用户名: 密码: 验证码:
高强度Mg-Y-Zn合金的变形和摩擦磨损行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该论文研究了包含LPS相的常规铸造Mg_(96)Zn_1Y_3合金和轧制Mg_(96)Zn_1Y_3合金的组织、变形机制和断裂机制;研究了挤压Mg_(96)Zn_1Y_3合金组织形态和不同温度下的断裂机制;同时也研究了包含Mg-Y平衡相Mg24Y5为主要强化相的挤压组织形态和室温的断裂机制和高温的变形机制;该变形部分的工作是对镁基合金的断裂机制和变形机制的有效补充。结果表明:轧制Mg_(96)Zn_1Y_3合金具有细晶强化,位错强化以及亚晶强化的综合强化效果。铸态Mg_(96)Zn_1Y_3合金断裂机制是以解理和沿着晶界的共晶组织断裂为主,而轧制Mg_(96)Zn_1Y_3合金以晶内的化合物界面断裂为主,能有效抑制解理断裂的发生。在挤压Mg_(96)Zn_1Y_3合金组织新发现了6H结构的LPS相。从室温到300℃变形时,挤压Mg_(96)Zn_1Y_3合金纵向的各项力学性能明显高于横向。横向试样表现为沿着挤压方向的带状化合物界面断裂是主要的断裂机制。纵向断口以沿着破碎的LPS相以及颗粒的Mg24Y5和基体界面断裂为主要断裂机制。挤压Mg96.6Zn0.4Y3合金的晶粒尺寸在4μm以下,在300℃和350℃变形时应变速率敏感系数值分别为m=0.34,表观激活能Q=110KJ/mol,说明在300℃以上合金的变形机制是以受控于晶界扩散的位错蠕变机制为主。
     本文也对铸态Mg-Y-Zn合金的摩擦磨损特性作了系统的研究,对比研究了Mg_(97)Zn_1Y_2合金和商业应用AZ91D的磨损机制,分析了镁基合金中不同第二相对磨损性能的影响;该论文也研究了激光表面处理Mg_(96)Zn_1Y_3合金组织和摩擦磨损性能;该部分提供了镁合金摩擦磨损性能方面的基础性数据。结果表明:在磨损过程中,Mg_(97)Zn_1Y_2合金的严重磨损转折点明显延迟于AZ91合金。随着载荷的增加,铸态AZ91D合金经历了磨粒磨损、剥层磨损、严重氧化磨损、熔化等主要磨损机制;而Mg_(97)Zn_1Y_2合金经历了磨粒+剥层磨损、剥层磨损、熔化等主要磨损机制。激光处理Mg_(96)Zn_1Y_3合金的激光区最大硬度达到80HV以上,而基体硬度仅有70HV,激光处理Mg_(96)Zn_1Y_3合金抗磨损性能优于未处理的合金,这是由于激光区的晶粒大幅度细化促使的。
Early in 1970’s, the Mg-Zn-Y-Zr system of casting alloys had been studied in Chinaand it was found that a close relation between the microstructure and the property of thealloy and the ratio of Y/Zn existed in the alloy system. Padezhnova E M et al. of the USSRfound three ternary equilibrium phases in the 1980’s, i.e. W-Mg3Zn3Y2, Z-Mg3Zn6Y and X-Mg12ZnY phases. In recent years, Z.P. Luo et al. identified the Z- Mg3Zn6Y as a stableicosahedral quasicrystalline phase, and determined the X-Mg12ZnY phase as an 18R LPSstructure by an electron diffraction technique.
     Inoue A. et al. fabricated an Mg97Zn1Y2 (at. %, i.e. WZ73) alloy with excellent tensileyield strength above 600 MPa by rapid solidification (RS) techniques of powder metallurgyin 2001. They also report the Mg-Y-Zn alloy, whose composition proportion is in the rangeof Mg-1~3at%Zn-2~6at%Y, has the excellent property. From that time, people pay attentionto the long period stacking order phase (LPS) during the research of Mg-Zn(Cu, Ni)-Re(-Zr)due to the better property of resistance to high temperature. The experiment includes thecontent below: by the analysis the microstructure and the property of as cast/ rolled/extrudedalloys, the mechanisms of deformation, fracture and wear in Mg-Y-Zn alloys at differenttemperature were determinated. The microstructure and the property were characterized bythe serial experiments. In order to gain the results of microstructure,phase and the texturemorphology of deformation alloys, the X-ray diffraction (XRD), general optical microscopy(OM), and scanning electron microscopy (SEM) were used; the hardness and tensileproperty were tested, and after that the SEM and transmission electron microscopy (TEM)were used to analyze the mechanism of deformation. The friction and wear properties of theexperimental alloys were conducted at MG-2000 type machine, meanwhile the wearmechanisms were discussed for explain the wear phenomenon.
