用户名: 密码: 验证码:
基于AMT的混合动力汽车电动变速驱动单元(E.T.Driver)控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车(HEV,Hybrid electric vehicles)的混合动力系统的集成化研究是目前和未来国内外研究的重点。
     混合动力汽车的核心是混合动力系统,它的性能直接关系到混合动力汽车整车性能。如何有效的解决混合动力汽车混合动力系统的集成控制,使整车实现高度集成和配置简单化,通用化是目前研究的关键。经过十多年的发展,混合动力系统已从原有离散结构向一体化结构发展,即集成化混合动力总成系统。集成化混合动力总成系统最能体现HEV系统的最优化思想,同时也是最复杂,形式最多样,研究难度最大的结构,是现在和将来的新的研究重点。其中变速器(箱)与电机一体化(变速系统总成化)研究仍是目前国内外混合动力汽车混合动力系统研究的空缺点。本文首次提出了电动变速驱动单元(Electric Transmission Driver ,E.T.Driver)的概念,将变速器和永磁同步电机集成为变速驱动集成化混合动力系统。对基于机械自动变速器(Automatic mechanical transmission,AMT)的电动变速驱动单元(E.T.Driver)进行了重点研究论述。基于AMT的电动变速驱动单元,永磁同步电机和AMT在输出轴耦合,实现变速、驱动、制动能量回馈等功能。在换档过程中,换档质量,包括冲击度和摩擦功是最重要的考核指标。本文重点对变速驱动单元如何提高混合动力汽车在行驶过程中换档和起步过程中换挡的换档质量、行驶平顺性和乘坐舒适性进行了深入研究。
     滑磨功和冲击度这两个指标相互制约,因而为了达到综合最优,针对电动变速驱动单元不同工作状况,制定了不同的换档控制策略来达到冲击度和滑磨功协调最优。在E.T.Driver输出驱动扭矩大于或等于行驶阻力扭矩的情况下,由于有E.T.Driver在离合器分离过程中提供驱动扭矩,在换挡过程中确保离合器分离到结合这个过程整车驱动扭矩不中断,因而飞轮有充裕时间调整自身转速来达到与离合器从动盘同步,从而确保飞轮和离合器接合时冲击度和滑磨功都很小。在E.T.Driver输出驱动扭矩小于阻力扭矩时,采用基于最小值原理的换档控制策略对滑摩功和冲击度进行综合最优控制,使滑磨功和冲击度达到综合最优,并得到了以解析式形式表达的系统最优控制函数。
     E.T.Driver独特的结构和相对应的控制策略相结合,既保证在驱动力不中断的情况下完成换档操作,又能确保换挡质量、行驶的平顺性和乘坐舒适性。此外尤为重要的是,由于E.T.Driver自身独特结构,既可以输出正驱动扭矩又可以提供反向发电扭矩,从而很好的协调换档过程中加权函数Z值的大小,确保换档质量达到最优。
     作为本项工作的重点之一,本文分别对E.T.Driver系统进行了仿真分析和实车试验。利用大型系统动力学分析软件SIMULATIONX和CRUISE,开发出E.T.Driver的仿真模型,通过对E.T.Driver换挡过程的仿真分析,为实车试验提供可靠的依据和数据对比。装配E.T.Driver的混合动力大客车道路试验按照国家标准进行,主要考察小油门起步换挡、加速换挡、高档位等高难度工况。最终的仿真和道路试验结果表明,变速驱动单元的特定结构,结合本文提出的E.T.Driver最优扭矩换档控制策略,相比传统AMT,E.T.Driver能够极大的提高换档质量、整车驱动平顺性和乘坐舒适性。本文实施的E.T.Driver最优扭矩控制策略使E.T.Driver换挡过程具有良好的动态特性,对复杂工况和多变环境有自适应能力。变速驱动单元的研究将极大推进混合动力汽车的产业化和混合动力汽车关键技术的进一步发展。
The integration research of hybrid power system of hybrid electric vehicle (HEV) is the key research emphasis at home and abroad, and the trend will still prevail in the future.
