用户名: 密码: 验证码:
三峡地区小流域氮循环及其对水体氮含量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是自然界中普遍存在的一种元素,也是重要的生源要素。随着人类活动的不断加剧,氮的生物化学循环受到了严重干扰。化学肥料的广泛施用,加速了氮在农田内的积累,进而影响到自然水体。世界各国正在探寻提高氮利用率和减少损失以缓解环境压力的途径。从小流域尺度上对三峡地区氮循环及其氮素在水体中的含量和迁移进行研究,对加强水资源管理、改善流域生态环境和保持可持续发展有重要的意义。
     本研究运用多学科知识,结合实地调查、定位监测、小区实验和故障树风险评价等方法和手段,探讨了流域农户氮循环特征,揭示了氮在地表径流、大气沉降、淋失等环节的含量规律和变异特征。初步明确了流域氮流失的主要原因,并针对性地提出了氮流失控制的建议和对策。得出的主要研究结果如下:
     1.流域农户氮循环
     从流域“农户”的角度出发,研究小流域农户氮循环特征,结果表明:养殖型农户氮负荷主要是包括畜禽废弃物在内的生活排放氮,种植型农户氮负荷的主要来源是农田盈余氮。在氮循环的输入和输出环节中,对流域水环境构成潜在威胁的依次为农田盈余氮和生活排放氮。如果没有良好的防控措施,这些环节不仅会造成严重的氮流失,还会威胁到区域水环境质量。
     2.流域水体氮含量及机理
     1)小流域水体中可溶性硅、氮含量均高于三峡库区,可溶性磷含量则较低;但从营养盐含量水平分析,在气候条件适宜的情况下该流域水体有发生“水华”的潜在风险。2)NO3-N(硝态氮)是基流水体中氮的主要赋存形态,其含量表现出冬季>秋季>夏季>春季的季节性变化特征,且含量有随径流流量减少逐步增加的趋势。土地利用类型对水体NO3--N含量有明显的影响。3)在流域尺度上降雨是氮输出的主要控制因子,80%以上的氮输出负荷发生在4~9月份的雨季。控制降雨径流中的氮对减少流域氮输出有重要的意义。4)不同农作方式和种植方式对流域水土和氮流失有重要的影响。梯田和坡篱两种农作措施相对于坡地和撂荒地有更好的水土保持功能。而不同种植方式对氮素流失的影响具有较大的差异,种柑比种粮和种茶明显地减少了水土和氮素的流失。综合考虑本区域的经济和环境因素,坡篱农作方式结合种柑是该区域防治氮流失的最佳耕作措施,具有实际推广价值。5)耕地坡度也是氮素流失过程中一个不容忽视的因素。在新翻耕地中,水土和氮流失随着坡度的增加呈现出不断增大的趋势。因此,选择合理的农田坡度及适当的耕作方式和时机也是防止氮流失的重要措施。6)不同尺度施氮量对水体氮含量有一定的影响。研究发现200 m范围内施氮量与水体中氮含量相关性最好。在以划分子流域方式的研究中采用单位面积平均施氮量、在划分作用区方式的研究中采用作用区总施氮量能够更好地反映流域内施氮量与水体氮含量的关系。
     3.流域氮沉降
     该区域雨水中氮含量一般在1.5·2.5 mg·L-1,超出了水体富营养化的阈值,尤其是在干季;氮沉降量超出了脆弱陆地生态系统氮沉降量的临界值。在研究区内湿沉降量是主要的氮沉降方式,占到总沉降量的70%以上,NO3--N是主要赋存形态。
     4.流域土壤氮淋溶
     在自然降雨条件下对五种不同农业利用土壤NO3--N淋溶的研究表明,随土壤深度增加NO3--N淋溶量呈现不断减少的趋势,但浓度却随深度的增加而增加,所以,在60 cm处淋失量仍保持在一个较高的水平。另外,施肥季节是NO3--N淋溶量最大的时期,掌握施肥量和施肥时机是能否有效控制NO3--N淋溶的关键。NO3--N淋溶量大小顺序为:种粮地>种柑地>林地,因此,适当调节用地结构能够有效地减少土壤NO3--N淋溶。
     5.流域氮流失风险评价
     采用故障树分析方法,对张家冲流域氮流失风险进行了定量与定性评价,得出该流域氮流失风险概率为0.41,存在较大的流失风险,造成氮流失的主要因素有农田氮盈余、生活污水排放和畜禽养殖等。利用最佳管理模式的调整结果表明,减少氮肥施用量、增加植被覆盖、建立坡篱和植被隔离带等措施可以有效地降低氮流失发生的几率。
     在三峡地区,氮流失一般伴随着高施肥量、高降雨量和高径流量。因此,提高氮肥利用率;根据水体氮流失的季节性变化,选择适当措施适时拦截、阻断氮的流失;建立污染监测的长效机制,加大农村面源污染防控预测等将对三峡地区氮污染的防治和三峡库区水质保护具有重要的意义。
Nitrogen is a ubiquitous biogenic element and widely distributed in the nature. The biochemical cycling of nitrogen has being severely challenged and significantly influences with intensive human activities. The extensive application of chemical fertilizers has greatly accelerated the nitrogen accumulation in the agro-ecological system that includes fields and water bodies. Approaches for improving nitrogen utilization ratio and reducing its losses, in order to ease the environmental pressure, have been explored all over the world. Investigating nitrogen cycle that includes nitrogen concentrations and migration in water at the watershed scale in the Three Gorges Area was the specific objective of this study.
     Different approaches, such as field survey, long-term monitoring, plot experiment and probabilistic risk assessment were linked to explore the characteristics of nitrogen cycle and reveal the role of nitrogen concentrations and migration in surface runoff, atmospheric deposition and leaching. We identified the major influencing factors, and put forward the target-oriented proposal and countermeasures for nitrogen loss. The main results were as follow:
     1) Farmer nitrogen cycling
     An effort was made to study the N cycle on Farm scale level, the results showed that the nitrogen discharge by breading households was living source of nitrogen, whereas the nitrogen load of growing households was the farm surplus nitrogen. By linking the nitrogen cycling and budget, farm surplus nitrogen and living discharging nitrogen were the most export items being potential sources of pollution to environment. Without proper control measurements, this could lead to serious nitrogen loss, and thus a threat to regional water environment.
     2) Nitrogen in water body
     1) By using the method of fixed-pointed monitoring in streams of two small watersheds, the contents of dissolved silicon (DSi), dissolved inorganic nitrogen (DIN) and dissolved phosphorus (DP) were analyzed. DSi, DIN and DP concentrations in small watersheds were higher than in Three Gorge Reservoir.2) NO3--N was the major form of nitrogen in base-flow, seasonal variations of NO3--N concentrations presented that winter>autumn>summer>spring, the values shown a gradually increasing trend.3) Rainfall was the major promoting factor for nitrogen export at the watershed scale, and 80% of nitrogen export occurred from April to September.4) Concentrations of Various nitrogen forms varied along with different treatments during the rainfall process. Increasing trend was observed initially, followed by decrease, finally the trend was stabilized. Nitrogen losses were different among treatments, but dissoluble nitrogen and sediment nitrogen losses were almost 40% of total nitrogen losses in runoff. NO3--N and NH4+-N were the dominated forms of dissoluble nitrogen, more than 80%. Nitrogen losses varied evidently among different land use types. The loss of nitrogen in Terrace and slope-contour hedgerow cultivation practices were only 50% of nitrogen loss from slope farmland, which indicted that the two cultivation practices have certain interception function for soil water and nitrogen losses. In addition, the study also indicated there were better effects for water and nutrients retention by planting citrus than crop or tea tree. Therefore, base on environmental and economical consideration, the combination of slope-contour hedgerow and plant citrus cultivation practice was the best land use type.5) Slope gradient was found to be an important factor, especially in new-ploughed fields. Water, soil and nitrogen loss increased with the increase in slope gradient.6) The contributing zone approach showed a significantly correlation between total nitrogen application and nitrogen concentrations in stream water, especially the nitrogen applied within the area of 200 m of upstream contributing zones. The results indicated that both sub watershed and contributing zone approaches are feasible methods to study the characteristics and influencing factors of nutrients in surface water. Furthermore, the present studies will provide a basis for the theory and method to study the influence of agricultural pollutants on stream water in some small watersheds.
