用户名: 密码: 验证码:
北太平洋副热带模态水及其形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模态水是由它在温度,盐度,位势涡度的垂直均一性所表征的一类特殊类型的水团,它的垂直均一性来源冬季的深对流过程。作为海气相互作用的产物,模态水是影响上层海洋温度层结和环流结构极为重要的因素之一。随着最近人们对于热带和副热带相互作用及气候年代际变化的关注,副热带模态水-由于包含副热带海洋表层海气相互作用的长期记忆,已经引起了全世界科学家的广泛注意。
     在分析前人研究的基础上,本文提出了有关北太平洋副热带模态水及其形成机制研究中存在的问题;根据对Levitus(1994)、XBT、COADS、NCEP等资料的分析,给出了北太平洋副热带三个模态水(西部副热带模态水、中部副热带模态水和东部副热带模态水)的气候态特征及其水平迁移特征,验证了前人的研究结果。根据模态水是温跃层通风过程的产物,体现了晚冬混合层特征这一基本思想,集中研究了北太平洋副热带三个模态水形成区晚冬混合层深度与温度的特征和形成机制。本文主要的创新成果如下:
     1.采用一维TKE湍动能模式定量地揭示了模态水形成区外部大气强迫场(海表热通量、风应力、蒸发-降水)对晚冬深混合层形成的贡献:海表热通量季节循环的增强或减弱(50%),使得西部和中部副热带模态水形成区晚冬混合层加深或变浅分别超过50%和45%,而对东部副热带模态水形成区晚冬混合层深度的影响不超过5%。同时发现在三个不同模态水形成区冬季海表失热都增加25Wm~2的情况下,中部模态水形成区混合层深度的加深最大(为70m),东部模态水形成区混合层深度的加深最小(10m)。此外,揭示了局地残余的西部模
    
    态水是晚冬局地深混合层形成的“预条件”。
     2.根据NCEP海洋资料和海气通量资料,采用一个混合层热平衡方程,发
    现在三个模态水形成海区秋、冬季混合层温度冷却过程中,海表热通量、垂直
    夹卷效应为主,其相对贡献分别为67%、19%(西部),53%、20%(中部)和65%、
    30%(东部);在东部模态水形成区,艾克曼平流和地转平流皆是暖平流,而在
    西部和中部副热带模态水形成区,仅有地转平流是暖平流。同时确定了西部副
    热带模态水形成区冬季混合层温度的年际、年代际变化中有62%是海表热通量
    的贡献,32%是地转平流的贡献;而在中部副热带模态水形成区艾克曼平流、
    地转平流和海表热通量共同作用(相对贡献分别为32%、30%和25%)的结果是
    冬季混合层温度的年际、年代际异常的主要原因;在东部副热带模态水海表热
    通量的年际、年代际是导致冬季混合层温度异常的最主要因素(相对贡献达
    67%)。
     3.通过分析历史资料,在前人提出北太平洋中部40oN左右存在浮力频率
    低值区的基础上,发现了9一10月在北太平洋中部40oN左右上层海洋(<125m)
    170“E一160“w之间存在特殊的的浮力频率低值区一层结稳定性的“豁口”,定量
    计算结果证实了该区正是上层海温冷却的极值区;海表热通量的纬向分布差异
    决定了该区的东边界,而其西边界的位置是由海表热通量和平流(Ekman流与地
    转流)共同作用确定;该层结稳定性“豁口”成为冬季模态水形成的“预条件”,
    是造成北太平洋中部副热带模态水形成区位于170“E一160“W的直接原因。
     4,利用国际ARGO观测中心2001年2月、3月在黑潮再循环环流圈投放的
    浮标资料,结合TRMM观测的海表温度资料和T/P一ERs卫星高度计资料,分析了
    海洋涡旋对北太平洋西部副热带模态水形成的影响。研究结果表明:反气旋式
    的暖涡(涡中心海平面异常为6Ocm)增强了冬季局地的垂向混合过程,使得混
    合层及温跃层加深约IOOm,将有助于西部副热带模态水的形成;而气旋式的冷
    涡的作用刚好相反;1996一1998年西部副热带模态水形成区冬季上混合层较浅
    
