,1990,35 (5):1050-1067.
    Luo L, Qin B, Zhu G. Sediment distribution pattern mapped from the combination of objective analysis and geostatistics in the large shallow Taihu Lake, China[J]. Journal of Environmental science,2004,16 (6): 908-911.
    Makin V K, Kudryavtesev V N. Coupled sea surface-atmosphere model.1. Wind over waves coupling[J]. J. Geophys. Res.,1999,104:7613-7623.
    Malmaeus J M, Hakanson L. A dynamic model for flow and wind driven sediment resuspension in shallow basin[J]. Hydrobiologia,2003,494:305-311.
    Masjukov V V. A mathematical and computer model of the main tropical hurricane wave system[J]. Computation Physics Communication,2000,126(1/2):121 - 125.
    Miles J W. On the generation of surface waves by shear flows[J]. J. Fluid Mech.,1957,3:185-204.
    Mitchell B G. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique(QFT)[J]. Proceedings of SPIE,1990,1302:137-148.
    Mobley C D. Light and Water Radiative Transfer in Nature Waters[M]. Academic Press,1994.
    Morel A, Berthon J F. Surface pigments, algal biomass profiles and potential production of the euphotic layer:Relationships rein vestigated in view of remote-sensing applications [J]. Limnol. Oceanogr.,1989, 34(8):1545-1562.
    Morel A, Antoine D, Babin M, et al. Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program):The impact of natural variations in photosynthetic parameters on model predictive skill [J]. Deep Sea Research Part I:Oceanographic Research Papers,1996,43 (8):1273-1304.
    Morel A, Gentili B. Radiation transport within oceanic(case 1) water[J]. J. Geophys. Res.,2004,109:1- 22.
    Mur L R, Gons H J, Van Liere L. Some experiments on the competition between green algae and blue-green bacteria in light-limited environments[N]. Ferns Microbiology Letters,1977,1(6):335-338.
    Nagai T, Yamazaki H, Nagashima H, et al. Field and numerical study of entrainment laws for surface mixed layer[J]. Deep-Sea Research Ⅱ,2005,52:1109-1132.
    Paphitis D, Collins M B. Sediment resuspension events within the (microtidal) coastal waters of Thennaikos Gulf, northern Greece [J]. Continental Shelf Research,2005,25:2350-2365.
    Paula Kankaala, Anne Ojala, Tiina Tulonen, et al. Changes in nutrient retention capacity of boreal aquatic ecosystems under climate warming:a simulation study [J]. Hydrobiologia,2002,469(1-3):67-76.
    Phillips O M. On the generation of waves by turbulent wind[J]. J. Fluid Mech.,1957,2:417-445.
    Qian X, Nishibe T, Ishikawa T. Water exchange of takahamairi bay during the formation of diurnal thermoclne in lake Kasumi-gaura[J]. Coastal Engeering, Proceeding of Coastal Engineering, JSCE, 1996,43:1216-1220.
    Qin B Q, Hu W P, Gao G, et al. Driving mechanism of sediment resuspension and conceptual Pattern of internal release in Taihu Lake[J]. Chinese Science Bulletin,2003,48:1822-1831.
    Rao Y R, Schwab D J. Transport and Mixing Between the Coastal and Offshore Waters in the Great Lakes: a Review[J]. Journal of Great Research,2007,33:202-218
    Raybov A B, Rudolf L, Blasius B. Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer[J]. Journal of theoretical biology,2010,263:120-133.
    Reinart A, Arst H, Erm A, et al. Optical and biological properties of Lake ulemiste, a water reservoir of the city of Tallinn Ⅱ:Light climate in Lake ulemiste[J]. Lakes and Reservoirs:Research and Management, 2001,6(1):75-84.
    Riley G A. The relationship of vertical turbulence and spring diatom flowering[J]. Journal of Marine Research,1942,5:67-87.