     3) Nitrogen deposition
     In this paper, nitrogen deposition was also considered, where wet deposition was found to be a main form of nitrogen deposition, accounts for more than 70% of the total. Generally nitrogen concentrations in rain water were 1.5~2.5 mg·L-1, and exceeded the threshold value for water eutrophication, especially in the dry season. The nitrogen deposition amount went beyond the critical value for feeble terrestrial ecosystem; thereby the effect on agricultural production cannot be ignored.
     4) Nitrogen leaching
     In natural rainfall conditions, NO3--N leaching was studied in five different land use types. NO3--N leaching shown a declining trend with the soil depth, but the values maintained at a high level. In addition, fertilizer season was also the period with the largest NO3--N leaching, reasonably arrange fertilizer application rates and timing whether was a key issue for effective control NO3--N leaching. NO3--N leaching in different land use types presented that field>orchard>forest. Thereupon properly adjusting land use structures can effectively reduce the NO3--N leaching.
     5) Assessment of nitrogen loss risk
     The probability of occurrence for nitrogen loss in Zhangjiachong watershed was evaluated both qualitatively and quantitatively by fault tree analysis. The results showed that the risk of nitrogen loss was mainly related to farm surplus nitrogen, living discharging nitrogen and livestock breed. Assessment results of the best management practices indicated that alternative practices (reduce fertilization, increase vegetation cover, install more riparian buffer along streams) can reduce the probability of occurrence for nitrogen loss.
     Conclusively, in the Three Gorges Area, higher nitrogen loss occurred coinciding with fertilizer application, greater precipitation, and higher stream flow. Some measures (e.g. Improve nitrogen use efficiency; understand seasonal variation of nitrogen loss and timely interception; find nitrogen sources and block these pathways; establish the long-term monitoring mechanism and increase rural diffuse pollution control) are important for nitrogen pollution prevention in the Three Gorges Area.
引文
[1]艾应伟,范志金.N肥深施深度对小麦吸收利用N的影响.土壤学报,1997,34(2):146-151
    [2]白冰,陈效民,王恒祥.莱州湾滨海盐渍土中铵态氮水平运移室内模拟实验.农村生态环境,2004,20(4):1-5
    [3]鲍全盛,王华东.我国水环境面源污染研究与展望.地理科学,1996,16(1):66-72
    [4]毕经伟,张佳宝,陈效民,等.农田土壤中土壤水渗漏与硝态氮淋失的模拟研究.灌溉排水学报,2003,22(6):23-26
    [5]毕经伟,张佳宝,陈效民,等.应用HYDRUS-1D模型模拟农田土壤水渗漏及硝态氮淋失特征.农村生态环境,2004,20(2):28-32
    [6]蔡崇法,丁树文,史志华.GIS支持下三峡库区典型小流域营养流失量预测.水土保持报,2001,15(1):9-12
    [7]蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟.北京:科学出版社.1998,25-26
    [8]柴超,俞志明,宋秀贤,等.三峡工程蓄水前后长江口水域营养盐结构及限制特征.环境科学,2007,28(1):64-69
    [9]陈静生,于涛.黄河流域氮素流失模数研究.农业环境科学学报,2004,23(5):833-838
    [10]陈利顶,傅伯杰.异质景观中非点源污染动态变化比较研究.生态学报,2002,42(4):424-432
    [11]陈利顶,傅伯杰,赵文武.“源”“汇”景观理论和生态学意义.生态学报,2006,26(5):1444-1449
    [12]陈能汪.九龙江流域氮的源汇过程及其机制.[博士学位论文].厦门:厦门大学图书馆,2007
    [13]陈能汪,洪华生,张珞平.九龙江流域大气氮湿沉降研究.环境科学,2008,29(1):38-46
    [14]陈志强,王苏鹰,陈志彪.根溪河小流域高程和坡度对水土流失现状的影响.海南师范大学学报(自然科学版),2007,20(1):88-91
    [15]程冬兵,蔡崇法.等高绿篱技术保水抗旱效益研究.长江流域资源与环境,2008,17(5):793-797
    [16]戴全厚,薛萐,刘国彬,等.侵蚀环境撂荒地植被恢复与土壤质量的协同效应.中国农业科学,2008,41(5):1390-1399
    [17]邓美华,谢迎新,熊正琴,等.长江三角洲氮收支的估算及其环境影响.环境科学学报,2007,27(10):1709-1716
    [18]邓熙,林秋奇,顾继光.广州市饮用水源中硝酸盐亚硝酸盐含量与癌症死亡率联系.生态科学,2004,23(1):38-41
    [19]董丽凤,袁俊峰,马翠欣.滨岸缓冲带对农业面源污染NH4+-N,TP的吸收效果.上海师范大学学报(自然科学版),2004,33(2):93-97
    [20]范丽丽,沈珍瑶,刘瑞民.不同降雨—径流过程中农业非点源污染源研究.环境科学与技术, 2008,31(10):5-8
    [21]方涛,付长营,敖鸿毅,等.三峡水库蓄水前后氮磷污染研究.水生生物学报,2006,30(1):26-30
    [22]冯明磊,胡荣桂,许克翠,等.三峡小流域水体硝态氮含量变化及其影响因素研究.环境科学,2008a,29(1):14-18
    [23]冯明磊,胡荣桂,许克翠,等.三峡库区小流域不同尺度施氮量对水体的影响.中国环境科学,2008b,28(2):168-172
    [24]高超,朱继业,朱建国,等.极端降水事件对农业非点源污染物迁移的影响.地理学报,2005,60(6):991-997
    [25]高海鹰,黄丽江,张奇,等.不同降雨强度对农田土壤氮素淋失的影响及LEACHM模型验证.农业环境科学学报,2008,27(4):1346-1352