    与大量的气旋式冷涡出现有关;而1993一1995年则相反。
     以上研究结果为定量地确定北太平洋模态水形成率和揭示北太平洋模态水
    在气候变化中的作用奠定基础。
Mode water is a special type of water mass characterized by its vertical homogeneity, such as temperature, density and especially the potential vorticity, which is acquired during the wintertime (fall and winter) deep convection processes. As one of the products of air-sea interaction, it has great impacts on the upper ocean circulation pattern and the thermal structure. As more attentions being paid to the interaction between the tropical and subtropical ocean and the recently decadal variations of the climate, mode water, for it may contain the long-term memory of the external atmospheric forcing and thus, has come into the spot in the future. Because the mode water is formed due to the ventilation process of the thermocline and the characteristics of the mode water embody the water properties of the mixed layer during later winter, thus, to found the formation mechanism of the depth and temperature of wintertime deep mixed layer in the mode water formation region are main objects in this paper. Some main
    new research results are listed as follows:
    1. Using one-dimensional turbulent kinetic energy (TKE) model, quantitative estimations of the external atmospheric forcing (sea surface heat fluxes, wind stress and evaporation minus precipitation) on the formation of the later winter mixed layer are presented in the mode water formation region. Enhancement (weakening) about 50% of the seasonal cycle of the sea surface heat fluxes tends to result in the
    
    
    deepening (shallow) of the later winter mixed layer of about 50% and 45%, respectively, in the western subtropical mode water (NPSTMW) and central mode water (CMW) formation region, while its impact on the later winter mixed layer depth (MLD) in the eastern subtropical mode water (ESMW) formation is no more than 5%. Besides, it is found that if the heat losses in winter in three mode water formation regions are all increased by 25 Wm-2, most distinguished deepening of the MLD (70 m) is located in the CMW formation, while the deepening of the MLD in the ESMW formation region is the smallest (10 m). Meanwhile, the "precondition" mechanism due to the residue of the NPSTMW, which is favorable for the wintertime deepening of the mixed layer, is also proposed.
    2. Diagnostics of the upper ocean mixed layer heat budget equation in the three mode waters formation regions are executed using NCEP data. It is found that the surface heat flux and vertical entrainment are both the dominant terms in determining the coldness tendency of the wintertime mixed layer in all three mode water formation regions, with relative contributions as 67% and 19%, respectively in the NPSTMW formation region; 53% and 20%, respectively in the CMW formation region; 65% and 30%, respectively in the ESMW formation region. Besides, both the Ekman advection and geostrophic advection are warm advection in the ESMW formation region, while only geostrophic advection is warm advection in the NPSTMW and CMW formation. Meanwhile, it is estimated that the contributions of surface heat flux and geostrophic advection are 62% and 32%, respectively, on the interannual and decadal variations of the wintertime mixed layer temperature tendency in the NPSTMW formation region. In the CMW formation region, the interannual and decadal variations of the wintertime mixed layer temperature tendency are the result of the cooperation of the Ekman advection (32%), geostrophic advection (30%) and the surface heat flux (25%). While the surface heat flux is the
    
    most dominant term (67%) in affecting the interannual and decadal variations of the wintertime mixed layer temperature tendency in the ESMW formation region.
    3. Based on former researches, a "stability gap" (weak ocean stratification) confined between 170E-160W at about 40N in the upper central North Pacific (< 125 m) in September and October is detected and quantified by analyzing the historical datasets such as Levitus (1994), NCEP and SODA. It is found that this region [170E-160W, 38-42N] corresponds directly to the formation area of the CMW and there exists an e
引文
1.刘秦玉,王启,“暖池”表层对大气局地强迫的响应特征,海洋与湖沼,1995,26(6):658—664。
    2.刘秦玉,孙即霖,贾旭晶,2001,春季南海南部上混合层数值模拟与数值实验,青岛海洋大学学报,2001.31(2),149—157。
    3.刘秦玉、孙即霖、贾旭晶,春季南海北部上混合层的数值模拟与数值实验,海洋与湖沼,2002,33(5),526—535。
    4. Argo Science Team, Argo: The global array of profiling floats. In observing the oceans in the 21st century, edited by C. J. Koblinsky and N. R. Smith, GODAE Project Office, 2001, 248-258.
    5. Bingham, F. M., The formation and spreading of subtropical mode water in the North Pacific. J. Geophys. Res., 1992, 97, 11177-11189.
    6. Carol. Ladd and Luanne. Thompson (school of Oceanography, University of Washington, Seattle, Washington), Formation Mechanisms for North Pacific Central and Eastern Subtropical Mode Waters. J Phys. Oceanogr., 1999, 30,868-887.
    7. Carton, J. A., Chepurin, G., and Cao, X., A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part Ⅰ: Methodology. J Phys.Oceanogr., 2000a, 30, 294-309.
    8. Carton, J.A., Chepurin, G., and Cao, X., A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part Ⅱ: Results. J.Phys.Oceanogr., 2000b, 30, 311-326.
    9. Davis, R.E., R. de Szoeke, and P. Niiler, 1981: Variability in the upper ocean during MILE. Part Ⅱ: Modeling the mixed layer response. Deep-Sea Res., 28,1453-1475.
    