     The paper describes the mechanism of deformation and fracture of as cast, rolled andextruded alloys, and characterized the friction and wear property. The datum and theconclusions were expressed as follow:
     (1) The cellular discontinuous precipitation can be completely suppressed in the AZ91Dalloy with addition of 2% Sn, and after aging treatment, the AZ91D-2%Sn alloy has the finer α-Mg grains and Mg17Al12 particles nearby the grain boundary compared to the AZ91Daging alloy. The AZ91D ageing alloy has higher ultimate fracture strength than the 2% Snalloy due to large numbers of grains including the cellular discontinuous precipitationforming nearby the grain boundary in the AZ91D, in which theβphase can effectively formthe obstacle for the dislocation movement, meanwhile the soft behavior induced by the highfraction of twins, correspondingly the better compressive failure strain, is the main reasonthat the strength of 2%Sn alloy is lower than the AZ91D.
     (2) Pin-on-disc dry sliding tests of Mg97Zn1Y2 and AZ91 against a steel conterface werecarried out in load ranges of 20–280 and 20–380 N, respectively. Five different wearmechanisms were found to operate under given conditions. They are abrasion, oxidation,delamination and thermal softening and melting for AZ91 alloy. Under the given conditions,for the Mg97Zn1Y2 alloy, the dominant wear mechanisms in the load range of 20–200N areabrasion and delamination. In the load range of 240–280 N, thermal softening is animportant wear mechanism. Surface melting is the wear mechanism as the load is over 280 N.
     The good tribological property in Mg97Zn1Y2 alloy at high load was due to the superiorthermal stability of the intermetallic and high elevated temperature mechanical properties.(3) For the rolled Mg_(96)Zn_1Y_3 alloy, the high density of dislocation, twin boundary andthe sub-grain boundary cause the high strength compared to the as cast alloy. For the R2alloy, the twin can be observed in the interior of grain intersecting with the LPS phase whendeformation is conducted by seventh pass at relative low working temperature. Themorphology of the dislocation and the influence of twin boundary in R2 alloy can be themain reason for the higher strength of R2 alloy. The fracture along the phase boundary andthe cleavage fracture can be considered to be the main fracture mechanism for the as-castalloy, while the fracture caused by the stress congregation at the interface between the matrixand Mg12YZn phase in grains is the main fracture mechanism for the rolled alloy at roomtemperature. The result can testified that the cleavage fracture can be suppressed by the highdislocation density, the size and the distribution of the second phase in magnesium alloy.
     (4) The hot-extruded Mg_(96)Zn_1Y_3 alloys with the extrusion ratio of 12:1 exhibits abimodal distribution of fine recrystallized and large elongated grains. The mechanicalanisotropy of extruded Mg_(96)Zn_1Y_3 plate shows the tensile samples machined along theextruded direction have a better yield strength and a better elongation-to-failure than thetensile samples machined along the transverse direction during the deformation. The higherductility for extruded direction alloy is attributed to the fragmentation of LPS phase into the particle in the interior and the boundary of the elongated original grains, and the lowerstrength in traversed direction alloy is induced by the stress concentration at the phaseinterface between the bulk Mg12YZn compound andα-Mg matrix. However, the micron andsub-micron particles distributed on the grain boundary as well as in the interior of originalgrains in the extruded alloy controls dominantly the fracture mode of tensile samplesmachined along the extruded direction.
     (5) The Mg96.6Zn0.4Y3 alloy has a worse elongation of less than 8% at room temperatureand 11% at 250℃, though it contains a fine grain size of less than 1μm. The worse elongationwas induced by the strain concentration at the phase interface between the Mg24Y5 and thematrix. The deformation mechanism of the Mg96.6Zn0.4Y3 alloy between 300℃and 350℃was the dislocation creep controlled by the grain boundary diffusion.