    [26]高学民,陈静生,王立新.Logistic Regression在我国河流水系氮污染研究中的应用.环境科学学报,2000,20(6):666-681
    [27]郭红岩,王晓蓉,朱建国,等.太湖流域非点源氮污染对水质影响的定量化研究.农业环境科学学报,2003,22(2):150-1532
    [28]郭忠录.等高绿篱—坡地农业复合系统氮素循环研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    [29]郭胜利,余存祖.有机肥对土壤剖面硝态氮淋失影响的模拟研究.水土保持研究,2000,7(4):123-126
    [30]韩秀娣.最佳管理措施在非点源污染防治中的应用.上海环境科学,2000,19(3):102-104,128
    [31]贺缠生,陈利顶,傅伯杰.非点源污染的控制和管理.环境科学,1998,19(5):87-91
    [32]何萍,王家骥.非点源污染控制与管理研究的现状、困境与挑战.农业环境科学,1999,18(5):234-237
    [33]洪一平,叶闽,臧小平.三峡水库水体中氮、磷影响研究.海洋环境学,1996,15(2):38-43
    [34]洪一平,叶闽,臧小平.三峡水库水体中氮磷影响研究.中国水利,2004,20:23-24
    [35]胡举波.黄浦江上游水域水质遥感监测模型的研究.[硕士学位论文].上海:同济大学图书馆,2006
    [36]黄丽,丁树文,董舟,等.三峡库区紫色土养分流失的试验研究.土壤侵蚀与水土保持学报,1998,4(1):8-13,21
    [37]黄丽,张光远,丁树文.侵蚀紫色土壤颗粒流失研究.水土保持学报,1999,5(1):35-39
    [38]黄丽娟,常学秀,刘洁,等.滇池水-沉积物界面氮分布特点及其对控制蓝藻水华的意义.云南大学学报(自然科学版),2005,27(3):256-260
    [39]黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮素的流失过程.土壤与环境,2001,10(1):6-10
    [40]黄满湘,章申,张国梁.应用大型原状土柱渗漏计测定冬小麦-夏玉米轮作期硝态氮淋失.环 境科学学报,2003,23(1):11-16
    [41]皇甫超申,徐靖华,秦明周,等.亚硝酸盐与癌的关系.河南大学学报(自然科学版),2009,39(1):35-41
    [42]黄元仿.不同灌水条件下土壤氮素淋溶渗漏的研究.见:现代土壤科学研究.北京:中国农业科技出版社,1994:243-247
    [43]黄云凤,张珞平,洪华生,等.不同土地利用对流域土壤侵蚀和氮、磷流失的影响.农业环境科学学报,2004,23(4):735-739
    [44]黄云凤,张珞平,洪华生,等.小流域氮流失特征及其影响因素.水利学报,2006,37(7):802-812
    [45]贾志国.晋西黄土高原降雨侵蚀力研究.中国水土保持,1991,1(2):19-22
    [46]贾海燕,雷阿林,雷俊山,等.紫色土地区水文特征对硝态氮流失的影响研究.环境科学学报,2006,26(10):1658-1664
    [47]江泽平.欧洲森林生态系统的氮循环研究近况.世界林业研究,1997,5:55-61
    [48]蒋光毅,史冬梅,卢喜平,等.紫色土坡地不同种植模式下径流及养分流失研究.水土保持学报,2004,18(5):54-58
    [49]蒋锐,朱波,唐家良,等.紫色丘陵区小流域典型降雨径流氮磷流失特征.农业环境科学学报,2008,27(4):1353-1358
    [50]金蕾,徐谦,林安国,等.北京市近二十年(1987~2004)湿沉降特征变化趋势分析.环境科学学报,2006,26(7):1195-1202
    [51]金相灿,屠清瑛.湖泊富营养化调查规范.北京:中国环境科学出版社,1990,178-215
    [52]巨晓棠,张福锁.中国北方土壤硝态氮的积累及其对环境的影响.生态环境,2003,12(1):24-28
    [53]况福虹,朱波,徐泰平,等.川中丘陵区小流域非点源氮素迁移的季节特征.水土保持研究,2006,15(3):93-95
    [54]李秉柏,施德堂,王志明.太湖蓝藻暴发的原因及对策建议.江苏农业科学,2007,6:336-339
    [55]李博.生态学.北京:科学出版社,2000
    [56]李崇明,黄真理.三峡水库入库污染负荷研究(Ⅰ)—蓄水前污染负荷现状.长江流域资源与环境,2005,14(5):611-622
    [57]李定强,王继增,万洪富,等.广东省东江流域典型小流域非点源污染物流失规律研究.土壤侵蚀与水土保持学报,1998,4(3):12-18
    [58]李凤清,叶麟,刘瑞秋,等.三峡水库香溪河库湾主要营养盐的入库动态.生态学报,2008,28(5):2073-2079
    [59]李怀恩,沈晋,刘玉尔.流域面源污染模型的建立与应用实例.环境科学学报,1997,17(2):141-147
    [60]李久生,张建君,饶敏杰.滴灌系统运行方式对砂壤土水氮分布影响的实验研究.水力学报,2004,9:1-9
    [61]李俊然,陈利顶,郭旭东,等.土地利用结构对非点源污染的影响.中国环境科学,2000,20(6):506-510
    [62]李娜.江淮农业流域壤中流养分的迁移过程研究.[硕士论文].北京:北京林业大学图书馆,’2004
    [63]李庆逵.我国土壤科学发展的回顾与展望.土壤科学进展,1989,17(4):1-16
    [64]李清河,李昌哲,孙保平,等.土壤侵蚀与非点源污染预测控制.水土保持通报,1999,19(4):54-57
    [65]李群,黄锦辉,刘晓丽.古宋河对地下水环境污染影响研究.水资源保护,2001,65(3):35-38
    [66]李瑞玲,张永春,曾远,等.太湖流域丘陵地区暴雨条件下农田氮素随地表径流迁移特征.农业环境科学学报,2009,28(6):1185-1190
    [67]李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失.应用生态学报,2000,11(2):240-242
    [68]李世清,李生秀.陕西关中湿沉降输入农田生态系统中的氮素.农业环境保护,1999,18(3):97-101
    [69]李玉中,祝廷成,姜世成.羊草草地生态系统干湿沉降氮输入量的动态变化.中国草地,2000,2:24-27
    [70]李政,刘征涛,王婉华,等.长江河口硅和磷生源要素质量浓度的变化特征.环境科学研究,2006,9(1):80-83
    [71]李志博,王起超,陈静.农业生态系统中氮素循环研究进展.土壤与环境,2002,11(4):417-421
    [72]林超文,陈一兵,黄晶晶,等.不同耕作方式和雨强对紫色土养分流失的影响.中国农业科学,2007,40(10):2241-2249
    [73]林杉,冯明磊,阮雷雷,等.三峡库区不同土地利用方式下土壤氧化亚氮排放及其影响因素.应用生态学报,2008,19(6):1269-1276
    [74]刘春增.长期施肥对砂土肥土变化及硝态氮积累和分布的影响.土壤通报,1996,27(15):216-218
    [75]刘光德,赵中金,李其林.三峡库区农业面源污染现状及其防治对策研究.全国农业面源污染与综合防治学术研讨会论文集,2004,1:59-64
    [76]刘全友.海河流域氮的生物地球化学循环.环境科学进展,2001,3(4):52-58
    [77]刘仁燕,冯明磊,林杉,等.三峡库区小流域水体硝态氮含量及与土地利用的关系.自然资源学报,2008,23(5):886-892
    [78]刘瑞秋.三峡大坝截流前后长江中上游江段水化学特性的初步调查.水生生物学报,2000,24(5):446-450
    [79]刘翔,刘兆昌.氮对地下水的污染预测模型.环境科学,1991,12(6):8-11
    [80]刘永明,贾绍凤,蒋良维,等.三峡水库重庆段一级支流回水河段富营养化潜势研究.地理研究,2003,22(1):67-72
    [81]鲁如坤,刘鸿翔,闻大中,等.我国典型地区农业生态系统养分循环和平衡研究Ⅳ.农田养分平衡的评价方法和原则.土壤通报,1996,27(5):197-199
    [82]罗专溪,朱波,王振华,等.川中丘陵区村镇降雨特征与径流污染物的相关关系.中国环境科学,2008,28(11):1032-1036
    [83]吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998,4(1):8-15
    [84]马琨,王兆骞,陈欣,等.不同雨强条件下红壤坡地土壤养分流失特征研究.水土保持学报,2002,16(3):16-19
    [85]马立珊.苏南太湖水系农业非点源氮污染及控制对策研究.应用生态学报,1992,3(4):346-354