    Riley G A, Stommel H, Bumpus D F. Quantitative ecology of the plankton of the western North Atlantic Bull[J]. Bingham oceanogr Coll,1949,12:1-69.
    Ris R C, Holthuijsen L H, Booij N. A spectral model for wave in the near shore zore[J]. Coastal Engineering,1994:68-78.
    Robarts R D, Zohary T. Temperature effects on photosynthetic capacity, respiration and growth rates of bloom-forming cyan bacterial [J]. Marine and fresh water research,1987,21:391-399.
    Sasaki W, Iwasaki S I, Matsuura T, et al. Recent increase in summertime extreme, wave heights in the western North Pacific[J]. Geophys. Res. Lett.,2005,32 (15):1-4.
    Semina H J. The size of phytoplankton cells in the Pacific ocean[J]. Internationale Revue der gesamten Hydrobiologie and Hydrographic,1972,57(2):177-205.
    Sheng Y P, Lick W. The transport and resuspension of sediments in a shallow lake[J]. Journal of Geophysical Research,1979,84 (C4):1809-1826.
    Shinada A, Omori H, Tada M, et al. Effect of wind on behavior of hypoxic water in lake Notoro[J]. Scientific Reports of Hokkaido Fisheries Experimental Station,2009,75:1-5.
    Signell R P. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments[J]. Journal of Geophysical Researeh,1990,95:9671-9678.
    Simpson J J, Dickey T D. The relationship between Downward Irradiance and Upper Ocean Structre[J]. Journal of Physical Oceanography,1981a,11:309-323.
    Simpson J J, Dickey T D. Alternative Parameterizations of Downward Irradiance and Thir Dynamical Significance[J]. Journal of Physical Oceanography,1981b,11:876-882.
    Smith S D, Anderson R J. Spectra of Humidity, Temperature and Wind over the Sea at Sable Island, Nova Scotia[J]. J. Geophys. Res.,1984,89 (2):2029-2040.
    Sondergaard M, Kirstensen P, Jeppcsen E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark[J]. Hydrobiologia,1992,228 (1):91-99.
    Sondergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia,2003,506-509:135-145.
    Stramska M, Frye D. Dependence of apparent optical properties on solar altitude:experimental results based on mooring data collected in the Sargasso Sea [J]. J. Geophys. Res.,1997,102:15679-15691.
    SWAN Model user manual, http://swan.ct.tudeflt.nl
    Teeter A M, Johnson B H, Berger C, et al. Hydrodynamic and sediment transport modeling with emphasis on shallow-water, vegetated areas (lakes, reservoirs, estuaries and lagoons)[J]. Hydrobiologia,2001, 444:1-23.
    Thomas G E, Stamnes K. Radiative Transfer in the Atmosphere and Ocean[M]. Cambridge Univ. Press, Cambridge, UK,1999.
    Thompson P. The response of growth and biochemical composition to variations in day-length, temperature and irradiance in the marine diatom Thalassiosira pseudonana (Bacillariophy)[J]. Journal of Phycology,1999,35(6):1215 - 1223.
    Tuan N V, Hamagami K, Mori K, et al. Mixing by wind-induced flow and thermal convection in a shall, shallow and stratified lake[J]. Paddy Water Envion,2009 (7):83-93.
    Wetzel R G. Limnology:Lake and River Ecosystems (Third Edition)[M]. London:Academy Press,2001.
    Wornom S F, Welsh D J S, Bedford K W. On coupling the SWAN and WAM wave models for accurate nearshore wave predictions[J]. Coastal Engineering Journal,2001,43 (3):161-201.
    Hwang P A, Xu D L, Wu J. Breaking of wind-generated waves:measurements and characteristics[J]. Journal of Fluis Mechanics,1989,202:177-200.
    Xu F M, Yan Y X. Wave Numerical Model for Shallow Water[J]. China Ocean Engineering,2000,14 (2): 193-202.