     Hybrid power system is the central component of HEV. The performance of HEV is greatly achieved by the capability of hybrid power system. How to efficiently achieve the integrated control of HEV and to make the whole power configuration become highly integrated and simple are the key point and difficult point for research. Now, the hybrid power system has already been developed from a discrete structure into an integrated one, which is called the integrated hybrid power system in past ten years. The integrative hybrid power system can well represent the optimization idea of HEV and it is also the most difficult structure for study, which has the most complexity and the most diversity. So it will always be the important research emphasis even in the coming several years. As for the integration research of transmission (gear box) and motor, also called transmission system integration, there is still no research in this field both in China and other countries. This dissertation presents the idea of E.T.Driver (electric Transmission Driver) for the first time. The E.T.Driver integrates the transmission and permanent magnet synchronous motor into a compositive hybrid power unit system, which can perform shift, generate electricity, regenerative braking and drive function. The main research of this dissertation is the E.T.Driver, which integrates AMT (Automatic mechanical transmission) and a permanent magnet synchronous motor into a hybrid power system. In the E.T.Driver based on AMT, the permanent magnet synchronous motor is mounted on the output shaft of AMT and the rotor of permanent magnet synchronous motor is coupled with the output shaft of AMT directly or with a coupling device. The E.T.Driver based on AMT can perform the drive, generation of electricity, regenerative braking and power transmission function. The gear shift quality, including shock intensity and slipping friction work, is the most important appraisable target during the gear shift phase. This dissertation mainly makes a deep research on how the E.T.Driver improves the gear shift quality, driving smoothness and riding comfort during the driving shift phase and start-up gear shift phase.
     The index of slipping friction work is incompatible with that of shock intensity. In order to form an integrative optimization between shock intensity and slipping friction work, different gear shift control strategy have been made to find a compromise between shock intensity and slipping friction work according to different work condition of E.T.Driver. Under the condition that the driving torque of E.T.Driver is larger than or equal to the resistance torque, the flywheel has enough time to track the rotational speed of the friction clutch plate, because the E.T.Driver can provide enough driving torque to assure the driving torque of vehicle is not interrupted during the clutch detachment phase. When the rotational speed difference between the flywheel and clutch disk plate is small enough, that is to say, the rotational speed difference between the flywheel and clutch disk plate is smaller than what is set in advance, the flywheel and the clutch disk will engage as quickly as they can. So the shock intensity and slipping friction work are all very small when the clutch engages with the flywheel. When the driving torque provided by E.T.Driver is smaller than the resistance torque, the multi-objective optimal torque control strategy, based upon the minimum value principle, is adopted to compromise the shock intensity and slipping friction work and make them to reach an integrative optimization. The optimal torque control function is derived and described by an analytic function.
     The gear shift operation can be finished under the condition that the driving torque is not interrupted. Furthermore, the gear shift quality, driving smoothness and riding comfort also can be ensured because of the special structure of E.T.Driver, combining the corresponding optimal torque control strategy presented in this dissertation. Besides this, the especially important thing is the E.T.Driver can output positive driving torque and also can output negative torque for electricity generation, which can well harmonize the coefficient value of weight function Z. This can ensure the gear shift quality to attain optimization.
     As an important part of the dissertation, the virtual prototype simulation and the practical on-vehicle experiment for the E.T.Driver are made. The virtual prototype simulation is modeled by SIMULATIONX and CRUISE software and verified by practical vehicle experiments. The practical on-vehicle experiments can gain theory basement and data contrast from the simulation model by analyzing the simulation results. The road experiments of hybrid electrical bus equipped with E.T.Driver are carried out according to the standard of China, and mainly attention is focused on typical difficult working conditions, such as small throttle start-up gear shift, gear shift during acceleration course and high gear position. From the final simulation results and road test results, it can be found that the special structure and the corresponding control strategy of E.T.Driver can greatly enhance the gear shift quality, driving smoothness and driving comfort of HEV compared with the traditional AMT. With the optimal torque control strategy presented in this dissertation, the E.T.Driver achieves good dynamic character, which is adaptive to time varying driving condition of HEV and complicated surroundings. The research of E.T.Driver can greatly promote the development of automobile industry and HEV’s key technology.
引文
[1]闵海涛,程猛,新能源汽车环境影响及能源效率分析,拖拉机与农用运输车,2007(4)107-112
    [2]谁没有新能源汽车谁就可能失去未来[J].汽车观察, 2005,(05)
    [3]欧阳明高,我国节能与新能源汽车发展战略与对策,汽车工程,2006(4):317-321
    [4]战略委员会课题组,中国汽车工业发展研究[M],上海科学技术出版社.
    [5]汽车工业产业政策.1994.
    [6]汽车工业产业政策.2004.