    [86]孟庆华,杨林章.三峡库区不同土地利用方式的养分流失研究.生态学报,2000,20(6):1030-1033
    [87]穆兴民,陈霁伟.黄土高原水土保持措施对土壤水分的影响.土壤侵蚀与水土保持学报,1999,5(4):39-44
    [88]彭奎,欧阳华,朱波.农林复合生态系统生物地球化学循环及其环境影响研究.中国生态农业学报,2005,13(1):111-115
    [89]彭琳,王继增,卢宗藩.黄土高原旱作土壤养分剖面运行与坡面流失的研究.西北农业学报,1994,3(1):62-66
    [90]戚隆溪,黄兴法.坡面降雨径流和土壤侵蚀的数值模拟.力学学报,1997,29(3):343-347
    [91]钱承墚,鲁如坤.农田养分再循环研究:Ⅲ.粪肥的氨挥发.土壤,1994,26(4):169-174
    [92]全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施.生态学报,2002,22(3):291-299
    [93]任书杰,曹明奎,陶波,等.陆地生态系统氮状态对碳循环的限制作用研究进展.地理科学进展,2006,25(4):58-67
    [94]沈世华,荆玉祥.中国生物固氮研究现状和展望.科学通报,2003,48(6):535-539
    [95]沈志良.长江磷和硅的输送通量.地理学报,2006,61(7):741-751
    [96]史玉虎,王栋,潘磊,等.三峡库区典型流域降雨变化与径流的关系研究.水土保持学报,2003,17(3):118-120
    [97]史志华,蔡崇法,丁树文,等.基于GIS的汉江中下游农业面源氮磷负荷研究.环境科学学报,2002,22(4):473-477
    [98]司友斌,王慎强,陈怀满.农田氮磷的流失与水体富营养化.土壤,2000,4:188-193
    [99]宋全香,左其亭,杨峰.水环境承载能力预测模型及其在郑州市的应用.水资源保护,2004,4:22-24
    [100]宋伟峰,余新晓,张颖.坡度和刺槐覆盖对黄土坡面产流产沙影响的模拟降雨研究.中国水土保持科学,2008,6(2):15-18
    [101]苏成国,尹斌,朱兆良,等.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降.应用生态学报,2003,14(11):1884-1888
    [102]王海雯.紫色土丘陵区横坡耕作措施在不同坡度上的水土保持研究.安徽农业科学,2008,36(32):14264-14266
    [103]王辉,王全九,邵明安.人工降雨条件下黄土坡面养分随径流迁移实验.农业工程学报,2006,22(6):39-44
    [104]王孟,邬红娟,马经安.长江流域大型水库富营养化特征及成因分析.长江流域资源与环境,2004,13(5):477-481
    [105]王鸣远,王礼先.鄂西长江三峡库区产流降雨特征的研究.水土保持学报,1995,9(2):9-18
    [106]王荣萍,黄建国,袁玲,等.重庆市主要土壤类型硝态氮淋失及其影响因素.水土保持学报,2004,188(5:35-38
    [107]王少平,陈满荣,俞立中,等.GIS在农业面源污染中的应用.农业环境保护,2000,19(5):289-292
    [108]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究.水土保持通报,1998,16(5):1-20
    [109]王晓燕,秦福来,欧洋,等.基于SWAT模型的流域非点源污染模拟—以密云水库北部流域为例.农业环境科学学报,2008,27(3):1098-1105
    [110]王小治,朱建国,高人,等.太湖地区氮素湿沉降动态及生态学意义:以常熟生态站为例.应用生态学报,2004,15(9):1616-1620
    [111]王协康,方铎.坡面侵蚀临界坡度的研究.四川水力发电,2000,19(2):11-14
    [112]王兴祥,张桃林,张斌.红壤旱坡地农田生态系统养分循环和平衡.生态学报,1999,19(3):335-341
    [113]汪元辉.安全系统工程.天津:天津大学出版社,1999
    [114]汪志国,李国刚.水中氮类污染物的联系与区别.干旱环境监测,2003,17(1):15-18
    [115]吴刚,苏瑞平.三峡库区移民安置区生态农业发展模式的研究.应用生态学报,1998,9(6):665-668
    [116]吴光杰,王海宝,谢小维.虚拟式梯田滑坡监测试验研究.农机化研究,2008,4:161-162,248
    [117]夏青,庄大帮,廖庆宜等.计算面源污染负荷的流域模型.中国环境科学,1985,5(4):23-30
    [118]肖宏宇,胡荣桂,郝晓晖,等.三峡库区秭归县大气氮湿沉降的初步研究.长江流域资源与环境,2007,16(增刊):119-123
    [119]谢红梅,朱波,朱钟麟.几种施肥制度下紫色土NO3--N淋溶特征.西南农业大学学报,2004,17(增刊):268-271
    [120]谢迎新,张淑利,赵旭,等.长江三角洲地区雨水中NH4+-N/NO3--N和15δ NH4+值的变化.应 用生态学报,2008,19(9):2035-2041
    [121]徐立,许顺清,孙芳,等.汉江武汉段浮游藻类动态监测与水质评价.中国卫生检验志,2005,15(11):1349-1350
    [122]徐泰平,朱波,汪涛,等.不同降雨侵蚀力条件下紫色土坡耕地的养分流失.水土保持研究,2006,13(6):139-141,144
    [123]许峰,蔡强国,吴淑安,等.三峡库区坡地生态工程控制土壤养分流失研究—以等高植物篱为例.地理研究,2000a,19(3):303-310
    [124]许峰,蔡强国,吴淑安.坡地农林复合系统养分过程研究进展.水土保持学报,2000b,14(1):83-87
    [125]许其功,刘鸿亮,沈珍瑶,等.三峡库区典型小流域氮磷流失特征.环境科学学报,2007,7(2):326-331
    [126]宴维金,章申,王嘉慧.长江流域氮的生物地球化学循环及其对输送无机氮的影响—1968-1997年的时间变化分析.地理学报,2001,56(5):505-514
    [127]杨爱玲,朱颜明.地表水环境非点源污染研究.环境污染治理与设备,1999,7(5):60-67
    [128]杨钢,李庆.三峡库区水体中磷的特征分析.人民长江,2007,8(2):14-15
    [129]杨金玲,张甘霖,等.皖南丘陵地区小流域氮素径流输出的动态变化.农村生态环境,2001,17(3):1-4
    [130]杨金玲,张甘霖,张华,等.丘陵地区流域不同土地利用对氮素径流输出的影响.环境科学,2003,24(1):16-23
    [131]杨龙元,蔡启铭,秦伯强,等.太湖梅梁湾沉积物—水界面氮迁移特征初步研究.湖泊科学,1998,10(4):41-47
    [132]杨谢,赵燮京,王昌全,等.保护性耕地下麦稻轮作水稻田土壤的氮素动态变化.中国水土保持科学,2008,6(增刊):59-62
    [133]姚槐应,何振立,黄昌勇.提高氮肥利用率的微生物量机制讨论.农业环境保护,1999,18(2):54-56
    [134]姚文艺,汤立群.水力侵蚀产沙过程及模拟.郑州.黄河水利出版社,2001
    [135]尹澄清,毛战坡.用生态工程技术控制农村面源污染.应用生态学报,2002,13(2):229-232
    [136]余立华,李道季,方涛,等.三峡水库蓄水前后长江口水域夏季硅酸盐、溶解无机氮分布及硅氮比值的变化.生态学报,2006,26(9):2817-2826
    [137]余贵芬,毛知耕,石孝均,等.氮素在紫色土中的移动和淋失研究.西南农业大学学报,1999,21(3):228-232
    [138]袁冬海,王兆塞,陈欣,等.不同农作方式红壤坡耕地土壤氮素流失特征.应用生态学报,2002,13(7):863-866
    [139]袁新民,王周琼.硝态氮的淋洗及其影响因素.干旱区研究,2000,17(4):46-52
    [140]詹艳慧,王里奥,焦艳静.三峡库区消落带土壤氮素吸附释放规律.重庆大学学报,2006,29(8):10-13
    [141]’张海斌.基于SWAT模型的小流域产流产沙量的研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    [142]张清海,林昌虎,何腾兵.贵州喀斯特山区水土流失因素与生态修复对策探讨.贵州科学,2006,24(3):62-65,74
    [143]张庆乐,王浩,张丽青,等.饮用水中硝态氮污染对人体健康的影响.地下水,2008,30(1):57-59,64
    [144]张淑荣,陈利顶,傅伯杰.于桥水库流域农业非点源磷污染控制区划研究.地理科学,2004,24(2):232-237