     (6) After laser surface melting of the Mg_(96)Zn_1Y_3 alloy, two distinct zones were formedsequentially near the surface, improving considerably the alloy’s microstructure andhardness. The microstructure of the laser surface melted zone consists of fine dendrites andcoarse dendrites growing epitaxially from the liquid-solid interface. The microhardness ofthe fine dendrites in laser surface melted zone is improved to 77-83 HV as compared to 69-70 HV of the substrate. The wear in sliding can be decreased by laser surface melting, thefine dendritic microstructure exhibits good wear resistance as compared with the as-castmaterial and can increases the transition load from 160 N to 200 N. The wear mechanismvaries from abrasion and delamination at low and mediate load to thermal softening andmelting at high load.
引文
[1]曾荣昌,柯伟,徐永波等. Mg合金的最新发展及应用前景[J].金属学报, 2001,37:673-685.
    [2]刘英,李元元,张卫文等.镁合金的研究进展和应用前景[J].轻金属, 2002,8:56-6.
    [3] THOMAS J, RUDEN, DARRY L, et al. High ductility magnesium alloys in automotiveapplications[J]. Advanced Materials and Processes, 1994,145:28-32.
    [4] POLMEAR I J. Magnesium alloys and applications[J]. Materials Science and Technology,1994,10:1-6.
    [5] NOTIN M, MEJBAR J, BOUHAJIB A, et al. The thermodynamic properties of calciumintermetallic compounds[J]. Journal of Alloys and Compounds, 1995,220:62-75.
    [6] HOSONO T, KURAMOTO M, MATSUZAWA Y, et al. Formation of CaMgSi atCa2Si/Mg2Si interface[J]. Applied Surface Science, 2003,216:620-624.
    [7] GROBNER J, CHUMAK I, FETZER R S. Experimental study of ternary Ca-Mg-Si phaseequilibria and thermodynamic assessment of Ca-Si and Ca-Mg-Si system[J]. Intermetallics,2003,11:1065-1074.
    [8] CARBONNEAU Y, COUTURE A, VAN NESTE A, et al. Communication: On theobservation of a new terny MgCaSi phase in Mg-Si alloys[J]. Metallurgical and MaterialsTransactions A, 1998,29A:1759-1763.
    [9] CHRISTIAN J W, MAHAJAN S. Deformation twinning[J]. Progress in Materials Science,1995,39:1-157.
    [10]祝立祥.我国的镁工业与市场分析[J].世界有色金属, 1996,1:12-16.
    [11]刘静安.镁合金加工技术发展趋势与开发应用前景[J].轻合金加工技术, 2001,29:44-46.
    [12]范琦,张立波.飞速发展的镁合金工业[J].特种铸造及有色合金, 2001,26:79-83.
    [13]张永忠,张奎,攀建中等.压铸镁合金及其在汽车工业中的应用[J].特种铸造及有色合金, 1999,3:54-57.
    [14] KOCKS U F. Kinetics of solution hardening[J]. Metallurgical Transactions A,1985,16A:2109-2130.
    [15] RAYNOR G V. The physical metallurgy of Mg and its alloys[M]. Pergamon Press, 1959,10.
    [16] POLMEAR I J. Aluminium alloys—a century of age hardening[J]. Materials Science andTechnology, 1994,10(1):1-14.
    [17] POLMEAR I J. In: MORDIKE B L, HEHMAN E. Magnesium alloys and theirapplications[J]. DGM Informations Gesellschaft, Verlag, 1992:201-212.
    [18] ALIRAVCI C, GRUZLESKI J E, DIMAYUGA F, et al. Creep resistant magnesium alloysfor powertrain applications[J]. Proc 48th Ann. Word Magnesium Conference, IMA,1991:15-20.
    [19] NINOMIYA R,OJTRO T, KUBPTA K. Improved Heat Resistance of Mg-Al Alloys by theCa addition[J]. Acta Metallurgica Materialia, 1995,43(2):669-674.
    [20] ARDELL A J. Precipitation hardening[J]. Metallurgical Transactions A, 1985,16A:2131-2165.
    [21] MORDIKE B L, EBERT I. Magnesium properties applications potential[J]. MaterialsScience and Engineering A, 2001,A302:37-41.