    [7]肖国普,打造新能源汽车谱写新时代汽车文化,上海汽车,2005(11):1-3
    [8]杨德亮,混合动力节能汽车研究现状及发展趋势,交通节能与环保, 2007(02) :22-25
    [9]孙志军,赵黎明,吴志新,郭英男,我国发展混合动力汽车的技术经济分析,天津大学学报(社会科学版), 2007(03):230-235
    [10]曹秉刚,中国电动汽车技术新进展,西安交通大学学报,2007(01):114-118
    [11]陈治光,科技奥运中华世纪梦电动汽车十年磨一剑-北京打造电动汽车产业化之路[J ] .科技潮,2004(6):8-11 [12 ]万钢,中国电动汽车的现状和发展[J],中国环保产业,2003,55(2):30-32
    [13]杜子学,王可,车用能源及新型动力车的发展与研究,上海汽车,2007(6):5-8
    [14]沈同全,程夕明,孙逢春.混合动力汽车的发展趋势,农业装备与车辆工程, 2006
    [15]2005-2006年全球及国内混合动力车产业研究报告,水清木华研究中心,2006(2):1-7
    [16] Powers W F, Nicastri P R. Automotive vehicle control challenges in the 21st century. Control Engineering Practice 2000, 8(6): 605-618
    [17] S.Sasaki,T.Takaoka,H.Matsui,T.Kotani.Toyota newly developed electric–gasoline engine hybrid powertrain system.The 14thInternational Electric Vehicle Symposium and Exposition. Orlando, USA, 1997.
    [18] Koichi Fukuo,Akira Fujimura,Masaaki Saito,Kazuhiko Tsunoda,Shiro Takiguchi.Development of the ultra-low-fuel-consumption hybrid car-INSIGHT.JSAE Review,2001,Vol.22:95-103.
    [19] Nissan Motor Co.,Ltd.Development of high-performance hybrid electric vehicle“Tino hybrid”. The 16thInternational Electric Vehicle Symposium and Exposition.Beijing, China, 1999.
    [20] TOYOTA Motor Corporation.Development of electric motors for the Toyota hybrid vehicle“PRIUS”.The 16thInternational Electric Vehicle Symposium and Exposition.Beijing, China, 1999.
    [21]邓元望,王耀南,陈洁平,混合电动汽车驱动系统的分类方法及应用,农业机械学报,2006(5):22-25
    [22] Chan C C. The state of the art of elect ric and hybrid veh icles[J ]. P roceedings of the IEEE, 2002, 90 (2) : 247~275.
    [23]Antoni Szumanow ski.混合电动车辆基础[M].陈清泉,孙逢春,译.北京:北京理工大学出版社,2001.
    [24]胡骅,宋慧.电动汽车[M ].北京:人民交通出版社, 2003.
    [25]孙逢春,何洪文.混合动力车辆的分类方法研究[J ].北京理工大学学报, 2002, 22 (1) : 40~44.
    [26]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M ].北京:北京理工大学出版社, 2002.
    [27] GastonM agget to, JoeriV anM ierlo. Elect ric veh icles, hybrid elect ric veh icles and fuel cell elect ric veh icles: state of the art and perspect ives[J ]. Ann. Chim. Sci. M at, 2001, 26(4): 9-26.
    [28]余晓江,何洪文,孙逢春.混合动力电动大客车的技术现状[J ].车辆与动力技术, 2002 (4) : 38~42.
    [29]陈洁平.混合电动汽车能源总成控制系统的研究[D ].长沙:湖南大学, 2004.
    [30] Masami Ogura.Development of electric vehicles.JSAE Review,1997,vol.18:51-56.
    [31].Wolfram Buschhaus,Larry R.Brandedburg,Ross M.Stuntz.Hybrid electric vehicle development at Ford.The 15th International Electric Vehicle Symposium and Exposition.Brussels,Belgium,1998.
    [32]王军,申金升,国内外混合动力电动汽车开发动态及发展趋势.公路交通科技.2002,Vol. 17(1):11-14.
    [33]黄妙华,金国栋,邓亚东.串联式混合动力电动汽车先导车的研究开发,武汉理工大学学报(交通科学与工程版),2001,Vol.25(3):273-296.
