用户名: 密码: 验证码:
陕西勉县后沟—大坪山锰矿成矿地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于南秦岭磷-锰成矿带中东段的后沟-大坪山一带,近年来在下寒武统塔南坡组地层中发现三条锰磷矿化带,具有重要的锰矿成矿远景。锰矿体均赋存于下寒武统塔南坡组含碳泥质岩-碳酸盐岩建造内,属海相沉积变质改造类型锰矿床。本文在对后沟—大坪山锰矿地质特征总结分析基础上,系统采集了样品,开展室内显微镜观察,X-射线粉晶分析和常量与微量元素和稀土元素地球化学系统测试及区域化探数据处理,以此探讨锰矿成因及区内优质锰矿的成矿条件和成矿控制作用,提出区域优质锰矿的找矿标志。主要认识如下:
     (1)通过大量区内样品的MnO/TiO_2比值、Al/(Al+Fe+Mn)比值、U/Th比值,以及Na(Wt%)对Mg(Wt%)判别图、Si(Wt%)对Al(Wt%)判别图、Al-Fe-Mn判别图、F2-F1判别函数图、lgw(U)-lgw(Th)关系图等综合分析,我们认为勉略成矿带后沟-大坪山锰矿床富集锰、磷的物源具有远洋热液沉积的特征,其围岩主要形成于边缘海沉积环境,沉积物质以陆源为主。
     (2)样品的微量元素蛛网图表明,含锰矿石样品Rb、K、Pb等元素亏损。Ba、U、Sr和稀土元素等元素丰度较高,远大于陆壳值。围岩样品Rb、K、Pb等元素亏损。Ba、Th、U、Zr、Hf、Ti和稀土元素富集,远大于陆壳值。本文岩石样品ΣREE含量从24.260ppm~602.741ppm,平均为192.022ppm。轻稀土LREE富集,除了2个样品的LREE/HREE小于1之外,其余样品的LREE/HREE均大于1,从0.413~18.269,平均7.18。在北美页岩标准化的稀土元素配分模式曲线图中,含锰矿石、围岩都表现为基本平滑型。大多数样品表现出了强烈的Dy正异常。
     (3)本区样品V/(V+Ni)为0.45~0.99,平均0.73,说明本区样品于水体分层不强烈,水体深度有一定的变化,还原性时强时弱的厌氧环境下形成。本区样品的δU值为1.06~2.0,平均1.46,表现为缺氧沉积环境。推测含锰岩系形成于水体有一定分层的缺氧(还原)沉积环境。样品的δU值为1.06~2.0,平均1.46,也指示表现为缺氧沉积环境。可见,含锰岩系形成于水体有一定分层的缺氧(还原)沉积环境。
     (4)区内优质锰的成矿受磷锰分离沉积成矿和铁锰分异控制,具有下磷上锰分层成矿特点;含锰灰岩(白云质灰岩)和含黄铁炭质片岩为本区的锰矿找矿标志。
The Hougou-Dapingshan three manganese (Mn) and phosphor (P) metallogenic belts, located in the middle east segment of the South Qinling Mn- P metallogenic zone, have been founded recently. The regional 3 high quality Mn orebodies are associated with carbonaceous argillaceous rock-carbonatite formation of Tananpo Formation ( Lower Cambrain), belonging to Mn deposit of sea facies sedimentary metamorphic/ reconstructed type.
     On survey of geology and ore deposits, the Hougou-Dapingshan manganese ore district, systematic sampling, microscopic observation, XRD and geochemical analyses have been conducted. Results were used to constrain formation of manganese deposits and the metallogenic forming condition. The controlling processing of high quality Mn ores are studied and presented, the prospecting indications for manganese deposits have been proposed and constrained. The conlcusions are as follow:
     1. The values of MnO/TiO2, Al/(Al+Fe+Mn), U/Th together with the discriminant diagrams of Na (Wt%) vs Mg(Wt%), Si(Wt%) vs Al(Wt%), Al-Fe-Mn, F2 vs F1 and lgw(U) vs lgw(Th) comprehensive analysis show that the Mn and P bearing ores were formed in the ocean hydrothermal sedimentary environment. Meanwhile the wall rocks were formed in a marginal marine sedimentary environment, sediments were maily derived from continent. The carbonaceous rocks had a close relationship with the Mn/P bearing ore formation.