    [22] LUO A, PEKGULERYUZ M O. Cast magnesium alloys for elevated temperatureapplications[J]. Journal of Material Science, 1994,29:5259-5271.
    [23] WESTENGEN H, WEI L Y, AUNE I, et al. In: MORDIKE B L and KAINER K U.Magnesium Alloys and Their Applications[J]. Werkstot Informations Gesellsehaft mbH,Frankfurt, 1998:209-214.
    [24] STANFORD N, BARNETT M R. The origin of“rare earth”texture development inextruded Mg-based alloys and its effect on tensile ductility[J]. Materials Science andEngineering A, 2008,496:399-408.
    [25] HANSEN N. Polycrystalline strengthening[J]. Metallurgical Transactions A,1985,16A:2167-2190.
    [26] RAGHUNATHAN N, SHEPPARD T. Evolution of structure in roll gap when rollingaluminum alloys[J]. Materials Science and Technology, 1990,6:629-640.
    [27] NUSSBAUM G, GJESTLAND H, REGAZZONI G. Strengthening mechanisms in therapidly solidified AZ91 magnesium alloy[J]. Scripta Materialia, 1989,23:1079-1084.
    [28] HAN B Q, DUNAND D C. Microstructure and mechanical properties of magnesiumcontaining high volume fractions of yttria dispersoids[J]. Materials Science andEngineering A, 2000,A277:297-304.
    [29] CHANG S Y, LEE S W, KANG K M. Improvement of Mechanical Characteristics inSeverely Plastic-deformed Mg Alloys[J]. Metallurgical Transactions, 2004,45(2):488-492.
    [30] PEKGULERYUZ M O, AVEDESIAN M M. Mg alloying, some potentials for alloydevelopment[J]. Light Metals, 1992,42:679-686.
    [31]李远东,郝远,阎峰云等.铸造镁合金及其研究进展[J].材料导报, 2002, 16(6):24-27.
    [32]吉泽生,李德锋,孙荣滨.镁合金压铸技术的发展现状[J].轻合金加工技术,2001,12:1-4.
    [33]王渠东,曾小勤,吕振宜等.高温铸造镁合金的研究与应用[J].材料导报, 2000, 14:21-23.
    [34]刘光华.稀土固体材料学[M].北京:机械工业出版社,1997.
    [35]余琨,黎文献,李松瑞等.含稀土镁合金的研究与开发[J].特种铸造及有色合金,2001,1:41-43.
    [36]王渠东,吕振宜.稀土在铸造镁合金中的应用[J].特种铸造及有色金属, 1999,1:40-43.
    [37]闫蕴琪,张廷杰,邓炬等.耐热镁合金的研究现状与发展方向[J].稀有金属材料与工程, 2004,6:561-565.
    [38] LU Y Z, WANG Q D, ZENG X Q, et al. Effects of rare earths on the microstructure,properties and fracture behavior of Mg-Al alloys[J]. Materials Science and Engineering A,2000,A278:66-69.
    [39] WANG Q D, LU Y Z, ZENG X Q, et al. Effects of RE on microstructure and propertiesofAZ91 magnesium alloy[J]. Transactions Nonferrous Metal Society China, 2000,10:35-238.
    [40]张诗昌,魏伯康,林汉同等.钇及铈镧混合稀土对AZ91镁合金铸态组织的影响[J].中国有色金属学报, 2001,11:99-102.
    [41]余琨,黎文献,李松瑞.变形镁合金材料的研究进展[J].轻合金加工技术, 2001,7:6-9.
    [42] SATO H, SUZUKIM S S, MARUYAMA K, et al. Creep strength of binary magnesiumalloys up to 0.6Tm[J]. Engineering Materials, 2000,171-174:601-608.
    [43]郭旭涛,李培杰,曾大本.稀土在耐热镁合金中的应用[J].稀土, 2002,23(2):63-67.
    [44] SUZUKI M, KIMURA T, KOIKE J. Effects of zinc on creep strength and deformationsubstructures in Mg-Y alloy[J]. Material Science and Engineering A, 2004,A387-389:706-709.
    [45] MABUCHI M, KUBOTA K, HIGASHI K. Elevated temperature mechanical properties ofmegnesium alloys containing Mg2Si[J]. Materials Sciance and Technology, 1996,12:35-39.