    [145]张水龙,庄季屏.农业面源污染研究现状与发展趋势.生态学杂志,1998,17(6):51-55
    [146]张晓萍,李锐,杨勤科,等.基于RS/GIS的中尺度地区退耕变化及其坡度分异研究.农业资源与环境科学,2005,21(8):388-392
    [147]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87
    [148]张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策.Ⅰ.21世纪初期中国农业面源污染的形势估计中国农业科学,2004a,37(7):1008-1017
    [149]张维理,冀宏杰,Kolbe H,等.中国农业面源污染形势估计及控制对策.Ⅱ.欧美国家农业面源污染状况及控制.中国农业科学,2004b,37(7):1018-1025
    [150]张维理,徐爱国,冀宏杰,等.中国农业面源污染形势估计及控制对策.Ⅲ.中国农业面源污染控制中存在问题分析.中国农业科学,2004c,37(7):1026-1033
    [151]张兴昌,邵明安.坡地土壤氮素与降雨、径流的相互作用机理及模型.地理地学进展,2000,19(2):128-134
    [152]张玉珍,陈能汪,曹文志,等.南方丘陵地区农业小流域最佳管理措施模拟评价.资源科学,2005,27(6):151-155
    [153]张远,郑炳辉,刘鸿亮,等.三峡水库蓄水后氮、磷营养盐的特征分析.水资源保护,2005,2(16):23-26
    [154]章北平.东湖农业区径流污染的黑箱模型.武汉城市建设学院学报,1996,13(3):1-5
    [155]赵德孜,温卫东,段成美.基于模糊理论的燃气轮机可靠性分配.燃气轮机技术,2003,16(4):44-47
    [156]赵卫红,李金涛,王江涛.夏季长江口海域浮游植物营养限制的现场研究.海洋环境科学,2004,23(4):1-5
    [157]郑炳辉,曹承进,秦延文,等.三峡水库主要入库河流氮营养盐特征及其来源分析.环境科学,2008,29(1):1-6
    [158]周才平,欧阳华,宋明华.中国森林生态系统氮循环特征与生产力间的相互关系.应用生态学报,2005,16(2):203-206
    [159]周根娣.上海郊区化肥氮的去向及其污染的调查.上海农业学报,1996,12(4):81-84
    [160]周国逸,闫俊华.鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响.生态学报,2001,21(12):2002-2012
    [161]周健.试论农业面源污染的危害.农业环境保护,1990,9(1):22-25
    [162]朱波,汪涛,况福虹,等.紫色土坡耕地硝态盐淋失特征.环境科学学报,2008,28(3):525-533
    [163]朱俊,董辉,王寿兵,等.长江三峡库区干流水体主要污染负荷来源及贡献.水科学进展,2006,17(5):709-713
    [164]朱远达,蔡强国,张光远,等.植物篱对土壤养分流失的控制机理研究.长江流域资源与环境,2003,12(4):345-351
    [165]朱兆良,文启孝主编.中国土壤氮素.南京:江苏科学技术出版社,1992
    [166]朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6
    [167]Akkoyunlu B O, Tayanc M. Analyses of wet and bulk deposition in four different regions of Istanbul, Turkey. Atmospheric Environment,2003,37:3571-3579
    [168]Barry D, Goorahoo D, Goss M J. Estimation of nitrate concentrations in groundwater using a whole farm nitrogen budget. Journal of Environmental Quality.1993,22:767-775
    [169]Bashkin V N, Park S U, Choi M S, et al. Nitrogen budgets for the Republic of Korea and the Yellow Sea region. Biogeochemistry,2002,57-58:387-403
    [170]Basnyat P, Teeter L D, Flynn K M, et al. Relationships between landscape characteristics and non-point source pollution inputs to coastal estuaries. Environmental Management,1999,23(4): 539-549
    [171]Beasley D B, Huggins L F, Monke E V. ANSWERS:model for watershed planning. Transactions of ASAE,1980,23(4):938-944
    [172]Behrendt H, Opitz D. Retention of nutrients in river systems:dependence on specific runoff and hydraulic load. Hydrobiologia,1999,410:111-122
    [173]Beiley G W, Swank I R R. Modeling agricultural non-point source pollution:Research perspective:Agricultural management and water quality. The Iowa State University Press, Ames, Iowa,1983,27-47
    [174]Bergstrom L, Brink N. Effects of differentiated application of fertilizer N leaching losses and distribution of inorganic N in Soil. Plant and Soil,1986,93(3):333-345
    [175]Bicknell B R, Imhoff J C, Kittle Jr J L, et al. Hydrological simulation Program FORTRAM: User's manual for release 10. EPA-600/R-93/174.U.S. Environmental Protection Agency, Athens, G A,1993
    [176]Borin M, Vianello M, Morari F, Zanin G. Effectiveness of buffer strips in removing pollutants in runoff from a cultivated field in north-east Italy. Agriculture, Ecosystems and Environment, 2005,105:104-114
    [177]Bouwman A F, Booij H. Global use and trade of feedstuffs and consequence for the nitrogen cycle. Nutrient Cycling in Agroecosystems,1998,52:261-267
    [178]Bowes M J, Leach D V, House W A. Seasonal nutrient dynamics in a chalk stream:the River Frome, Dorset, UK. Science of the Total Environment,2005,336:225-241
    [179]Boyer E W, Goodale C L, Jaworski N A, et al. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry,2002,57/58:137-169
    [180]Boyer E B, Howarth R H (eds). The Nitrogen Cycles at Regional to Global Scales. Kluwer Academic Publishers,2002.