     2. The trace element spider diagrams show that Mn bearing ores and wall rocks are depletion in Rb, K, Pb , and enrichments in Ba, U, Sr and the REE, these enrichments are more than average continental values. TheΣREE of samples varied from 24.26 ppm to 602.74 ppm with an average of 192.02 ppm. The LREE is much enrichments compared with thos of HREE. Apart from two samples, the value of LREE/HREE is greater than 1, varying from 0.41 to 18.27 with an average of 7.18. In the NASC Normalized REE patterns, both Mn bearing ores and wall rocks show nearly flat pattern distributions. Most samples show strong positive anomalies in Dy.
     3. The values of V/(V+Ni) vary from 0.45 to 0.99 with an average of 0.73, indicating that samples were formed in the anaerobic environment with features of ordinary stratified water bodies and a changed water depth and reduction. The values ofδU vary from 1.06 to 2.0 with an average of 1.46, indicating a anoxic sedimentary environment. It is inferred that Mn bearing rocks were formed in anoxic(reduction) sedimentary environment with stratified water bodies.
     4. The Mn metallogenic process has evident feature of basin-controlling, schistosity-controlling and single lithology. High quality Mn ores were controlled by Mn and P sediments and Mn metallogenic seam existing in the P metallogenic seam. Manganese limestone (including dolomite limestone) and pyritic charry schist are proposed as prospecting indications in this region.
引文
陈建强,周洪瑞,王训练. 2004.沉积学及古地理学教程[M].北京:地质出版社,84~87.
    陈毓川,王平安,秦克令,赵东宏,毛景文,1994,秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨[J],矿床地质,13(4):289-296.
    董广法,刘树峰,郑崔勇,袁波. 2004,勉略宁地区锰矿成矿环境及找矿方向[J].矿产与地质,18(总106):550-554.
    杜小伟,杨晓勇,杨钟堂,L.G.Gwalani. 2009.印度次大陆中央构造带沉积—变质型锰矿的矿物学和地球化学[J].地质科学,44(1):103~117.
    范德廉. 1994.锰矿床地质地球化学研究[M].北京:气象出版社.
    范德廉,张焘,叶杰,2004.中国的黑色岩系及其有关矿床[M].北京:科学出版社,1~48.
    何俊国,周永章,杨志军,李红中,王晓悦. 2009.藏南彭错林硅质岩地球化学特征及沉积
    环境分析[J]..吉林大学学报(地球科学版),39(6):1055~1065.
    何知礼,1990,从地洼成矿作用看中国某些优质锰矿的成因与远景[J],大地构造与成矿学,14(3)203-210
    侯宗林,薛发智,黄金水. 1997,杨子地台周边锰矿[M].北京:冶金工业出版社.
    江纳言,贾蓉芬,王子玉. 1994.下扬子区二叠纪古地理和地球化学环境[J].北京:石油工业出版社,65~90.
    李会民,李智明.扬子地台北缘锰矿成矿地质特征及找矿方向研究[J].地质与勘探,2005,41(1):18-21.
    李胜荣、高振敏,1994.黑色岩系中铂族元素研究概况及意义[J].地质地球化学,(4):45-49
    刘国平,艾永富,1998.含碳岩系与金矿床[J].黄金地质, 4(2):62-66.
    刘钦甫,杨晓杰,丁述理. 1998,华北晚古生代煤系高岭岩微量元素和稀土元素地球化学研究[J].地球化学,27 (2) :196~203.
    刘颖,刘海臣,李献华,1996.用ICP-MS准确测定岩石样品中的40余种微量元素[J].地球化学,25(6): 552-558.
    骆华宝,2002,我国优质锰矿的勘查方向[J].地质与勘探,38(4):8-11.
    乔耿彪,杨钟堂,李智明,杨晓勇,2009.陕西勉县后沟-大坪山矿区磷、锰分层成矿地质地球化学特征[J].西北地质,42(4):37-45.
    乔耿彪,杨钟堂,李智明,杨晓勇,蓝翔华,2011.陕西省勉县—略阳地区寒武纪含碳岩系的地球化学特征及其成因[J]..现代地质,25(2):211-218.