    [34]广濑久士,丹下昭二.电动车及混合动力车的现状与展望.汽车工程, 2003, 25(2): 204-209
    [35] Jefferson C M, Barnard R H. Hybrid vehicle propulsion. Southampton, UK: WIT Press, 2002
    [36]张华,张嘉君,周容.本田第四代混合动力系统IMA.上海汽车,2006,8
    [37]田光宇,彭套,林成涛,陈全世.混合动力电动汽车关键技术.汽车技术, 2002, (1): 8~11
    [38]万沛霖,电动汽车的关键技术.北京:北京理工大学出版社, 1998
    [39] Masude T. Analysis of a Diesel-Electric Hybrid System for a Delivery Truck. EVS-13, Osaka, Japan, 1996
    [40] Liao, Chenglin; Zhang, Junzhi; Lu, Qingchun; Coordinated powertrain control method for shifting process of automated mechanical transmission in the hybrid electric vehicle; Chinese Journal of Mechanical Engineering, 2005,41(12), 37-41
    [41]毕洪新,浅谈变速器制造技术现状及发展趋势,汽车工艺与材料,2008(5):28-20
    [42]葛安林,自动变速器(一)──自动变速器综述,汽车技术,2001(5):1-3
    [43]葛安林,车辆自动变速理论与设计,1991
    [44]李君,张建武,冯金芝,葛安林,雷雨龙,电控机械式变速器的发展、现状和展望,汽车技术, 2000(3), 1-3.
    [45]过学迅,吴涛,汽车自动变速器在中国的发展及前景,汽车研究与开发, 1999(3), 7-11.
    [46]袁建国,轿车用自动变速器的发展分析与应用研究,汽车研究与开发, , 2000(1), 17-18.
    [47]卢新田,侯国政, Introduction of the AMT Control System Structure and Main Foreign AMT Products,汽车技术,2004(5):18-22
    [48] Wang Xu, Cao Jian, Yang Zhigang, You Tongsheng, A Study on Automatic Detection of Neutral Position for Gear-selection and Gear-shifting of Electrically-controlled AMT, Automotive Engineering,2007(11):994-998
    [49]何忠波;白鸿柏;李冬伟,电控机械式自动变速器换挡柔性控制试验,农业机械学报,2006(01):23-27
    [50]何忠波;席军强;陈慧岩;陶刚,车辆全电化自动变速操纵系统,建筑机械,2003(10):71-74
    [51]孟庆勇,电控电动机械式自动变速器无换挡选档系统的研究,长春,吉林工业大学,2005年5月
    [52]秦贵和、范巨新,汽车自动变速器微机控制系统,汽车工程,1999. 1
    [53]秦贵和,AMT控制技术的研究与系统开发,(博士学位论文),1997,吉林大学[54」王佐政,汽车AMT自动离合器的电机伺服系统开发与实现,(硕士学位论文),2000
    [55]李君、葛安林,电控机械式自动变速器的发展、现状和展望,汽车技术,2000年3月
    [56] Christan Bader, Power train electronics-progress on the use and development of the computer aided gearshift systems, SAE901160 [57〕雷雨龙、葛安林、秦贵和、范巨新、刘长春,提高电控机械式自动变速器换档品质实验方法的研究,中国公路学报,1999. 4第12卷第2期
    [58]李君、张建武、冯金芝、雷雨龙、葛安林,机械式自动变速器的发展、现状和展望,汽车技术,2000年第3期
    [59]陶冶,全电控电动机械式自动变速器换档系统的开发,(硕士学位论文),2004,吉林大学
    [60] G.H.ugrien, User-friendly electronic power shift transmission controls, SAE911831
    [61] R.C.Holmes, Automatic mechanical transmission controls, SAE831776
    [62] H.Yoshimura, Automatic Mechanical Transmission Controls, SAE paper, 861052, 1986
    [63] New automated Mechanical Transmission-Customer Considerations, Concept Comparisons and Experience, SAE paper, 982796, 1998
    [64] Mathias Link, Burg hard Vob, Erik Eggert and Roland Nasdal, The Automated Shift Transmission-Possibilities and limits in Production-Type Vechiels,SAE Paper 2001-01-0881
    [65] Kim. M. Lyon, The Chrysler "Quick Shit Neon" Auto manual Transmission Project, SAE Paper, 983082
    [66] [104] Markel T, Brooker A, Hendricks T, et al. ADVISOR: a systems analysis tool for advanced vehicle modeling. Journal of Power Sources, 2002, 110(2): 255-266
    [67] Wipke K B, Cuddy M R, Burch S D. ADVISOR 2.1: a user-friendly advanced powertrain simulation using a combined backward/forward approach. IEEE Transactions on Vehicular Technology, 1999, 48(6): 1751-1761
    [68] Butler K L, Ehsani M, Kamath Preyas. A Matlab-based modeling and simulation package for electric and hybrid electric vehicle design. IEEE Transactions on Vehicular Technology, 1999, 48 (6): 1770-1778