    [46]梁维中,吉泽升,左锋等.耐热镁合金的研究现状及发展趋势[J].特种铸造及有色金属, 2003,2:39-41.
    [47]张梵龙,刘六法,卫中山.合金元素对镁合金耐热性能的优化作用及机理[J].铸造技术, 2005,26:697-700.
    [48] LUO A. Recent magnesium alloy development for elevated temperature applications[J].International Materials Reviews, 2004,1:23-27.
    [49] BEER S, FROMMEYER G, SCHMID E. Magnesium alloys and their applications[M].Oberusel: DGM Informations Gesellschaft, 1992.
    [50]吕振宜.压铸镁合金的应用现状及发展趋势[J].铸造, 1998,12:50-53.
    [51]卢晨,卫中山.镁合金的研究与应用进展[J].汽车工艺与材料, 2005,9:1-3.
    [52]陈振华,严红革,陈吉华等.镁合金[M] .北京:化学工业出版社, 2004.
    [53] ASHBY M F, ABULAWI J, KONG HS. Temperature Maps for Frictional Heating in DrySliding[J].Tribology Transactions, 1991,34:577-587.
    [54]刘生发,范晓明,王仲范等.钙在铸造镁合金中的应用[J].铸造, 2003,52(4):246-248.
    [55] VON BUCH F, LIERZAU J, MORDIKE B L. Development of Mg-Sc-Mn alloys[J].Materials Science and Engineering A, 1999,A263:1-7.
    [56] MIHRIBAN O. Creep resistant magnesium diecasting alloys based on alkaline earthelements[J] . Materials Transaction, 2001,42:1258-1267.
    [57]闵学刚,孙扬善,袁广银等. Bi、Sb、Ca和Si对AZ91合金组织与性能的影响[J].中国有色金属学报, 2001, 25:1-4
    [58]孙扬善,翁坤忠,袁广银. Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报, 1999,9:55-58.
    [59]美国金属学会.金属手册[M].北京:机械工业出版社, 1994,第九版第六卷.
    [60] WEI L Y, DUNLOP G L, WESTENGEN H. Solidified behaviour and phase constituents ofcast Mg-Zn-Misch metal alloys[J]. Journal of Materials Science, 1997,32:3335-3340.
    [61]陆树荪.有色合金及其熔炼[M].北京:国防工业出版社, 1983.
    [62]张静,潘复生,彭建等.镁合金中的合金系和合金相[A].首届中国国际轻金属冶炼加工与装备会议文集, 294-297.
    [63] MATSUURA M, SAKURAI M, AMIYA K, et al. Local structures around Zn and Y in themelt-quenched Mg97Zn1Y2 ribbon[J]. Journal of Alloys and Compounds, 2003,353:240-245.
    [64] WATANABE H, SOMEKAWA H, HIGASHI K. Fine-grain processing by equal channelangular extrusion of rapidly quenched bulk Mg-Y-Zn alloy[J]. Journal of MaterialsResearch, 2005,20:93-101.
    [65] SUZUKI M, KIMURA T, KOIKE J, et al. Effects of zinc on creep strength and deformationsubstructures in Mg-Y alloy[J]. Materials Science and Engineering A, 2004,A387-389:706-709.
    [66] MATDUDA M, II S, KAWAMURA Y, et al. Variation of long-period stacking orderstructures in rapidly solidified Mg97Zn1Y2 alloy[J]. Materials Science and Engineering A,2005,A393:269-274.
    [67]郭学锋,魏建锋,张忠明.镁合金与超高强镁合金[J].铸造技术, 2002,23(3):4-7.
    [68] INOUE A, KIMURA H, AMIYA K. Development of aluminum and magnesium basednanophase high strength alloys by use melt quenching-induced metastable phase[J].Materials Transaction, JIM, 2002,43(8):2006-2016.
    [69] INOUE A, MATSUSHITA M, KAWAMURA Y, et al. Novel hexagonal structure of ultra-high strength Magnesium-based alloys[J]. Materials Transaction, JIM, 2002,43(3):580-584.
    [70] INOUE A, KATO A, ZHANG T, et al. Mg-Cu-Y amorphous alloys with high mechanicalstrengths produced by metallic mold casting method[J]. Materials Transaction, JIM,1991,32(7):609-616.
