用户名: 密码: 验证码:
紫球藻多糖的制备及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫球藻(Porphyrodium cruentum)是红藻门中唯一的单细胞类群,在生长过程中能合成一类细胞外多糖(Extracellular polysaccharide;EPS),其产量很大程度上受到培养条件的影响。国内外关于紫球藻的培养和活性成分的研究取得了一定进展,但有关紫球藻多糖分子修饰,尤其是在紫球藻多糖结构与其生物活性之间的关系研究方面尚不多见。本文采用生态调控和工艺培养条件优化等手段,有效地提高了紫球藻多糖的产量,为紫球藻多糖的大量制备奠定了良好的基础。在紫球藻多糖理化性质研究和结构分析的基础上,利用对多糖的降解和分子修饰等手段获得了多种不同分子质量和不同硫酸基含量的多糖,并对这些不同性质多糖的抗氧化、抗肿瘤和免疫调节活性以及生物活性与分子结构之间的关系进行了详细的研究,取得了以下研究结果:
     1、提高紫球藻多糖产量的培养条件
     (1)通过考察无机盐、金属离子及植物生长激素等对紫球藻多糖合成的影响,获得了有利于提高多糖产量的培养基配方(OCMⅡ):NaHCO_3 3.5g,KH_2PO_420mg,NaNO_32g,Na_2SO_420mg,FeCl_2·6H_2O 10μM,MnCl_2·4H_2O 0.2μm,V_(B1) 0.9 mg,V_(B12) 2.7μg,无菌海水1000mL。采用OCMⅡ培养基、15d培养,紫球藻多糖的最大产量达到了672 mg/L,分别比2/f和Koch对照培养基的多糖产量提高了1.79和1.62倍。
     (2)在自行研制的平板式光生物反应器中,考察了光照密度、光照时间、光质和反应器光径对紫球藻多糖合成的影响。在光通量密度为80μE·m~(-2)s~(-1)、光暗循环周期为18:6、自然光照射条件下,多糖的产量达到0.96g/L。在光径为30mm的反应器中多糖产量高达1.13g/L,而在光径为50mm的反应器中多糖的面积产率最高达到5.80 g/m~2/d的水平。
     (3)采用均匀设计法对紫球藻半连续培养的工艺参数进行优化。在NaN03浓度、更新速率和更新周期分别为3.5 g/L、27%和2.91d的优化条件下,经过23d的培养,紫球藻多糖的总采收量达到29.4 g,平均多糖产量为1.96g/L,分别是批式培养的2.35和1.57倍。
     2、不同性质紫球藻多糖的制备及其结构性质分析
     (1)利用DE52离子交换柱层析及Sephacryl S-400凝胶过滤柱层析获得了纯化的多糖。该多糖的平均分子量为2918kDa,硫酸基含量14.63%,糖醛酸含量7.8%;多糖溶液为典型的假塑性流体特征,其粘度不受温度、加热时间等的影响。GC分析表明该多糖由木糖、葡萄糖和半乳糖组成,为一种杂多糖,其摩尔比为:2.96:1.25:3.06;化学分析和光谱分析结果表明紫球藻多糖糖链连接方式以p-(1→3)为主,存在少量1→4及1→6糖苷键;Gal在支链或链末端有较大量的存在,Xyl和Glc在主链或靠近主链区域有特定分布。综合上述分析,推断EPS可能的重复单元结构如下:或者,
     (2)采用密闭微波降解技术分别制备了相对分子量分别为6553 Da、60.66 kDa、和256.26 kDa的小分子量多糖;采用超声波辅助过氧化氢降解技术分别制备了203.6kDa、606.6 kDa、802.6 kDa、903.3 kDa和1002 kDa的小分子量多糖。通过控制不同的衍生温度制备了硫酸根含量分别为31.0%、31.5%、47.5%和42.4%的硫酸酯多糖衍生物。降解后的小分子量多糖的理化性质没有明显的变化,衍生化后紫球藻多糖的水溶性明显增加。
     3、紫球藻多糖的生物学活性
     (1)紫球藻多糖的抗氧化活性所制备的各类紫球藻多糖均表现出很强的清除羟自由基(·OH)、超氧阴离子(O_2~-·)自由基和1,1-二苯基苦基苯肼(DPPH·)自由基的活性,并且清除作用均与其浓度正相关;对由Fe~(2+)/抗坏血酸诱发的小鼠肝匀浆氧化损伤和由H_2O_2诱发的小鼠红细胞氧化溶血也具有浓度依赖性的抑制作用。
     多糖分子量对其抗氧化活性有显著的影响,降解前原糖样的抗氧化活性未能检测出,但是降解后随着多糖分子量的减小其抗氧化活性显著增加,尤其是分子量为6553Da的多糖的抗氧化效果最好。经过硫酸化修饰后,多糖的抗氧化活性明显增加,对-OH和O_2~-·的半数抑制浓度分别为3.92 mg/mL和0.4mg/mL;随着硫酸基含量的增加,衍生化多糖对三种自由基的清除效果明显增强,但是差异不十分显著。
     (2)紫球藻多糖的抗肿瘤作用SRB法测定紫球藻体外抗肿瘤活性,结果表明高分子量的紫球藻多糖没有体外抑瘤效果,分子量为6.55 kDa和256 kDa的多糖对肺腺癌癌细胞(A549)和喉表皮样癌癌细胞(Hep-2)和肝癌细胞株(SMMC7721)表现出一定的抑制作用。