    [69] Rizzoni G, Guzzella L, Baumann B M. Unified modeling of hybrid electric vehicle drivetrains. IEEE/ASME Transactions on Mechatronics, 1999, 4 (3): 246-257
    [70] Rizzoni G, Guezennec Y, Brahma A, et al. VP-SIM: a unified approach to energy and power flow modeling simulation and analysis of hybrid vehicles. SAE Paper 2000-01-1565, 2001
    [71] Wilkins S, Lamperth M U. An object-oriented modeling tool of hybrid powertrains for vehicleperformance simulation. Proceedings of the 19th International Electric Vehicle Symposium, Busan, Korea, 2002. 1079-1089
    [72] Lin C-C, Filipi Z, Wang Y, et al. Integrated, feed-forward hybrid electric vehicle simulation in Simulink and its use for power management studies. SAE Paper 2001-01-1334, 2001
    [73] Lin C-C, Filipi Z, Gravante S, et al. Validation and use of Simulink integrated, high fidelity, engine-in-vehicle simulation of the international class VI truck. SAE Paper 2000-01-0288, 2000
    [74] Tillaart E, Eelkema J, Vink W. ADVANCE, a modular simulation environment for vehicle and powertrain design and analysis. Proceedings of the 19th International Electric Vehicle Symposium, Busan, Korea, 2002. 1044-1056
    [75] Bolognesi P, Conte F V, Bianco G L, et al. Hy-Sim: a modular simulator for hybrid electric vehicles. Proceedings of the 18th International Electric Vehicle Symposium, Berlin, Germany,2001
    [76] Jeanneret B, Trigui R, Badin F, et al. New hybrid concept simulation tools, evaluation on the Toyota Prius car. Proceedings of the 16th International Electric Vehicle Symposium, Beijing,China, 1999
    [77] Trigui R, Badin F, Jeanneret B, et al. Hybrid light duty vehicles evaluation program. Proceedings of the 19th International Electric Vehicle Symposium, Busan, Korea, 2002.888-899
    [78] Hauer K-H. Analysis tool for fuel cell vehicle hardwareand software (controls) with an application to fuel economy comparisons of alternative system designs. PhD Dissertation, University of California Davis, USA, 2001
    [79] MathWorks. Simulink/Stateflow technical examples using Simulink and Stateflow in automotive applications. Technical Report, 1998, http://www.mathworks.com
    [80] Crossley P R, Cook J A. A nonlinear engine model for drivetrain system development. Proc of’91 IEE International Control Conference, Edinburgh, UK, 1991, 2. 921-925
    [81] Johnson V H. Battery performance models in ADVISOR. Journal of Power Sources, 2002, 110(2): 321-329
    [82] A. A. Amsden. KIVA-3: A KIVA Program with block-structured mesh for complex geometries. Los Alamos National Laboratory, Los Alamos, NM, 1993, LA-12503-MS
    [83] Johnson V H. Battery performance models in ADVISOR. Journal of Power Sources, 2002, 110(2): 321-329
    [84] Paganelli G, Ercole G, Brahma A, et al. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JASE
    [85]王玉海,宋健,李兴坤,离合器动态过程建模与仿真,公路交通科技,2004(10):120-125
    [86]习纲;张建武;陈俐,膜片弹簧离合器的非线性控制,机械工程学报,2000(9):98-106
    [87]林世裕,膜片弹簧与碟形弹簧离合器的设计与制造,东南大学出版社,1995
    [88]曾纪杰,膜片弹簧大端载荷变形特性多项式回归分析,机械设计与制造,2006(1):38-39
    [89]夏长高,朱茂桃,高翔,膜片弹簧大端载荷变形特性的研究,机械研究与应用,1996(4)
    [90] Andreas Abel, Uwe Schreiber, Jens Schindler , Engine and Gearbox Modeling and Simulation for Improving the Shifting Behavior of Powertrains with Manual or Automated Transmission, SAE paper,06p-4801
    [91] Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill, 1988.