    
    10. Deardorff, J. W., G. E. Willis, and D. K. Lilly, Laboratory investigation of non-steady penetrative convection. J. Fluid Mech., 1969, 35, 7-35.
    11. de Ruijter, W. P. M., Effects of velocity shear inadvective mixed-layer models.Phys. Oceanogr., 1983,13, 1589-1599.
    12. Ebuchi, N., and K. Hanawa, Mesoscale eddies observed by TOLEX-ADCP and TOPEX/Poseidon altimeter in the Kuroshio recirculation region south of Japan.J. Oceanogr., 2000, 56, 43-57.
    13. Ebuchi, N., and K. Hanawa, Trajectory of mesoscale eddies in the Kuroshio recirculation region.J Ocenogr., 2001, 57, 471-480.
    14. Gasper P., Y. Gregoris, and Jean-Michel Lefevre, A Simple Eddy Kinetic Energy Model for Simulations of the Oceanic Vertical Mixing : Tests at Station Papa and Long-Term Upper Ocean Study Site, J.G.J ,1990, 95, c9, 16179-16193.
    15. Gu, D., and S. G. H. Philander, Interdecadal climate fluctuations that depend on exchanged between the tropics and extratropics. Science, 1997, 275, 805-807.
    16. Hanawa, K., Interannual variations in the wintertime outcrop area of Subtropical Mode Water in the Western North Pacific Ocean. Atmos.-Ocean, 1987,25, 358-374.
    17. Hautala. S. L., and D. H. Roemmich, Subtropical mode water in the Northeast Pacific Basin. J. Geophys. Res., 1998, 103, 13055-13066.
    18. Huang, R. X., and B. Qiu, Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J. Phys. Oceanogr., 1994, 24,1608-1622.
    19. Kraus, E. B., and J. S. Turner, A one-dimensional model of the seasonal thermocline. Ⅱ: The general theory and its consequence. Tellus,1967, 19,98-106.
    20. Kubokawa, A., Ventilated thermocline strongly affected by a deep mixed layer:
    
    A theory for Subtropical Countercurrent. J Phys. Oceanogr., 1999, 29,1314~1333
    21. Ladd, C, A., and L. Thompson, Formation Mechanisms for North Pacific Central and Eastern Subtropical Mode Waters. J. Phys. Oceanogr., 2000, 30, 868-887.
    22. Lamb, P. J., On the mixed-layer climatology of the north and tropical Atlantic.Tellus, 36A, 1984, 292-305.
    23. Levitus, S. and T.P. Boyer, World Ocean Atlas 1994 Volume 4: Temperature. NOAA Atlas ,NESDIS,1994a, 4, 177pp.
    24. Levitus, S., R. Burgett and T.P. Boyer,World Ocean Atlas 1994 Volume 3:Salinity, NOAA Atlas NESDIS, 1994b, 3, 99pp.
    25. Liu Qinyu, Sun Jilin, The Mechanism Of Mixed Layer Intraseasonal Variatons In The "Warm Pool" Area, Proceedings of the conference of TOGA-COAR 1995, Editor:Peter, J. cuebster, 2001.
    26. Liu Qinyu, Pan Aijun, Recent Advances in Studies on Formation Mechanism of Subtropical Mode Water and its Climate Features in North Pacific, Journal of ocean university of Qingdao, 2002, 1(1), pp, 1-7.
    27. Liu, Z. and B. Huang, Why is there a tritium maximum in the central equatorial Pacific thermocline ? J Phys. Oceanogr., 1998, 28, 1527-1533.
    28. Masuzawa. J., Subtropical Mode Water. Deep-Sea Res, 1969, 16: 463-472.
    29. McCartney, M. S., The subtropical recirculation of mode waters, J. Mar. Res.,1982, 40 (Suppl.), 427-464.
    30. McLaren A. J. and R. G. Williams, Interannual Variability in the Thermodynamics of Subduction over the North Atlantic.J. Phys. Oceanogr., 2001, 31, 3284-3294.
    31. McPhaden, M. J. and Dongxiao Zhang, Slowdown of the meridional overturningcirculation in the upper Pacific Ocean, NATURE, 2002, VOL 415, 7 FEBRUARY 2002, 603-608
    