    [181]Carpenter S R, Caraci N F, Correll D L, et al. Non-point pollution of surface waters with phosphorus and nitrogen. Ecological Applications,1998,8(3):559-568
    [182]Caruso B S. Risk-based targeting of diffuse contaminant sources at variable spatial scales in a New Zealand high country catchment. Journal of Environmental Management,2001,63(3): 249-268
    [183]Ceccon P, Dalla C, Delle V G, Giovanardi R, et al. Nitrogen in drainage water as influenced by soil depth and nitrogen fertilizer:a study in lysimeters. European Journal of Agronomy,1995,4 (3):289-298
    [184]Celia M A, Bouloutas E T, Zarba R L. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resource Research,1990,26:1483-1496
    [185]Chen L D, Peng H J, Fu B J. Seasonal variation of nitrogen-concentration in the surface water and its relationship with land use in a catchment of Northern China. China. Journal of Environmental Science,2005,17:224-231
    [186]Chen X Y, Mudler J. Atmospheric deposition of nitrogen at five subtropical forested sites in South China. Science of the Total Environment,2007,378:317-330
    [187]Correll D L, Jordan T E, Weller D E. Beaver pond biogeochemical effects in the Maryland Coastal Plain. Biogeochemistry,2000,49(3):217-239
    [188]Cornell S E, Jickells T D, Capeb J N, et al. Organic nitrogen deposition on land and coastal environments:A review of methods and data. Atmospheric Environment,2003,37:2173-2191
    [189]Coss M J, Howse K R, Lane P W. Losses of nitrate-N in water draining from under autumn-sown crops established by direct drilling or mould board ploughing. Soil Science,1993, 44(1):35-48
    [190]David M B, Gentry L E, Kovacic D A, et al. Nitrogen Balance import and Export from an Agricultural Watershed. Journal of Environmental Quality,1997,26:1038-1048
    [191]David W R, Christine S F, Robert D H, et al. The hydrology of riparian buffer zones; two case studies in an ephemeral and a perennial stream. Journal of Hydrology,2006,325:308-324
    [192]Decoursey D G. Mathematical model for non-point water pollution control. Journal of soil and water Conservation,1985, (5):408-413
    [193]De Vries W, Kros H, Reinds G J, et al. Developments in deriving critical limits of nitrogen for terrestrial ecosystems in Europe. Alterra-report 1382. Alterra, Wageningen, The Netherlands, 2007,206.
    [194]Delwiche C C. The nitrogen cycle. Science of American,1970,223:137-146
    [195]Dodds W K, Oakes R M. A technique for establishing reference nutrient concentrations across watersheds affected by human. Limnology and Oceanography:Methods,2004,2:333-341
    [196]Douglas C L, King K A, Zuzel J F. Nitrogen and phosphorus in surface runoff and sediment from a wheat-pea rotation in northeastern Oregon. Journal of Environmental Quality,1998, 27(5):1170-1177
    [197]Edwards A C, Kay D, McDonald A T, et al. Farmyards, an overlooked source for highly contaminated runoff, Journal of Environmental Management,2007,2:1-9
    [198]Eichler F, Schulz D. The nitrogen reduction programmer in the Federal Republic of Germany. Environment Pollution,1998,102(s1):609-617
    [199]Eickhout B, Bouwman A F, van Zeijts H. The role of nitrogen in world food production and environmental sustainability. Agriculture, Ecosystems and Environment,2006,116(1-2):4-14
    [200]EI-Hassanin A S, Labib T M, Gaber E I. Effect of vegetation cover and land slope on runoff and soil losses from the watersheds of Burndi. Agriculture, Ecosystems and Environment,1993,43: 301-308
    [201]Endreny T A, Wood E F. Distributed watershed modeling of design storms to identity non-point source loading areas. Journal of Environmental Quality,1999,28:388-397
    [202]FAO (United Nations Food and Agricultural Organization). FAO agricultural data bases are obtainable on the World Wide Web:http://www.fao.org.2006.
    [203]Fillery I R P, Vlek P L G. Reappraisal of the significance of ammonia volatilization as an N loss mechanism in flooded rice fields. Nutrient Cycling in Agroecosystems,1986,9(1-2):79-98
    [204]Filoso S, Martinelli L A, Howarth R W, et al. Human activities changing the nitrogen cycle in Brazil. Biogeochemistry,2006,79:61-89
    [205]Flechard C R, Fowler D. Atmospheric ammonia at a moorland site. I:the meteorological control of ambient ammonia concentrations and the influence of local sources. Quarterly Journal of the Royal Meteorological Society,2006,124:733-757
    [206]Fluckiger W, Braun S. Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environmental Pollution,1998,102: 69-76
    [207]Fransz H G, Gonzalez S R, Cadee G C, et al. Long-term change of Temora longicornis (Copepoda, Calanoida) abundance in a Dutch tidal inlet (Marsdiep) in relation to eutrophication. Netherlands Institute for Sea Research,1992,30(1):23-32
    [208]Galloway J N. The global nitrogen cycle:changes and consequences. Environmental Pollution, 1998,102:15-24
    [209]Galloway J N. Nitrogen mobilization in Asia. Nutrition Cycling in Agroecosystems,2000,57: 1-12
    [210]Galloway J N, Cowling E B. Reactive nitrogen and the world:two hundred years of change. Ambio,2002,31:64-77
    [211]Galloway J N, Schlesinger W H, Levyll H, et al. Nitrogen fixation:Anthropogenic enhancement environmental response. Global Biogeochemical Cycles,1995,9(2):235-252
    [212]Galloway J N, Howarth R W, Michaels A F, et al. Nitrogen and phosphorus budgets of the North Atlantic Ocean and its watershed. Biogeochemistry,1996,35:3-25
    [213]Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:past, present and future. Biogeochemistry,2004,70(2):153-226
    [214]Gao Y. Atmospheric nitrogen deposition to Barnegat Bay. Atmospheric Environment,2002,36: 5783-5794
    [215]Gowda P H, Mulla D J, Jaynes D B. Simulated long-term nitrogen losses for a Midwestern agricultural watershed in the United States. Agricultural Water Management,2008,95:616-624
    [216]Haag D, Kaupenjohann M. Parameters, prediction, post-normal science and the precautionary principle-a roadmap for modeling for decision-making. Ecological Modeling,2001,144(1): 45-60
    [217]Harashina K, Takeuchi K, Tsunekawa A, et al. Nitrogen flows due to human activities in the Cianjur-Cisokan watershed area in the middle Citatum drainage basin, Wesr Java, Indonesia:a case study at hamlet scale. Agriculture, Ecosystem and Environment,2003,100:75-90
    [218]Harmel R D, Richardson C W, King K W. Hydrologic response of a small watershed model to generated precipitation. American Society of Agricultural and Biological Engineers,2000,43 (6):1483-1488
    [219]Hatano R, Shinano T, Zheng T G, et al. Nitrogen budgets and environmental capacity in farm systems in a large-scale karst region, southern China. Nutrient Cycling in Agroecosystems, 2002,63:139-149
    [220]Hayashi Y, Hatano R. Annual nitrogen leaching in subsurface-drained water from a clayey aquic soil growing onion in Hokkaido, Japan. Soil Science Plant Nutrition,1999,45:451-459
    [221]Henriksen A, Hessen D O. Whole catchment studies on nitrogen cycling:Nitrogen from mountains to fjords. Ambio,1997,26(5):254-257
    [222]Hill A R. Nitrate removal in stream riparian zones. Journal of Environmental Quality,1996,25: 743-755
    [223]Hoffmann M, Johnsson H. Nitrogen leaching from agricultural land in Sweden Standard rates and gross loads in 1985 and 1994. Ambio,1998,27(6):481-488
    [224]Hoffmann M, Johnsson H. A method for assessing generalized nitrogen leaching estimates for agricultural land. Environmental Modeling and Assessment,1999,4:35-44.
    [225]Howarth R W, Boyer E, Pabich W, et al. Nitrogen use in the United States from 1961-2000, and estimates of potential future trends. Ambio,2002,31:88-96
    [226]Hoyas T R, Vagstad N, Bechmann M, et al. Nitrogen budget in the river Auli catchment:a catchment dominated by agriculture, in Southeastern Norway. Ambio,1997,28(5):283-289
    [227]Hubbard R K, Newton G L, Davis J G, et al. Nitrogen assimilation by riparian buffers systems receiving swine lagoon wastewater. Transactions of the ASAE,1998,41(5):1295-1304.