    [92] Schmitt, Müller, Wohl. Simulation Model for a 6-Cylinder Diesel Engine. Proceedings of the GermanConference“Simulation in Mechanical Engineering”, Dresden, Germany, 2000 (in German).
    [93] Abel, Schreiber, Valsania, Fornelli. Simulation-Based Design of Gearboxes for High-Performance Sports Cars. 11th Conference on High-Tech Engines and Cars, Modena, Italy, 2005.
    [94] Schreiber. Modeling and Simulation of the Complete Powertrain of the Golf 4motion. Internationale Zulieferb?rse, Wolfsburg, Germany, 2004 (in German).
    [95] Md. Ziaur Rahman. An investigation of traction motor characteristics for electric and hybrid electric vehicle application: [doctoral dissertation]. Texas: Texas A&M University, 2001
    [96]赵涛,一种新型混合动力电动汽车的动力系统设计、仿真及电机驱动系统的研究。[Dissertation].安徽:合肥工业大学, 2005
    [97] D F Gosden. Wide Speed Range Operation of an AC PM EV Drive. EVS-13, Osaka, Japan, 1996
    [98] Z. Rahman, K. L. Butler and M. Ehsani. Effect of Extended-Speed, Constant-Power Operation of Electric Drives on the design and Performance of EV-HEV Propulsion System. SAE 2000-01-1557
    [99]李三东,薛花,纪志成,基于Matlab永磁同步电机控制系统的仿真建模,江南大学学报(自然科学版),2004(2):115-120
    [100] MILLER TJ E. Brushless Permanent2Magnet , Reluctance Motor Drives[M] . Oxford New York : Clarendon Press , 1989.
    [101] PILLAY P KRISHNAN R. Modeling , simulation and analysis of permanent2magnet motor drives , PartⅠ: The permanent2magnet synchronous motor drive [J ] . IEEE Trans on Industry Applications , 1989 , 25(2) : 265 - 273.
    [102] PILLAY P KRISHNAN R , Modeling , simulation , and analysis of permanent2magnet motor drives , PartⅡ: The brushless DC motordrive [J ] . IEEE Trans on Industry Applications , 1989 , 25(2) : 274 - 279.
    [103] PRAGASAN PILLAY KRISHNAN R. Modeling of permanent magnet motor drives[J ] . IEEE Trans on Industry Electronics , 1988 , 35(4) : 537 - 541.
    [104] IRFAN GUNEY, YUKSETOGUZ, FUSUN SERTELLER. Dynamic behavior model of permanent magnet synchronous motor fed by PWMinverter and fuzzy logic controller for stator phase current , flux and torque control of PMSM[J ] . IEEE Proceeding from Electric Machines and Drives Conference , 2001 ,12 - 17 : 479 - 485.
    [105] BOLOPION A JOUVE D PACAUT R. Control of permanent magnets synchronous machines a simulation comparative survey[J ] . IEEE Proceeding from Applied Power Electronics Conference and Exposition , 1990 , (11 - 16) : 374 - 383.
    [106] HOANGLE2HUY, Modeling and simulation of electrical drives usingMatlab simulink and power system blockset [J ] . IEEE Proceedingfrom Industrial Electronics Society , 2001 ,3(2) : 1603 - 1611.
    [107] LUK P C KLEE C K KWOKN M. Development of a low cost software package for the design of a brushless DC motor controller[J ] .Proceeding from Electrotechnical Conference , 1994 , (12 - 14) : 1306 - 1309.
    [108] LUK P C KLEE C K KWOKN M. Efficient modelling for a brushless DC motor drive[J ] . Proceeding from Industrial Electronics ,Control and Instrumentation , 1994 ,1(5 - 9) : 188 - 191. [109 ] J EON Y S MOK H S CHOE ETAL G H. A new simulation model of PMSM motor with real backEMF waveform[J ] . Proceeding from Computers in Power Electronics , 2000 , (16 - 18) : 217 - 220.
    [110]黄华,周凡利, Modelica语言建模特性研究,机械与电子,2005 (8):62-65
    [111] Fritzson Peter , Engelson Vadim. Modelica a unified object oriented language for system modeling and simulation[A] . Proceedings of the 12th European Conference on Object oriented Programming [ C] . 1998 ,67 - 90.
    [112]奚旺,刘永文,杜朝辉,孟光.基于Modelica语言的燃气涡轮建模及应用[J ] .动力工程,2004 ,24 (1) ,41- 44.