    
    32. Nakamura, H., A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: Its distribution and formation, J. Oceanogr., 1996,52, 171-188.
    33. Niller, P. P., and E. B. Kraus, One-dimensional models of the upper ocean.Modelling and Prediction of the Upper Layers of the Ocean. E. B. Kraus, Ed.,Pergamon Press, 1977, 152-172.
    34. Paulson, C. A., and J. J. Simpson, Irradiative measurements in the upper ocean.J. Phys. Ocennogr., 1977, 7, 952-956.
    35. Price, J. F., R. A. Weller, and R. Pinkel, Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling and wind mixing.Geophys. Res., 1986, 91, 8411-8427.
    36. Oiu. B., and Kathryn A. Kelly, Upper Ocean Heat Balance in the Kuroshio Extension Region. J. Phys. Oceanogr., 1993, 23, 2027-2041.
    37. Qiu. B., and R. X. Huang, Ventilationof the North Atlantic and North Pacific:Subduction versus obduction. J. Phys. Oceanogr., 1995, 235, 2374-2390.
    38. Qiu, B., Seasonal eddy field modulation of the North Pacific subtropical countereurrent: TOPEX/Poseidon observations and theory, J Phys. Oceanogr.,1999, 29, 2471-2486.
    39. Qiu. B., Interannual Variability of the Kuroshio Extension System and Its Impact on the Wintertime SST Field. J. Phys. Oceanogr., 2000, 30, 1486-1502.
    40. Qiu. B., The Kuroshio Extension System: Its Large-Scale Variability and Role in the Midlatitude Ocean-Atmosphere Interaction. J. Phys. Oceanogr., 2002, 58,57-75.
    41. Roden, G. I., Aspects of the mid-Pacific transition zone. J. Geophys. ReS.,1970, 75, 1097-1109.
    42. Stommel, H., Determination of Watermass properties of water pumped down from
    
    the geostrophic flow below. Proc. Natl. Acad Sci. U.S.A., 1979, 76, 3051-3055.
    43. Suga, T., Migration process of Subtropical Mode Water and its effect on the upper thermal variability. International Cooperative Research Program on Global Ocean Observing System Newsletter, 1995, No. 2, Ocean Res. Instit., Univ.Tokyo, 100-104, (in Japanese).
    44. Suga, T., K. Hanawa, and Y. Toba, Subtropical Mode Water in the 137°E section. Z Phys Oceanogr., 1989, 19, 1605-1618.
    45. Suga, T., and K. Hanawa, The mixed-layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation area of Subtropical Mode Water. J. Mar. Res., 1990, 48, 543-566.
    46. Suga, T., and K. Hanawa, Interannual variations of North Pacific Subtropical Mode Water in the 137°E section. J. Phys. Oceanogr., 1995a, 25, 1012-1017.
    47. Suga, T., and K. Hanawa, The Subtropical Mode Water circulation in the North Pacific. J. Phys Oceanogr., 1995b, 25, 958-970.
    48. Suga, T., Y. Taker, and K. Hanawa, Thermostad distribution in the North Pacific subtropical gyre: the central mode water and the subtropical mode water,J.Phys. Oceanogr., 1997, 27, 140-152.
    49. Talley, L. D., Potential vorticity distribution in the North Pacific. J. Phys.Oceanogr., 1988, 18, 80-106.
    50. Uehara, H., Suga T., Hanawa, K., and Shikama, N., A role of eddies in formation and transport of North Pacific Subtropical Mode Water, Geophys. Res. Lett.,2003, 30, 381-384.
    51. Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, Satellite measurements of sea surface temperature through clouds. Science, 2000, 288, 847-850.
    52. Williams, R.G., The Influence of Air-Sea Interaction on the Ventilated Thermocline. Journal of Physical Oceanography, 1989, 19, 1255-1267.
    
    
    53. Williams, R.G., The Role of the Mixed Layer in Setting the Potential Vorticity of the Main Thermocline. Journal of Physical Oceanography, 1991, 21, 1803-1814.
    54. Xie, S.-P., T. Kunitani, A. Kubokawa, M. Nonaka and S. Hosada: Interdecadal thermocline variability in the North Pacific for 1958-1997: A GCM simulation.Phys. Oceanogr., 2001, 30, 1798-2813.
    55. Yasuda. T., and K. Hanawa, Decadal changes in the mode waters in the midlatitude North Pacific. J. Phys. Oceanogr., 1997, 27, 858-870.
    56. Yuan, X., and L. D. Talley, The subarctic frontal zone in the North Pacific:Characteristics of frontal structure from climatological data and synoptic surveys. J. Geophys. Res., 1996, 101, 16491-16508.
    57. Zhang. R.-X., and K. Hanawa, Features of the water-mass front in the north western North Pacific. J.Geophys. Res., 1993, 98, 967-975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700