     荷S180实体瘤小鼠灌胃给药的结果显示,高、中、低三个剂量组(200、100、50mg/kg/d)的紫球藻多糖均可显著抑制S180实体瘤的生长,其抑瘤率分别为53.3%、47.5%和40.5%,表明该多糖具有明显的抗肿瘤作用。并且紫球藻多糖能显著地提高荷瘤小鼠的脾指数和胸腺指数,明显促进脾淋巴细胞的增殖。在剂量为200μg/mL时,脾淋巴细胞的增殖指数相对于模型组为2.41,相对于CTX阳性对照组为2.15。
     (3)紫球藻多糖的体外免疫活性在25-200μg/mL浓度范围内,紫球藻多糖能显著提高小鼠腹腔巨噬细胞释放NO能力,增强小鼠腹腔巨噬细胞吞噬中性红的能力,促进小鼠腹腔巨噬细胞和脾淋巴细胞的增殖。分子量与硫酸基含量对免疫调节功能有显著影响。分子量为6.55 kDa的多糖的免疫增强活性最强;除了硫酸基含量为32%的多糖对腹腔巨噬细胞的增殖促进作用最强外,其余都是随着硫酸根含量的增高,免疫促进作用增强,硫酸根含量高于40%的多糖的免疫增强活性较好。
The Porphyridiun cruentum (P.cruentum) are the only unicellular marine microalga in Rhodophyta, which can synthesize and secrete extracellular polysaccharides (EPS) into culture liquid when cells are grown in steady-state culture. The yield of EPS usually correlates with the culture condition of microalga. There have been made some progress about cultivation and bioactive compounds of P. cruentum. However, the researches about the molecular modification of P. cruentum polysaccharide, especially the relationship between structure and biological activities are still rare. In present work, the yield of EPS was improved effectively by ecology control and optimization of technical condition. Based on analysis of physicochemical properties and chemical structure of polysaccharide, different molecular and different sulfate content derivatives of polysaccharide extracted from P. cruentum were prepard. Thereafter, the relationship between different properties polysaccharide and the antioxidant activity, anti-tumor activity and immunomodulation activity were investigated. The results were summarized as follows:
     1 The culture conditions for improvement of EPS production
     (1) In order to probe the effect of nutrient salts on polysaccharide yield of P. cruentum, several important inorganic compounds such as nitrogen, phosphor, sulfate, metal ion and plant growth hormone were investigated. The optimal cultural medium (OCMⅡ) for increasing EPS yield were obtained with NaHCO_3 3.5 g, KH_2PO_4 20 mg, NaNO_3 2 g, Na_2SO_4 20 mg, FeCl_2·6H_O 10μM, and MnCl_2·4H_2O 0.2μM, V_(B1) 0.9 mg, V_(B12) 2.7μg, sterile seawater 1000 mL. The maximal EPS production achieved as 672 mg/mL after 15 d cultivation in OCMⅡmedium, which increased 1.79 times and 1.62 times compared with that cultivated in 2/f and Koch medium.