    陕西地勘局西安地质矿产勘查开发院,1999,陕西勉县-略阳-留坝地区1:5万区调片区总结(报告)
    施春华,胡瑞忠,王国芝. 2006.贵州织金磷矿岩元素地球化学特征[J]..矿物学报,26(2):169~174.
    苏小兵,2006,甘肃锰矿资源现状及勘查方向[J].甘肃地质,15(1):58-61.
    汤中立,钱壮志,任秉琛等, 2005,中国古生代成矿作用[M].北京:地质出版社,2005,305-307;
    王尔贤.中国的锰矿资源[J].电池工业,2007(2) 3:184-188.
    王东安,1994,扬子地台晚元古代以来硅质岩地球化学特征及其成因[J],地质科学,29(1):41-52.
    王立社. 2009.陕西秦岭黑色岩系及其典型矿床地质地球化学与成矿规律研究.西安:西北大学博士学位论文,53~65.
    王敏,孙晓明,马名扬. 2004.黔西新华大型磷矿磷块岩稀土元素地球化学及其成因意义[J].矿床地质,23(4):484~493.
    王中刚,于学元,赵振华,1989.稀土元素地球化学[M].北京,科学出版社, 1-535.
    吴朝东,杨承运,陈其英,1999.湘西黑色岩系地球化学特征和成因意义[J].岩石矿物学杂志,18(1):26~38.
    西安地质矿产研究所,1990,陕西省勉略宁区中酸性岩与铁、铜、金成矿关系研究报告(科研报告)
    夏邦栋,钟立荣,1995.下扬子区早二叠世孤峰组层状硅质岩成因[J].地质学报,69(2):125~137
    谢建成,杜建国,许卫,杨晓勇,2006,安徽贵池地区含锰岩系地质地球化学特征[J].地质论评,52(3):396~408.
    徐晓春,王文俊,熊亚平,等. 2009,安徽石台早寒武世黑色岩系稀土元素地球化学特征及其地质意义[J].岩石矿物学杂志,28(2):118~128.
    薛友智,候宗林, 2006,中国优质锰矿地质与勘探[J].地质找矿论丛,.21(增刊):1-4;
    杨剑,易发成,侯兰杰. 2004.黔北黑色岩系的岩石地球化学特征和成因[J]..矿物学报,24(3):285~289.
    杨兴莲,朱茂炎,赵元龙,等. 2008,黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征[J].地质论评,54(1): 3~15.
    杨钟堂,乔耿彪,李智明,宋忠宝,刘小舟,万伟,2008.陕西省勉县后沟锰矿成矿特征、
    成矿模式及找矿标志[J].地质与勘探, 44(2):38~44.
    杨钟堂,李智明,乔耿彪,杨晓勇,黄洪平,蓝翔华,宋忠宝,刘小舟,万伟,陕西省勉
    县后沟—大坪山锰矿床地质—地球化学特征及控矿因素[J].地质科学,2009,44(1):88~102.
    杨忠堂,乔耿彪,李智明,等. 2010.陕西省勉县后沟-大坪山一带锰矿普查报告.
    姚国龙,覃志安,朱恺军,最桂巧,2000,新疆莫托萨拉铁锰矿硅质岩特征及其成因探讨[J].地质找矿论丛,15(4):307-313;
    叶杰,范德廉,2000.黑色岩系型矿床的形成作用及其在我国的产出特征[J].矿物岩石地球化学通报,19(2):95~102.
    游先军,戴塔根,息朝庄,等. 2009.湘西北下寒武统黑色岩系地球化学特征[J].大地构造与成矿学,33(2):304~312.
    于学元,郑作平,牛贺才,等. 1996,八卦庙大型金矿床稀土元素地球化学研究[J].地球化学, 25(2):140~149.
    张二朋等,1993,秦巴及邻区地质-构造特征概况[M].北京:地质出版社,305-307
    张复新,王立社,侯俊福,2009.秦岭造山带黑色岩系与金属矿床类型及成矿系列[J].中国地质,36(3):694~704.