    Yamada K, Ishizaka J, Yoo S, et al. Seasonal and interannual variability of Sea Surfafce chlorophyll a concentration in the Japan/East Sea(JES)[J]. Progress in Oceanography,2004,61:193-211.
    Ye Y, Hao W, Zhao L. Observations of sediment resuspension and settling off the mouth of Jiaozhou Bay[J]. Continental Shelf Research,2008,28:2630-2643.
    Young I R, Burchel G P. Hurricane generated waves as observed by satellite[J]. Ocean Engineering,1996, 23 (8):761-776.
    Zheng X, Dickey T, Chang G. Variability of the downwelling diffuse attenuation coefficient with consideration of inelastic scattering[J]. Applied Optics,2002,30 (41):6477-6488.
    蔡启铭,杨平.太湖悬浮质对湖面反照率及水体光吸收的影响[J].海洋与湖沼,1991,22(5):458-466.
    蔡启铭.太湖环境生态研究(一)[M].气象出版社,1998.
    曹文熙,杨跃忠.海洋光合有效辐射分布的计算模式[J].热带海洋学报,2002,21(3):47-54.
    曹文熙,黄良民.海洋生物-光学研究进展与展望[J].自然科学进展,2004,14(1):20-27.
    巢纪平.厄尔尼诺和南方涛动动力学[M].气象出版社,1993.
    陈长胜.海洋生态系统动力学与模型[M].北京:高等教育出版社,2004.
    陈聚法,赵俊,孙耀.桑沟湾贝类养殖水域沉积物再悬浮的动力机制及其对水体中营养盐的影响[J].海洋水产研究,2007,28(3):105-111.
    陈士荫,顾家龙,吴宋仁.海岸动力学[M].北京:人民交通出版社,1988.
    陈养渭.天然水体中激光衰减的现场测量[J].舰船科学技术,2000,1:3-7.
    陈銞,高光,李一平,等.太湖水体中悬浮物的静沉降特征[J].湖泊科学,2006,18(5):528-534.
    褚健婷,陈锦年,许兰英.海-气界面热通量算法的研究及在中国近海的应用[J].海洋与湖沼,2006,37(6):481-487.
    戴永宁,李素菊,王学军.巢湖水体的表观光学特性测量与分析[J].中国环境科学,2008,28(11):979-983.
    杜聪,王世新,周艺,等.太湖悬浮物浓度的MODIS影像估测研究[J].武汉大学学报与环境,2010,35(1):97-101.
    E.B.柯劳斯著,山东海洋学院海洋气象专业译,大气和海洋的相互作用[M].科学出版社,1979.
    范成新,陈宇炜,吴庆龙.夏季盛行风对太湖北部藻类水华分布的影响[J].上海环境科学,1998,17(8):4-11.
    范成新,刘元波.太湖底泥蓄积量估算及分布特征探讨[J].上海环境科学,2000,19(2):72-75.
    冯伟,冯学智,马荣华.太湖水体叶绿素浓度与反射光谱特征关系的研究[J].理论研究,2007,1:18-21.
    高月香,张永春.水文气象因子对藻类暴发的影响[J].水科学与工程技术,2006,2:10-12.
    郭义川,钱大益,彭剑峰,等.光强度对景观水体水质影响[J].江苏环境科技,2007,20(3):41-42.
    韩博平,韩志国,付翔.藻类光合作用机理与模型[M].北京:科学出版社,2003,180-181.
    韩红娟,胡维平,晋义权.吞吐流对湖泊结构影响的数值试验[J].海洋湖沼通报,2007,增刊:37-46.
    胡春华,胡维平,张发兵,等.太湖沉积物再悬浮观察[J].科学通报,2005,50(22):2541-2545.
    胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究-1、典型风场风生流的数值计算[J].湖泊科学,1998,10(4):26-34.
    胡维平,胡春华,张发兵,等.太湖北部风浪波高模式观测分析[J].湖泊科学,2005,17(1):41-46.