     (2) In order to investigate light quality on yield of EPS, the P. cruentum were cultivated in flat plate photobioreactors (FPPBR) developed by ourselves and different light illumination intensity, light/dark cycle, light spectrum and light pathway of reactor were designed. The optimum light illumination conditions for maximal EPS yield were photon flux density 80μE·m~(-2)s~(-1), light/dark cycle 18:6, natural light or yellow light, and the maximal yield of polysaccharide was 0.96 g/L. The maximum EPS yield was observed as 1.13 g/L in FPPBR with light-pathway of 30 mm, but the maximal areal output rate of EPS achieved as 5.8 g /rn~2/d in FPPBR with light-pathway of 50 mm.
     (3) To probe the effects of renewal regime on the production of polysaccharides, P. cruentum were cultured semicontinuously in flat plate photobioreactor. Uniform design was used to optimize renewal conditions. Quadratic mathematic models related to output rate, total recovery yield of biomass and polysaccharides were set up to clarify the influence of individual factors and their interactions. According to the mathematic models, the optimal semi-continuous condition for total yield of EPS was NaNO_3 3.5 g/L, renewal rate 27%, renewal period 2.91 d. With the optimal renewal regime, the maximal total recovery yields and average production of EPS achieved at 29.4 g and 1.96 g/L, respectively, which was 2.35 and 1.57 times higher than that of batch cultivation.
     2 Preparation of different EPSs and analysis of structure and properties
     (1) The EPSs were isolated and purified by DE52 hydronium exchange chromatography column and Sephacryl S-400 gel chromatography column, then the homogeneous water-solubility polysaccharides were obtained. Analysis of physicochemical properties showed that the apparent molecular weight (MW) of EPS was about 2918 kDa, sulfate content was 14.63%, glucurouic acid content was 7.8%. Rheological behavior showed that the aqueous solution of EPS was typical pseudoplastic fluid, and the viscosity of polysaccharide could not change with temperature and heating time. GC analysis showed that the monosaccharide components of EPS were mainly composed of with xylose, glucose and galactose, and molar ratio of each sugar is 2.96: 1.25: 3.06. Results of chemical and spectral analysis showed that the main linkage wasβ-(1→3), and there were a few of 1→4 and 1→6 linkages. A large of galactoses exsited at the end or branch of sugar chain, but xylose and glucose were distributed specially close to main chain. So it can be concluded that the possible repeating unit of EPS could be shown as:
     (2) The molecular weights of degraded polysaccharides prepared by hermetical microwave were 6553 Da, 60.66 kDa and 56.26 kDa, respectively. Oxidative degradation with H_2O_2 under ultrasonic wave were used to degrade EPS from 2918 kDa to 203.6 kDa, 606.6 kDa, 802.6 kDa, 903.3 kDa and 1002 kDa. The EPS derivatives with sulfate content of 31.0%, 31.5%、47.5% and 42.4% were prepared by controlling different reaction temperature. The physicochemical properties before and after degradation had no obvious changes, and the water-solubility of derivate EPS increased obviously.
     3 Biological activities of EPS
     (1) The antioxidant properties of EPS were evaluated by determining the scavenging ability of free radicals, inhibitory effects on Iipid peroxidation in mouse liver homogenates and hemolysis of mouse erythrocytes. The results showed that all degraded polysaccharide fragments had strong scavenging effects on hydroxyl-radical (·OH), Superoxide-radical (O_2~-·) and 1, 1-Diphenyl-2-picrylhydrazyl (DPPH·). Besides, the scavenging activities of EPS improved with an increase of samples concentration. All degraded polysaccharides clearly inhibited Iipid peroxidation induced by Fe~(2+)/ascorbic acid in mouse liver homogenates, and markedly inhibited H_2O_2-induced hemolysis of mouse red blood cells (RBCs) in a dose-dependent manner.