    [228]Humborg C, Conley D J, Rahm L, Wulff F, et al. Silicon retention in river basins:far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio,2000, 29(1):45-50
    [229]Hunsaker C T, Levine D A. Hierarchical approaches to the study of water quality in rivers. Bioscience,1995,45:193-203
    [230]Hydes D J, Gowen R J, Holliday N P, et al. External and internal control of winter concentrations of nutrients(N, P and Si) in north-west European shelf seas. Estuarine, Coastal and Shelf Science,2004,59(1):151-161
    [231]Iversen T M, Grant R, Nielsen K. Nitrogen enrichment of European inland and coastal waters with special attention to Denmark and Danish policy measures. Environmental pollution,1998, 102(s1):771-780
    [232]Jalali M. Nitrate leaching from agricultural land in Hamadan western Iran. Agriculture, Ecosystems and Environment,2005,110:210-218
    [233]Jordan T E, Weller D E. Human contributions to terrestrial nitrogen flux:assessing the sources and fates of anthropogenic fixed nitrogen. Bioscience,1996,46(9):655-664
    [234]Johnes P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters:the export coefficient modeling approach. Journal of Hydrology,1996,183:323-349
    [235]Johnston C A. Sediment and nutrient retention by freshwater wetlands:effects on surface water quality. Critical Reviews in Environmental Control,1991,21:491-565
    [236]Johnson L B, Richards C, Host G E, et al. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology,1997,18:333-356
    [237]Justic D, Rabalais N N, Turner R E, et al. Changes in nutrient structure of river-dominated coastal waters:Stoichiomertic nutrient balance and its consequences. Estuarine, Coastal and Shelf Science,1995,40(3):339-356
    [238]Kang M S, Park S W, Lee J J, et al. Applying SWAT for TMDL programs to a small watershed containing rice paddy fields. Agricultural Water Management,2006,79:72-92
    [239]Karl D M. A sea of change:biogeochemical variability in the North Pacific subtropical gyre. Ecosystems,1999,2(3):181-214.
    [240]Khan F I, Husain T. Risk assessment and safety evaluation using probabilistic fault tree analysis. Human and Ecological Risk Assessment,2001,7(7):1909-1927
    [241]Knisel W G, Leonard R A, Davis F M. GLEAMS:Groundwater Loading Effects of Agricultural Management System (version 2.10). Technical Documentation, USDA Southeast Watershed Research Laboratory, Tifton G A,1993,49-82.
    [242]Kothyari B P, Verma P K, Joshi B K, et al. Rainfall-runoff-soil and nutrient loss relationships for plot size areas of bhetagad watershed in Central Himalaya, India. Journal of hydrology,2004, 293:137-150
    [243]Koulouri M, Giourga C. Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. Catena,2007,69:274-281
    [244]Kronvang B, Graesboll P, Larsen S E, et al. Diffuse nutrient losses in Denmark. Water Science & Technology,1996,33(1):81-88
    [245]Krupa S V. Effects of atmospheric ammonia on terrestrial vegetation:A review. Environment Pollution,2003,124:179-221
    [246]Kull A, Kull A, Uuemaa E, et al. Modeling of excess nitrogen in small rural catchments. Agriculture, Ecosystems and Environment,2005,108(1):45-56
    [247]Kurvits T, Marta T. Agricultural NH3 and NOx emissions in Canada. Environmental Pollution, 1998,102:187-194
    [248]Kuusemets V, Mander U, Lohmus K. Nitrogen and phosphorus variation in shallow groundwater and assimilation in plants in complex riparian buffer zones. Water Science & Technology,2001,44:615-622
    [249]Lennon J M, Aber J D, Mdillo J M. Primary production and nitrogen allocation of field grown sugar maples in relation to nitrogen availability. Biogeochemistry,1985,1:135-154
    [250]Lepisto A, Kenttamies K. Modeling combined effects of forestry, agriculture and deposition on nitrogen export in a northern fiver basin in Finland. Ambio,2001,30(6):338-348
    [251]Liang L, Nagumo T, Hatano R. Nitrogen cycling with respect to environmental load in farm systems in Southwest China:Nutrient Cycling in Agroecosystems,2005,73:119-134
    [252]Liang L, Nagumo T, Hatano R. Nitrogen Flow in the Rural Ecosystem of Mikasa City in Hokkaido, Japan. Pedosphere,2006,16(2):264-272
    [253]Liu C, Watanabe M, Wang Q. Changes in nitrogen budgets and nitrogen use efficiency in the agroecosystems of the Changjiang River basin between 1980 and 2000. Nutrient Cycling in Agroecosystems,2008,80:19-37
    [254]Liu S M, Zhang J, Chen H T, et al. Nutrients in the Changjiang and its tributaries. Biogeochemistry,2003,62:1-18
    [255]Lu H M, Ying C Q. Shallow groundwater nitrogen responses to different land use managements in the riparian zone of Yuqiao Reservoir in North China. Journal of Environment Science,2008, 20:652-657
    [256]Mackenzie F T. Global climatic change:climatically important biogenic gases and feedbacks. In: Woodwell G M, Mackenzie F T. (eds), Biotic Feedbacks in the Global Climatic System:Will the Warming Feed the Warming. Oxford University Press, UK,1994, pp.22-46
    [257]Marinov D, Querner E, Roelsma J. Simulation of water flow and nitrogen transport for a Bulgarian experimental plot using SWAP and ANIMO models. Journal of Contaminant Hydrology,2005,77(3):145-164
    [258]Meisinger J J, Delgado J A. Principles for managing nitrogen leaching. Journal of Soil and Water Conservation,2002,57(6):485-498
    [259]Michael F, Kimberly E. Landscape structure and nitrogen budgets in an agricultural watershed, southwest Ohio. Ohio, Journal of Science,2002,102(2):15-23
    [260]Munn T, Whyte A. Timmerman P. Emerging environmental issues:a global perspective of SCOPE. Ambio,1999,28(6):464-471
    [261]Nikolaidis N P, Heng H, Semagin R, et al. Non-linear response of a mixed land use watershed to nitrogen loading. Agriculture Ecosystems and Environment,1998,67(3):251-265
    [262]Novotny V. Diffuse pollution from agriculture:a worldwide outlook. Water Science and Technology,1999,39(3):1-13
    [263]Oene O, Lowie V L, Oscar S. Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands. Journal of Hydrology,2005,304:289-301
    [264]Olivier J G J, Bouwman A F, Hoek K W V, et al. Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. Environmental Pollution,1998,102: 135-148
    [265]Osborne L L, Wiley M J. Empirical relationships between land use/cover and stream water quality in an agricultural watershed. Journal of Environmental management,1988,26:9-27
    [266]Osmond D L, Cannon R W, Gale J A, et al. Watersheds:A decision support system for watershed-scale non-point source water quality problems. Journal of the American Water Resources Association,1997,33:327-341.