    [113]杨世文,苏铁熊,李炯.基于Modelica语言的面向对象的发动机建模与仿真[J ] .车用发动机,2004 , (2) :39- 42.
    [114] Fritzson Peter. Principles of object oriented modeling and simulation with modelica2. 1 [ M ] . Wiley IEEE Press ,2004.
    [115]赵建军,丁建完,周凡利,陈立平. Modelica语言及其多领域统一建模与仿真机理,系统仿真学报,2006(2):570-573
    [116]赵海峰,基于CRUISE软件的AMT车辆性能仿真分析与实验研究
    [117]王丽荣;上官云飞;基于Cruise自卸车动力经济性仿真分析与优化,专用汽车,2007(4):14-18
    [118]王园;贺岩松;王保华,基于CRUISE的PHEV控制策略参数仿真,重庆大学学报(自然科学版),2006(12):22-25
    [119]董悦航,黄援军,殷承良,张建武,陈俐,超级电容和电池相结合的混合动力客车动力和经济性仿真研究,系统仿真学报
    [120] GB/T19754-2005《重型混合动力电动汽车能量消耗量试验方法》
    [121] GB/T 19752—2005混合动力电动汽车动力性能试验方法
    [122] Sorensen, Bent,“On the road performance simulation of hydrogen and hybrid cars," International Journal of Hydrogen Energy ,Volume 32, Issue 6, May 2007, Pages 683-686
    [123] Xiaoling He and Jeffrey W. Hodgson,“Modeling and Simulation for Hybrid Electric Vehicles—Part I: Modeling,”IEEE Intelligent Transportation Systems, 2002, 3(4) pp 235-243
    [124]冯启山,殷承良,朱禹.混合动力汽车动力性和经济性道路试验.机械工程学报,2005(12):19-24005,
    [125]冯能莲,李克强,董珂,连小珉.混合动力汽车性能仿真研究.(Performance Simulation of a Hybrid Electric Vehicle)系统仿真学报(Journal of System Simulation),2004,16(6):1225-1230
    [126]程夕明,徐梁飞,何彬,李希浩,欧阳明高.串联混合电动车辆动力系统的实时仿真(Real Time Simulation of SHEV Powertrain System).系统仿真学报(Journal of System Simulation),2004,16(7):1467-1471
    [127] ZHANG Jianwu, CHEN Li, XI Gang. System dynamic modeling and adaptive optimal control for automatic clutch engagement of vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216(12): 983-991
    [128] SERRARENS A, DASSEN M, STEINBUCH M. Simulation and control of an automotive dry clutch[C]//American Automatic Control Council. International Federation of Automation Control.Proceedings of the American Control Conference, June 30-July 2, 2004, Institute of Electrical and Electronics Engineers Inc., Piscataway, New Jersey. Boston: IFAC, 2004: 4 078-4 083.
    [129] Gao Guijun, Ge Anlin, Zheng Lei, Clutch engagement control during gear shifting process in automated manual transmission, Chinese Journal of Mechanical Engineering,2006,41(12),234-238
    [130]张俊智,王丽芳,自动膜片弹簧离合器的接合控制,清华大学学报(自然科学版), 1999年8月, 39(8), 56-59.
    [131] Luigi Glielmo Luigi Iannelli, Vladimiro Vacca, and Francesco Vasca, Gearshift Control for Automated Manual Transmissions, IEEE/ASME Transactions on Mechatronics, Feb. 2006, 11(1), 17-26.
    [132] Franco Garofalo Luigi Glielmo, Luigi lannelli, and Francesco vasca, Smooth Engagement for Automotive Dry Clutch, in Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, Dec. 2001, 529-534.
    [133]葛安林,吴锦秋,郭万富,离合器最佳接合规律的研讨,汽车工程,1988,9( 2):54-65
    [134]葛舜,葛安林,武文治,自动变速器离合器的模糊控制,汽车技术, 1996年6月, 6(6), 7-12.
    [135] Tang Xia-qing Hou Chao-zhen, Chen Yun-huang, Study of Controlling Clutch Engagement for AMT Based on Fuzzy Logic, Journal of Beijing Institute of Technology, 2002, 11(1), 45-49.
    [136]申水文,张建武,车辆机械式离合器的模糊控制技术,控制理论与应用, 1998年12月, 15(6), 981-984.