    江苏环保,新闻动态,国际简讯,http://www.jshb.gov.cn/jshbw/,2010.
    乐成峰,李云梅,孙德勇,等.太湖叶绿素a浓度空间分布及其定量反演[J].环境科学,2008a,29(3):619-626.
    乐成峰,李云梅,查勇,等.真光层深度的遥感反演及其在富营养化评价中的应用[J].生态学报,2008b,28(6):2614-2621.
    李国胜,梁强,李柏良,等.东海真光层深度的遥感反演与影响机理研究[J].自然科学进展,2003,13(1):90-94.
    李冠国,范振刚.海洋生态学[M].北京:高等教育出版社,2004:252-254.
    李九发,何青,徐海根.长江河口浮泥形成机理及变化过程[J].海洋与湖沼,2001,32(3):302-310.
    李一平,逢勇,向军.太湖水质时空分布特征及内源释放规律研究[J].环境科学学报,2005,25(3):300~306.
    李一平.太湖水体透明度影响因子试验及模型研究.博士论文,2006,河海大学.
    李一平,逢勇,李勇.水动力作用下太湖底泥的再悬浮通量[J].水利学报,2007a,38(5):558-564.
    李一平,逢勇,刘兴平.太湖湖流对波浪的影响机制研究[J].水利学报,2007b,增刊:303-308.
    李一平,逢勇,刘兴平,等.太湖波浪数值模拟[J].湖泊科学,2008,20(1):117-122.
    刘兴平.太湖波浪过程的数值模拟[J].江苏大学学报,2009,30(1):80-85.
    刘敏,许世远,侯立军.长江口潮滩沉积物—水界面营养盐(环境生物地球化学过程)[M].北京:科学出版社,2007.
    刘建康.高级水生生物学[M].北京:科学出版社,2000:113-116.
    刘亚丽,张智,段秀举.湖泊底泥释氮模型及释氮控制研究[J].农业环境科学学报,2006,25(6):1603-1306.
    刘玉生,韩梅,梁占彬,等.光照、温度和营养盐对滇池微囊藻生长的影响[J].环境科学研究,1995,8(6):7-11.
    罗潋葱,秦伯强.太湖波浪与湖流对沉积物再悬浮不同影响的研究[J].水文,2003,23(3):1-4.
    罗潋葱,秦伯强,胡维平,等.不同水动力扰动下太湖沉积物的悬浮特征[J].湖泊科学,2004a,16(3):273-275.
    罗潋葱,秦伯强,朱广伟.太湖底泥蓄积量和可悬浮量的计算[J].海洋与湖泊,2004b,35(6):491~496.
    罗潋葱,秦伯强,朱广伟.太湖沉积物的分布和动力扰动下最大侵蚀深度的确定[J].泥沙研究,2004c,(2):9~14.
    罗激葱,秦伯强,朱广伟,等.动力扰动下太湖梅梁湾水-沉积物界面的营养盐释放通量[J].中国科学(D辑),地球科学,2005,355(增刊Ⅱ):166-172.
    梁瑞驹,仲金华.太湖风生流的三维数值模拟[J].湖泊科学,1994,6(4):289~297.
    孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.
    况琪军,夏宜铮.太平湖水库的浮游藻类与营养型评价[J].应用生态学报,1992,3(2):165-168.
    梅勇,宋帅,周林.北印度洋-南海海域海浪场、风场的年际变化特征分析[J].海洋预报,2010,27(5):27-33. N.G杰尔洛夫著,赵俊生、吴曙初译.海洋光学[M].科学出版社,1981.
    逢勇,濮培民.太湖风生流三维数值模拟试验[J].地理学报,1996,51(4):322-328.
    逢勇,李一平,罗潋葱.水动力条件下太湖透明度模拟研究[J].中国科学D辑地球科学,2005,35(增刊11):145~156.