     MW of EPS had significant effect on antioxidant ability. High-molecular-weight EPS before degradation had no obvious antioxidant activity, but the antioxidant activities increased with the decrease of MW. The 6.55 kDa fragment had stronger antioxidant activity than the others. The antioxidant activity of sulfate derivatives of EPS improved distinctly, and the IC_(50) values of scavenging·OH and O_2~-·were 3.92 mg/mL and 0.4mg/mL,respectively. With an increase of sulfate content, the scavenging effects of polysaccharide derivatives increased, but the difference between them was not obvious significance.
     (2) The inhibitory effects of EPS on tumor cells in vitro were determined by method of SRB. The results showed that high-MW EPSs had no anti-tumor activity. The 6.55 kDa-fragment and 256 kDa-fragment had some inhibitory effects on lung adenocarinoma cells (A549), laryngeal epidermal cancer cells (Hep-2) and hepatoma cells (SMMC7721), but the effects were not obvious.
     The effects of EPS on Sarcoma 180 (S180) tumor growth were observed after different doses of EPS were administrated by gastric perfusion to S180-bearing mice. The growth of S180 tumor was significantly inhibited by EPS, and the growth inhibitory rate were 53.3%、47.5% and 40.5%, repectively at the dose of 200, 100 and 50 mg/kg/d. The effects of EPS on immune system in vivo indicated that EPS could increase remarkably spleen and thymus index in S180-bearing mice, and could also stimulate significantly spleen lymphocyte. The pro- liferation indexes of lymphocyte were 2.41 and 2.15 compared with model groups and positive control (CTX) groups, respectively.
     (3) The immunomodulating assay in vitro showed EPS could improve production of NO of mouse macrophage, boost up neutral red uptake, stimulate mouse macrophage and spleen lymphocyte proliferation at the dose range of 25-200μg/mL in a dosage-dependent way. The immunomodulating ability between different molecular weight EPS had significant differences,and 6.55 kda-fragment had strongest activity. Sulfate content of EPS derivatives can also affect the immunomodulation activities significantly. With an increase of sulfate content, the immuno-accelerating effects enhanced, so the derivative with sulfate content of 48% had the strongest activity. However, the best effect on macrophage proliferation was observed at fragment with sulfate content of 32%.
引文
[1] 高亚辉.海洋微藻分类生态及生物活性物质研究[J].厦门大学学报,2001,40(2):566-573.
    [2] 李国平.利用微藻生产有用物质的研究现状与前景[J].莆田学院学报,2002,9(3):17-21.
    [3] 王桂芹,黄权,张东鸣等.可利用微藻及其应用研究现状[J].北华大学学报(自然科学版),2001,2(6):529-533.
    [4] Olguin E T, Simultaneous high-biomass protein production and nutrient removal using Spirulina maxim in seawater supplemented with anaerobic influents [J]. World J. Microbio.Biotech, 1994, 10:576-578.
    [5] 王长海.海洋生化工程概论[M].北京:化学工业出版社,2004.
    [6] 李师翁,李虎乾.植物单细胞蛋白资源—小球藻开发利用研究的现状[J].生物技术,1997,7(3):45-48.
    [7] Arad S M, Natrual pigments from microalgae for use in foods and xosnetics [J]. Trends Food Science and Technology, 1992, 3 (4):92-97.
    [8] 王安利,胡俊荣.海藻多糖生物活性研究进展[J].海洋科学,2002,26(9):36-39.