    张运芬,1983,陕西汉中天台山含磷岩系小壳化石的发现及其意义[J].陕西地质,1(2):111-115;
    赵百胜,刘家军,王建平,翟裕生,彭润民,王守光,沈存利. 2007.白云鄂博群黑色岩系
    微量元素地球化学特征及地质意义[J]..现代地质,21(1):87~94
    赵振华. 1997.微量元素地球化学原理[M].北京:科学出版社.
    郑崔勇,王启,李福让,等,2007.摩天岭锰成矿带地质特征及找矿方向[J].西北地质,40(增刊):88-93.
    庄汉平,卢家烂,傅家谟等,1997.白果园黑色岩系型银(钒)矿床沉积古环境与银(钒)初始富集[J].地质论评,43(4):373~380.
    Adachi M, Yamamoto K and Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the Northern Pacific, their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 47: 125~148.
    Bai S L, Bai Z Q, Ma X P, et al., 1994 Devonian events and biostratigraphy of South China, Chapter 3: Ce /La ratio as marker of Palaeoredox [M ]. Beijing: Peking University Press. 21-24.
    Bau M., Moller P and Dulski P., 1996. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox cycling.[J]. Mar. Chem, 56: 123~131.
    Bhatia M R and Crook K A W. 1986. Trace element characteristics of graywacks and tectonic discrimination of sedimentary basins[J]. Contrib. Mineral. Petrol., 92: 181~193.
    Bostrom K, Peterson M N A. 1969. The origin of A1-poor ferromaganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 7: 427~447.
    Bostrom K, Kraemer T, Gartner S. 1973. Provenance and accumulation rates of opaline silica AI,Fe,Ti,Mn,Cu,Ni and Co in Pacific pelagic sedlment [J]. Chemical Geology, 11: 123-148.
    Bostrom K, Rydell H, Joensuu O. 1979. Langbank:An exhalative sedimentary deposit [J]. Economic Geology, 74(5): 1002-1011.
    Bostrom K. 1983. Genesis of ferromanganese deposits diagnostic criteria for recent and old deposits. ed. P. A. Rona, K. Bostrom , L. Laubier and K. L. Jr. Smith , Hydrothermal processes at seafloors spreading centers . New york:Plenum Press, 473~489.
    Crerar D A, Namson J and Chyi M S, et a1. 1982. Manganiferous chert of the Franciscan assemblage: General geology ancient and modern analogues and implications for hydrothermal convection at oceanic spreading centres [J]. Economic Geology, 77 (3): 519-540
    Crowley T J.,Berner R A., 2001. Palaeoclimate:CO2 and climate change[J]. Science,292(5 518):870~872.
    Dasgup ta H.C.,Sambasiva Rao V V and Krishna 1999. Chemical environments of deposition of ancient iron and manganese-rich sediments and cherts[J]. Sedimentary Geology,125:83-98.
    Dorr J V N. 1968. Primary manganese ores. In: Proceedings of the 23rd Congress,Sociedade Brasiliera do Geologia,1-12.
    Dubinin A V and Volkov I I,1986,Rare earth elements in metalliferous sedments of the East Pacific Rise. Geokhimija,5:645-662;
    Frakes L A and Bolton B R. 1984. Origin of manganese giants: sea level change and anoxic oxic history[J]. Geology,12: 83-86.
    Glasby G P. 2000. Manganese: predominant role of nodules andcrust. In: Schulz H D, ZabelM , eds. Marine Geochem istry.Berlin: Springer-Verlag, 335~372.
    Gromet L.P., Dymek R.F., Haskin L.A. and Korotev R.L., 1984, The“North American Shale Composite”: its compilation, major and trace element characteristics[J]. Geochim. Cosmochim. Acta, 48, 2469-2482.
    Haskin L.A., Haskin M.A., Frey F.A. and Wildman T.R., 1968, Relative and absolute terrestrial abundances of the rare earths. In: Ahrens L.H.(ed.), Origin and distribution of the elements,vol.1. Oxford:Pergamon, pp.809-911.
    Haskin M.A., and Frey F.A., 1966, Dispersed and not-so-rare earths. Science, 152, 299-314.
    Hatch J R,Leventhal J S. 1992. Relationship between inferred redoxpotential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U.S.A.. Chemical Geology,99:65~82.