    [71] INOUE A, KAWAMAURA Y. High strength nanocrystalline Mg-based alloys[J].Materials Science Forum, 2002,386-388:509-518.
    [72] SUGAMATA M, HANAWA S, KANEKO J. Structures and mechanical properties ofrapidly solidified Mg-Y based alloys[J]. Materials Science and Engineering A, 1997,A226(22):861-866.
    [73]张诗昌,段汉桥等.主要合金元素对镁合金组织和性能的影响[J].铸造,2001,50(6):310-315.
    [74]孙国元,陈光,孙强金. Mg-Tm-Ln型镁基纳米结构材料研究[J].稀土, 2004, 25(5):51-56.
    [75] NISHIJIMA M, HIRAGA K, YAMASAKI M. The structure of guinier-preston zones in anMg-2at%Gd-1at%Zn alloy studied by transmission electron microscopy[J]. MaterialsTransactions, 2008,49(1):227-229.
    [76] NISHIJIMA M, HIRAGA K, YAMASAKI M. Transmission electron microscopy forprecipitate phases in rapidly solidified Mg-2at%Ce-1at%Zn and Mg-2at%Ce alloys[J].Materials Transaction, 2007,48(3):476-488.
    [77] PARK B K, JUN J H, KIM J M. Influence of Zn addition on aging response and corrosionresistance of Mg-Gd-Nd-Zr alloy[J]. Materials Transaction, 2008,49(5):931-935.
    [78] KWAK E J, BOK C H, SEO M H. Processing and mechanical properties of fine grainedmagnesium by equal channel angular pressing[J]. Materials Transaction, 2008,49(5):1006-1010.
    [79] MATSUDA M, II S, KAWAMURA Y, et al. Interaction between long period stacking orderphase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy[J]. Materials Science andEngineering A, Structure Materials: Properties Microstructure Process, 2004,386:447-452.
    [80] MATSUDA M, KAWAMURA Y, NISHIDA M. Production of high strength Mg97Zn1Y2alloy by using mechanically alloyed MgH2 powder[J]. Materials Transactions,2003,44(4):440-444.
    [81]中国机械工程学会材料学会.磨损失效分析[M].北京:机械工业出版社, 1985.
    [82]陈跃颗.粒增强铝基复合材料干滑动摩擦磨损特性研究[D].西安:西安交通大学,2000.
    [83]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社, 1990.
    [84] HIRATSUKA K, ENOMOTO A, SASADA T. Friction and wear of Al2O3, Zr2O and SiO2rubbed against pure metals[J]. Wear, 1992,153(2):361-373.
    [85] ALAHELISTEN A, BERGMAN F, OLSSON M, et al. On the wear of alumimium andmagnesium metal matrix composites[J]. Wear, 1993,165(2):221-226.
    [86] BAU P J, WALUKAS M. Sliding friction and wear of magnesium alloy AZ91D producedby two different methods[J]. Tribology International, 2000,33(8):573-579.
    [87] MAJUMDAR J D, GALUN R, MORDIKE B L, et al. Effect of laser surface melting oncorrosion and wear resistance of a commercial magnesium alloy[J]. Materials Science andEngineering A, 2003,A361(1-2):119-129.
    [88]侯滨,黄伟九,陈波水等. AZ91D镁合金滑移区域微动磨损机理研究[J].摩擦学报,2004,24(4):351-354.
    [89]黄伟九,陈安华,侯滨等. AM60B镁合金在滑移区的微动磨损行为研究[J].武汉理工大学学报, 2004,26(9):23-26.
    [90] GALIYEV A, KAIBYSHEV R, GOTTSTEIN G. Correlation of plastic deformation anddynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia, 2001,49:1199-1207.
    [91] VALIEV R Z, LANGDON T G. Principles of equal - channel angular pressing as aprocessing tool for grain refinement[J]. Progress in Materials Science, 2006,51:881-891.
    [92] KOIKE J, KOBAYASHI T, MUKAI T, et al. The activity of non-basal slip systems anddynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J]. ActaMaterialia, 2003,51:2055-2065.
    [93] SIETHOF H, AHLBORN K. Steady-state deformation of the hcp metals at high andintermediate temperatures[J]. Metallkde, 1985,76(9):627-634.