    逢勇,韩涛,李一平,等.太湖底泥营养要素动态释放模拟和模型计算[J].环境科学,2007,28(9):1960-1964.
    逢勇,庄巍,韩涛,等.风浪扰动下太湖悬浮物试验与模拟[J].环境科学,2008a,29(10):2743-2748.
    逢勇,颜润润,余钟波,等.风浪作用的底泥再悬浮沉降及内源释放量研究[J].环境科学,2008b,29(9):2456-2464.
    钱永甫,朱伯承,王谦谦.温度、盐度和风应力对南海海流模拟的影响[J].南京气象学院学报,1999,22(1):26~31.
    秦伯强,胡维平,高光,等.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报,2003,48(17):1822~1831.
    秦伯强,胡维平,陈伟民,等.太湖水环境演化过程与机理[M].科学出版社,2004.
    秦伯强.太湖生态与环境若干问题的研究进展及其展望[J].湖泊科学,2009,21(4):445~455.
    任健,蒋明淑,商兆堂,等.太湖蓝藻暴发的气象条件研究[J].气象科学,2008,28(2):221~226.
    任健,何浪,秦铭荣,等.太湖蓝藻生长发育与水温的关系[J].中国农业气象,2009,30(增Ⅰ):126-129.
    商卫纯,潘培丰,蒋海滨,等.城市浅水型湖泊底泥污染物释放过程模拟试验研究[J].环境污染与防治,2007,29(8):602~604.
    佘丰宁,蔡启铭,徐勇积.太湖水温模型和气象参数对水温的影响[J].海洋与湖沼,1993,24(4):393-399.
    盛裴轩,毛节泰,李建国,张霭琛,等.大气物理学[M].北京大学出版社,2003.
    石晓勇,史致丽,余恒,等.黄河口磷酸盐缓冲机制的探讨黄河口悬浮物对磷酸盐的吸附-解吸研究[J].海洋与湖沼,1999,30(2):192-297.
    史小丽,王凤平,蒋丽娟,等.扰动对外源性磷在模拟水生态系统中迁移的影响[J].中国环境科学,2002,22(6):537~541.
    孙德勇,李云梅,王桥,等.内陆湖泊水体固有光学特性的典型季节差异[J].应用生态学报,2008,19(5):1117-1124.
    孙洪亮,黄卫民,赵俊生.北部湾潮致、风生和热盐余流的三维数值计算[J].海洋与湖沼,2001,32(5): 561~568.
    孙顺才,伍贻范.太湖形成演变与现代成积作用[J].中国科学(B辑),1987,12:1329-1339.
    王伯民,阎俊岳,张秀芝,等.确定海浪要素的风要素及台风气压场的计算方法[J].海洋通报,1984,3(1):7~16.
    王成林,黄娟,钱新.高温微风条件下太湖流域风场时空特征分析[J].湖泊科学,2011,2(1):122-128.
    王丽,唐纪伟.螺旋藻生长的气象条件分析[J].山东气象,1998,18(4):43~45.
    王立武.分层型水库浮游生物的研究[J].水电站设计,1999,15(3):63~70.
    王鹏,王胜艳,郝少盼,等.模拟扰动条件下太湖沉积物的再悬浮特征[J].水科学进展,2010,21(3):399-404.
    王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998:70~73.
    王云波,谭万春.水源蓝藻暴发的原因分析及水质安全保障措施[J].中国农村水利水电,2008,5:37-40.
    吴永胜.波浪、水流作用下的紊动边界层数值分析,博士学位论文,天津大学,1999.
    夏健,钱培东,朱玮.2007年太湖蓝藻水华提前暴发气象成因探讨[J].气象科学,2009,29(4):531~535.
    徐福敏,张长宽,陶建峰.浅水波浪数值模型SWAN的原理及应用综述[J].水科学进展,2004,15(4):538-542.