    [267]Oudendag D A, Luesink H H. The manure model:manure, minerals (N, P and K), ammonia emission, heavy metals and the use of fertilizer in Dutch agriculture. Environmental Pollution, 1998,102:241-248
    [268]Pathak P, Wani S P, Singh P, et al. Sediment flow behavior from small agricultural watersheds. Agricultural water management,2004,67(2):105-117
    [269]Peterjohn W T, Correll D L. Nutrient dynamics in an agricultural watershed:observations on the role of a riparian forest. Ecology,1984,65(5):1466-1475
    [270]Peters N E, Reese R S. Variations of weekly atmospheric deposition for multiple collectors at a site on the shore of Lake Okeechobee, Florida. Atmospheric Environment,1995,29(2):179-187
    [271]Peterson B J, Wollheim W M, Mulholland P J, et al. Control of nitrogen export from watersheds by headwater streams. Science,2001,292(5514):86-90
    [272]Petrone R M, Smith C, Macrae M L, et al. Riparian zone equilibrium and actual evapotranspiration in a first order agricultural catchment in Southern Ontario, Canada. Agricultural Water Management,2006,86:240-248
    [273]Power S A, Ashmore M R, Cousins D A. Impacts and fate of experimentally enhanced nitrogen deposition on a British lowland heath. Environmental Pollution,1998,102:27-34
    [274]Reynolds B, Edwards A. Factors influencing dissolved nitrogen concentrations and loading in upland streams of the UK. Agricultural water management,1995,27:181-202
    [275]Robert R L, John W D, Dubravko J, et al. Changes in stoichiometric Si, N and P ratios of Mississippi River water diverted through coastal wetlands to the Gulf of Mexico. Estuarine, Coastal and Shelf Science,2004,60(1):1-10
    [276]Ruiz L, Abiven S, Durand P, et al. Effect on nitrate concentration in stream water of agricultural practices in small catchment in Brittany:I. Annual nitrogen budgets. Hydrology and Earth System Sciences,2002,6(3):497-506
    [277]Russell K M, Galloway J N, Macko S A, et al. Sources of nitrogen in wet deposition to the Chesapeake Bay region. Atmospheric Environment,1998,32(14,15):2453-2465
    [278]Schilling K, Zhang Y K. Baseflow contribution to nitrate-nitrogen export from a large, agricultural watershed, USA. Journal of Hydrology,2004,295:305-316
    [279]. Seitzinger S P, Kroeze C. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochemistry Cycles,1998,12:93-113
    [280]Shaffer M J, Wylie B K, Hall M D. Identification and mitigation of nitrate leaching hot spots using NLEAP-GIS technology. Journal of Contaminant Hydrology,1995,20(3,4):253-263
    [281]Sheeder S A, Lynch J A, Grimm J. Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed. Journal of Environmental Quality,2002,31:1194-1208
    [282]Sivertun A, Prange L. Non-point source critical area analysis in the Gisselo watershed using GIS. Environmental Modeling and Software,2003,18(10):887-898
    [283]Sliva L, Williams D D. Buffer zone versus whole catchment approaches to studying land use impact on river. Water Research,2001,35(14):3462-3472
    [284]Smith D R, Owens P R, Leytem A B, et al. Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event. Environment Pollution,2007,147: 131-137
    [285]Smith K A, Jackson D R, Pepper T J. Nutrient losses by surface run-off following the application of organic manures to arable land 1. Nitrogen. Environmental Pollution,2001,112: 41-51
    [286]Sollins P, Grier C C, McCorison F M, et al. The internal element cycles of old-growth Douglas-fir ecosystems in western. Ecological Monographs,1980,50(3):261-285
    [287]Spalding R F, Exner M E. Occurrence of nitrate in groundwater-a review. Journal of Environmental Quality,1993,22:392-402
    [288]Sprent J I. The ecology of the nitrogen. Cambridge University Press.1987
    [289]Stow C A, Borsuk M E, Stanley D. Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River, north Carolina. Water Research,2001,35(6):489-1499
    [290]Sujay S K, William M L J, James H, et al. Land use change and nitrogen enrichment of a rocky mountain watershed. Ecological Application,2006,16(1):299-312
    [291]Tim U S, Jolly R. Evaluating agricultural non-point-source pollution using integrated geographic information systems and hydrologic/water quality model. Journal of Environmental Quality,1994,23(1):25-35
    [292]Turner R E, Rabalais N N, Justic D, et al. Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry,2003,64:297-317
    [293]Turner R E, Rabalais N N, Justic D. Predicting summer hypoxia in the northern Gulf of Mexico: Riverine N, P and Si loading. Marine Pollution Bulletin,2006,52(2):139-148
    [294]USEPA. Nutrient Criteria Technical Guidance Manual (Lakes and Reservoirs). United States. 2000:5
    [295]van der Hoek. Estimating ammonia emission factors in Europe:summary of the work of the UNECE ammonia expert panel. Atmospheric Environment,1998,32(3):315-316
    [296]van der Lee G E M, Venterink H O, Asselman N E M. Nutrient retention in floodplains of the Rhine distributaries in the Netherlands. River Research and Applications,2004,20:315-325
    [297]van Egmond N D, Bresser A H M, Bouwman A F. The European nitrogen case. Ambio,2002,31: 72-78
    [298]Vitousek P M, Aber J D, Howarth R W, et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications,1997,7(3):737-750
    [299]Wang B D. Cultural eutrophication in the Changjiang (Yangtze River) plume:History and perspective. Estuarine, Coastal and Shelf Science,2006,69(3-4):471-477
    [300]Watson C A, Atkinson D. Using nitrogen budgets to indicate nitrogen use efficiency and losses from whole farm systems:a comparison of three methodological approaches.. Nutrient Cycling in Agroecosystems,1999,53:259-267
    [301]Walton R S, Volker R E, Bristow K L, et al. Solute transport by surface runoff from low-angle slopes:theory and application. Hydrological Processes,2000,14(6):1139-1158
    [302]Warrick A W, Biggar J W, Nielsen D R. Simultaneous solute and water transfer for an unsaturated soil. Water Resource Research,1971,7:1216-1225
    [303]Webb J, Henderson D, Anthony S G. Optimizing livestock manure applications to reduce nitrate and ammonia pollution:scenario analysis using the MANNER model. Soil Use and Management,2001,17:188-194
    [304]Wedin D A, Tilman D. Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science,1996,274:1720-1723
    [305]Wickham J D, Wade T G. Watershed level risk assessment of nitrogen and phosphorus export. Computers and Electronics in Agriculture,2002,37:15-24
    [306]Woli K P, Naguma T, Hatano R. Evaluating impact of land use and N budgets on stream water quality in Hokkaido, Japan. Nutrient Cycling in Agroecosystems,2002,63:175-184
    [307]Worralla F, Burtb T P. Inter-annual controls on nitrate export-from an agricultural catchment-how much land-use change is safe? Journal of Hydrology,2001,243:228-241
    [308]Xing G X, Cao Y C, Shi S L, S et al. Denitrification in underground saturated soil in rice paddy regions. Soil Biology Biochemistry,2002,34(11):1593-1598
    [309]Xing G X, Zhu Z L. An assessment of N loss from agricultural fields to the environment in China. Nutrient Cycling in Agroeeosystems,2000,57:67-73
    [310]Xing G X, Zhu Z L. The environmental consequences of altered nitrogen cycling resulting from industrial activity, agricultural production, and population growth in China. The Scientific World,2002a, 1(s2):70-80
    [311]Xing G X, Zhu Z L. Regional nitrogen budgets for China and its major watersheds. Biogeochemistry,2002b,57/58:405-427
    [312]Yan W J, Yin C Q, Zhang S. Nutrient budgets and biogeochemistry in an experimental agricultural watershed in southeastern China. Biogeochemistry,1999,45:1-19
    [313]Yan W J, Zhang S, Chen X B, et al. Nitrogen export by runoff from agricultural plots in two basins in China. Nutrient Cycling in Agroecosystems,2005,71(2):121-129
    [314]Young R A, Onstad C A, Bosch D D, et al. AGNPS:A non-point-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation,1989,44(2): 168-173
    [315]Zebarth B J, Paul J W, Van Kleeck R. The effect of nitrogen management in agricultural production on water and air quality:evaluation on a regional scale. Agriculture, Ecosystems and Environment,1999,72:35-52
    [316]Zhu J G., Liu G, Han Y, et al. Nitrate distribution and denitrification in the saturated zone of paddy field under rice/wheat rotation. Chemosphere,2003,50(6):725-732

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700