    [94] VITEK V, IGARASHI M. Core structure of 1/3(1120) screw dislocations on basal andprismatic planes in hcp metals - an atomistic study[J]. Philosophical Magazine A,1991,63:1059-1075.
    [95] BACON D J, BATNET D M, SCATERGOOD R O. Anisotropic continuum theory oflattice defects[J]. Progress in Materials Science, 1978,23:51-55.
    [96] YOSHINAGA H, HORIUCHI R. Deformation mechanisms in magnesium single crystalscompressed in the direction parallel to hexagonal axis[J]. Materials Transactions, JIM, 1963,12:41-48.
    [97] Couret A, Caillard D, PUSCHLW, et al. Prismatic glide in divalent hcp metals[J].Philosophical Magazine A, 1991,63(5):1045-1057.
    [98] YOO M H, LEE J K. Deformation twinning in hcp metals and alloys[J]. PhilosophicalMagazine A, 1991,63:987-1000.
    [99] LUKAC P. Mechanical properties of some rapidly solidified magnesium alloys[C]. Proc.3rd International Magnesium Conference, 10-11 April 1996, Institute of Materials, London,1997:337-340.
    [100] MENDELSON S. Dislocation dissociations in hcp metals[J]. Journal Application Physics,1970,41(5):1893-1910.
    [101] SERRA A, BACON D J. On the generation of twinning dislocations in hcp twinboundaries[J]. Materials Science Forum, 1996,207-209:553-556.
    [102] SERRA A, BACON D J, POND R C. Dislocations in interfaces in the hcp metals - I.defects formed by absorption of crystal dislocations[J]. Acta Materialia, 1999, 47(5):1425-1439.
    [103] MULLNER P, ROMANOV A E. Internal twinning in deformation twinning[J]. ActaMaterialia, 2000,48:2323-2337.
    [104] GOO E, PARK K T. Application of the von mises criterion to deformation twinning[J].Scripta Materialia, 1989,23,1053-1056.
    [105] COURET A, CAILLARD D. prismatic slip in beryllium in the controlling mechanism atthe peak temperature[J]. Philosophical Magazine A, 1989,59:783-800.
    [106] MYSHLYAEV M M , MCQUEEN H J , MWEMBELA A, et al. Twinning, dynamicrecovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Materials Science andEngineeringA, 2002,A337:121-133.
    [107] LANGDON T G. Grain boundary sliding as a deformation mechanism during creepinterfaces[J]. Philosophical Magazine A, 1970,178(22):689-694.
    [108] SASTRY D H, PRASAD R K. On stacking fault energies of some close-packed hexagonalmetals[J]. Scripta Materialia, 1969,3:927-935.
    [109] MABUCHI M, HIGASHI K. Strengthening mechanisms of Mg-Si alloys[J]. ActaMaterialia, 1996,44:4611-4618.
    [110] LIU W J, KAO V, ESSADIGI E. Dynamic recrystallization of AZ31 magnesium alloyduring torsion deformation at elevated temperatures[J]. Magnesium Technology 2004,Ed.by Alan.A .Luo.TMS, 2004,56:73-78.
    [111] Hidetoshi Somekawa, Alok Singh and Toshiji Mukai. Synergetic Effect of GrainRefinement and Spherical Shaped Precipitate Dispersions in Fracture Toughness of a Mg-Zn-Zr Alloy. Materials Transactions, 2007,48:1422-1426.
    [112] ITOI T, SEIMIYA T, KAWAMURA Y, et al. Long period stacking structures observed inMg97Zn1Y2 alloy[J]. Scripta Materialia, 2004,51:107-111.
    [113] SUZUKI M, SATO H, MARUYAMA K, et al. Creep deformation behavior and dislocationsubstructures of Mg-Y binary alloys[J]. Materials Science and Engineering A, 2001,A319-321:751-755.
    [114] CHANG S Y, NAKAGAIDO T, HONG S K. Effect of yttrium on high temperaturestrength of magnesium[J]. Materials Transaction, 2001,42:1332-1338.
    [115]王忠堂,张士宏,齐广霞等. AZ31镁合金热变形本构方程[J].中国有色金属学报, 2008,18:1977-1982.
    [116] JUN Y, SUN G P, JIA S S. Characterization and wear resistance of laser surface meltingAZ91D alloy[J]. Journal of Alloys and Compounds, 2008,455:142-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700