    徐毓荣,徐钟际,徐玮,等.水温分层型水库铁、锰垂直分布特征[J].湖泊科学,1999,11(2):117-122.
    彦润润,逢勇,赵伟,等.环流型水域水动力对藻类生长的影响[J].环境科学,2008,28(9):813-817.
    阎喜武,何志辉.虾池浮游植物初级生产力的研究[J].水产学报,1979,21(3):288-295.
    杨清心.太湖水华成因及控制途径初探[J].湖泊科学,1996,8(1):67-74.
    尤本胜,王同成,范成新,等.太湖沉积物再悬浮模拟方法[J].湖泊科学,2007,19(5):611-617.
    俞宏,蔡启铭,吴敬禄.太湖水体吸收系数和散射系数的特征研究[J].水科学进展,2003,14(1):46~49.
    袁琳,张利权.大型沉水植物苦草的光谱特征识别[J].生态学报,2006,26(4):1005-1011.
    张路,范成新,秦伯强,等.模拟扰动条件下太湖表层沉积物磷行为的研究[J].湖泊科学,2001,13(1):35-42.
    张民,史小丽,蒋晓娟,等.两种外源性磷及振荡对铜绿微囊藻生长的影响[J].应用与环境生物学报,2002,8(5):507~510.
    张素宁,田胜元.太阳辐射逐时模型的建立[J].太阳能学报,1997,18(3):273-277.
    张玉超,钱新,钱瑜,等.太湖水温分层现象的监测与分析[J].环境科学与管理,2008a,33(6):117-121.
    张玉超,钱新,钱瑜,等.太湖水温日分层现象的初步探讨-以太湖为例[J].四川环境,2008b,27(3):45-48.
    张玉超,钱新,钱瑜,等.太湖日成层现象的监测与模拟研究[J].环境污染与防治,2008c,30(11):23-26.
    张毅敏,张永春,张龙江,等.湖泊水动力对蓝藻生长的影响[J].中国环境科学,2007,27(5):707-711.
    张运林,秦伯强,陈伟民,等.悬浮物浓度对水下光照和初级生产力影响[J].水科学进展,2004a,15(5):615~620.
    张运林,秦伯强,陈伟民,罗潋葱.太湖水体中悬浮物研究[J].长江流域资源与环境,2004b,13(3):266-271.
    张运林,秦伯强,陈伟民,等.太湖水体光学衰减系数的特征及参数化[J].海洋与湖沼,2004c,35(3):209-213.
    张运林,秦伯强,陈伟民,等.太湖梅梁湾春季浮游植物初级生产力[J].湖泊科学,2005,17(1):81~86.
    张运林,秦伯强,胡维平,等.太湖典型湖区真光层深度的时空变化及其生态意义[J].中国科学(D辑),2006,36(3):287-296.
    赵巧华,秦伯强.太湖水体介质吸收有效光合辐射能量的谱特征及其季节变化[J].环境科学学报,2008a,28(9):1813~1822.
    赵巧华,王鑫,李俊生,等.太湖梅梁湾下行漫射衰减系数的特征分析[J].遥感学报,2008b,12(1):128-134.
    赵巧华,秦伯强.藻类的光谱吸收特征及其混合藻吸收系数的分离[J].环境科学学报,2008c,28(2):313-318.
    赵巧华,宋玉芝.多次散射对向上漫射散射系数漫射吸收系数影响的数值研究[J].遥感学报,2009,13(5):771-778.
    赵巧华,朱广伟,邱辉.太湖沉积物空间分布的风生流输送机制[J].水力学报,2011,42(2):173~ 179.
    朱广伟,秦伯强,高光.强弱风浪扰动下太湖的营养盐垂向分布特征[J].水科学进展,2004,15(6):775-780.
    朱广伟,秦伯强,高光.太湖底泥悬浮中营养盐释放的波浪水槽试验[J].湖泊科学,2005,17(1):61~68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700