    [137]陈莉,汽车AMT自动离合器接合过程的动力学与控制研究,上海,上海交通大学,2000.1
    [138] ChenL i,Zh angJ ianwu,A na daptiveo ptimalpr ocessco ntrolof cl utchf orA MTw ithth eu se Of ADAMS. Proceedingso fth eIn ternationalA DAMSU sersC onference(B erlin),Nov.1999
    [139] XiG ang,C henL i,Z hangJ iamvua ndS hiX iatiggin.D iscretec ontrolof el ectricalco ntrollable clutchesus ing So perators.IE EEI nternationalV ehiclesE lectronicsC onferences(Chang Chun),Sep.1999:
    [140]冷再兴,马志源,一种新的内置式永磁同步电机弱磁调速控制方法,微电机,2006(6):11-14
    [141] Senjyu , T , Shimabukuro , T , Urasaki , N , Uezato , K Vector control of PMSM with online parameter measurement including stator iron loss [J ] . Industrial Elextronics , Cont rol and Instrumention , 1996. Proceedings of the 1996 IEEE IECON 22nd International Conference on , Volume : 3 , 5210 Aug. 1996 , (3) :1717-1722.
    [142] A fully digital permanent magnet synchronous motor drive with flux weakening Adnanes , A. K; Sulkowski , W. ;Aga , L. A. ; Norum , L [ J ] . Elect rical Machines and Drives , 1991. Fift h International Conference on ( Conf .Publ . No. 341) 1991 , (341) : 11213.
    [143] Ho , P. K. ; Lee , C. K. , Modeling and simulating of a permanent synchronous motor under the flux2weakening control[J ] . Industrial Electronics , 1998. Proceedings. ISIE′98. IEEE International Symposium on , 1998 , (2) : 462-467.
    [144] Sozer , Y. ; Torrey , D. A. Adaptive flux weakening control of permanent magnet synchronous motors[J ] . Indust ry Applications Conference , 1998. Thirty2Third IAS Annual Meeting. The 1998 IEEE , 1998 , (1) : 475-482.
    [145]唐任远.现代永磁电机理论与设计[M] .北京:机械工业出版社, 1997.
    [146]李平,基于CAN-BUS的汽车车载网络系统,电脑与信息技术,2007(4):52-57
    [147]李连葆;张辉;用CodeWarrior开发系统调试MCF5206e,电子质量,2006(1):17-21
    [148]丁志华;罗峰;孙泽昌;基于CANoe的汽车故障诊断系统研制,汽车工程,2007(05):449-452
    [149]张新波,孙泽昌,罗峰.使用CANoe对车身控制器局域网络仿真的研究[ J ].江苏大学学报, 2003, 24 (5) : 36 - 39.
    [150]陈觉晓,罗峰,孙泽昌.燃料电池轿车动力系统网络通信结构的仿真研究[ J ].华中师范大学学报, 2004, 38 (4) : 448 - 451. [151 ] Frank Voorburg. CANoe as a COM Sever[ EB /OL ]. 2002. 6, http: / /www. vector2informatik. com /.
    [152]中华人民共和国国家标准:GB/T12534-1990汽车道路试验方法通则
    [153]中华人民共和国国家标准:GB/T12677-1990汽车技术状况行驶检查方法
    [154]中华人民共和国国家标准:GBT 12544-1990汽车最高车速试验方法
    [155]中华人民共和国国家标准:GB/T12674-1990汽车质量(重量)参数测定方法
    [156]中华人民共和国国家标准:GB/T12543-1990汽车加速性能试验方法
    [157]中华人民共和国国家标准:GB/T12545.2-2001商用汽车燃料消耗量试验方法
    [158] Sorensen, Bent,“On the road performance simulation of hydrogen and hybrid cars," International Journal of Hydrogen Energy ,Volume 32, Issue 6, May 2007, Pages 683-686
    [159] Xiaoling He and Jeffrey W. Hodgson,“Modeling and Simulation for Hybrid Electric Vehicles—Part I: Modeling,”IEEE Intelligent Transportation Systems, 2002, 3(4) pp 235-243
    [160]冯启山,殷承良,朱禹.混合动力汽车动力性和经济性道路试验.中国机械工程学报,2005(12):19-24
    [161] Stefano Barsali, Carmine Miulli, and Andrea Possenti,“A Control Strategy to Minimize Fuel Consumption of Series Hybrid Electric Vehicles,”IEEE Intelligent Transportation Systems, 2004, 19(1) pp187-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700