    Jones B L, Manning A C. 1994. Comparison of geochemica indices used for interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 111: 111-129
    Keith Nichlson,1992a,Constrasting Mineralogical-Geochemical Signatures Of Manganese Guides to Metallogenesis[J],Econ. Geol. Vol87,1253-1264;
    Keith Nicholson, 1992b, Genetic types of Manganese Oxide Deposits In Scotland: Indicators of Paleo-Ocean-Spreading Rate and a Devonian Geochemical Mobility Boundary[J], Econ. Geol.,Vol, 87, 1301-1309.
    Li S.R., Gao Z. M., 2000. Tracing source for noble metals in the Lower Cambrian black shale in Hunan and Guizhou provinces. Science in China (Series D),30:169~174.
    Marchig V . 1982. Some geochemical indication for determ ination between diagenetic and hydrothermal metalliferous sediments [J]. Marine Geology, 50(3):241-256.
    Mclennan S M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lip in B R, McKay G A ., eds. Geochemistry and Mineralogy of Rare Earth Elements, Mineralogical Society of America Reviews in Mineralogy, 21,Washington DC, 168-200.
    Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and application[J]. Sedimentary Geology, 90:213~232.
    Nozaki Y., Zhang J and Amakawa H., 1997. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 148: 329-340.
    Nyame F K,BeukesN J ,Kase K and YamamotoM. 2002. Compositional variations in manganese carbonate m icronodules from the Lower Proterozoic N suta deposit,Ghana: p roduct of authigenic precipitation or post-formational diagenesis? [J]. Sedimentary Geology,154: 159-175.
    Rakhmanov V P and Tchaikovsky V K.,1972. Genetic types of sedimentary manganese formations. A ctaM ineral. Petrogr. Szeged,20:313-323.
    Rona P A. 1988. Hydrothermal mineralization of oceanic ridges [J]. Can Mineral, 26(3): 447-465.
    Ronov A B., Balashov Yu A ., Girin Yu P., 1974. Regularities of rare earth element distribution in the sedimentary shell and in the crust of the Earth. Sedimentology, 21: 173-193.
    Roser B.P. and Korsch R.J, 1988,Provenance signatures of sandstone-mudstone suites determined using discyiminan function analysis of major-element data[J]. Chem.Geol.,67,119-139;
    Roy S.,1981. M anganese Deposits. London: Academic Press,1-451. Roy S. 1992. Environments and p rocesses of manganese deposition[J]. Econ. Geol. 87: 1218-1236.
    Roy S. 1997. Genetic diversity of manganese deposition in the terrestrial geological record. In:Nicholson K,Hein J R,Bühn B,Dasgup ta S,eds. M anganeseM ineralization: Geochem istry andM ineralogy of Terrestrial and M arine Deposits[J]. Geological Society Special Publication 119,London,5-27.
    Sun S.-S., 1982, Chemical composition and origin of the earth’s primitive mantle. Geochim. Cosmochim .Acta, 46:179-192.
    Sun, S. S., McDonough, W. F. (1989). Chemical and isotope systematics of ocean basalts:implications for mantle composition and processes. Magmatism in the Ocean Basins. A. D. Saunders, M. J. Norry. London, Geological Society of London Special Publication. 42: 313-345.
    Taylor, S. R., Mclcnnan, S. M., 1985. The continental crust:Its composition and evolution, Oxford:Blackwell Scientific Press, 1-312.
    Tucker M E. 1992. The Precambrian-Cambrian boundary. seawater chemistry, ocean circulation and nutrient supply in metazoan,extinction and biomineralization. J. Geol. Soc. London,149:654~655.
    Wignall P B. 1994. Black Shales. Oxford:Clarendon Press,46.
    Yamamoto K. 1987. Geochemical characteristics and depositional environments of chert and associated rocks in Rona P the Franciscan and Shimanto Terranes. Sedimentary Geology[J], 52: 65~108.
    Zhang Zhengwei,Yang Xiaoyong,Li Shuang,Zhang Zhongshan. 2010. Geochemical characteristics of the Xuanwei Group in West Guizhou: significance of sedimentary environment and mineralization. Chinese Journal of Geochemistry. 29:355-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700