    [9] 孙利芹,郭尽力,王长海.海洋微藻脂肪酸的研究[G]//王长海.海洋生物技术研究进展北京:化学工业出版社,2006:139-147
    [10] Liang Y, Mai K S. Current status and.Prospect of studies on microalgal EPA and DHA [J]. Journal of Fisheres of China, 2000, 24(3):289-296.
    [11] 张英俊,朱笃,黄国林.利用微藻培养生产多不饱和脂肪酸研究进展[J].食品科学,2006,27(11):609-613.
    [12] 戴俊彪,吴庆余.室外培养海洋单细胞微藻的生长及生化组成[J].海洋科科,2000,6:29-32.
    [13] 蒋敏霞,郑义周.14种微藻总脂含量和脂肪酸组成研究[J].水生生物学报,2003,27(3):243-247.
    [14] 李荷芳,周汉秋.海洋微藻脂肪酸组成的比较研究[J].海洋与湖沼,1999,30(1):34-40.
    [15] 李文权等.温度对四种海洋微藻脂肪酸组成的影响[J].台湾海峡,2003,23(11):159-163.
    [16] 温少红,王长海.光照和培养时间对紫球藻细胞脂肪酸含量的影响[J].中国海洋药物,2000,19(1):47-50.
    [17] Wen Z Y, Chen F. Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis [J].Enzyme and Microbial Technology,2001,29(64):341-347.
    [18] Wen Z Y, Jiang Y, Chen F. High cell density culture of the diatom Nitzschia laevis for eicosapentaenoic acid production: fed-batch development [J].Process Biochem, 2002, 37(12):1447-1453.
    [19] Swaaf M de, Pronk J, Siitsma L. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii [J]. Appl Microbiol Biotechnol, 2003, 61 (1):40-43.
    [20] Xie J L, Zhang Y X, Li Y G, et al. Mixotrophic cultivation of Platymonas subcordiformis[J]. J Appl Phycol, 2001, 13 (4):343-347.
    [21] 孙利芹,王长海.环境因子对紫球藻脂肪酸组成含量的影响[J].中国油脂,2004,29(9):55-58.
    [22] 孙利芹,杨林涛.环境因子对球等鞭金藻脂肪酸组成及含量的影响[J].食品研究与开发,2006,27(5):11-13.
    [23] 孙利芹,郭尽力,王长海.影响纤细角毛藻生长的因素及其脂肪酸组成研究[J].食品与发酵工业,2004,30(12):31-34.
    [24] 蒋冰飞,孙颖颖,王长海.营养盐对球等鞭金藻生长和脂肪酸含量基组成的影响[J].海洋通报,2007,26(5):56-61.
    [25] 温少红,李叙凤,王长海.微藻高度不饱和脂肪酸的研究[J].海洋通报,2000,1(8):86-91.
    [26] 梅洪,张成武,殷大聪等.利用微藻生产可再生能源研究概况[J].武汉植物学研究,2008,26(6):650-660.
    [27] 卢丽娜,孙利芹,王长海.微藻生物质能研究进展[J].烟台大学学报(自然科学版),2008,(21):12-16.
    [28] 宋东辉,侯李君,施定基.生物柴油原料资源高油脂微藻的开发利用[J].生物工程学报,2008,24(3):341-348.
    [29] 韩笑天,郑立,孙珊等.海洋微藻生产生物柴油的应用前景[J].海洋科学,2008,32(8):75-81.
    [30] 李国平.利用微藻生产有用物质的研究现状与前景[J].莆田学院学报,2002,9(3):17-21.
    [31] 王长海.微藻的光生物反应器培养研究[D]:(博士论文).北京:中国科学院化工冶金研究所生化工程国家重点实验室,1998.
    [32] 王长海,温少红,欧阳藩.紫球藻的生物活性物质[J].海洋通报,1999,18(3):25-29.
    [33] 孙利芹,王长海,滕立.培养条件对紫球藻B-藻红蛋白含量的影响[J].浙江大学学报(农业与生命科学版),2007,33(1):40-44.
    [34] 罗袆,李东.香菇多糖的研究进展[J].食品与发酵工业,2000,26(4):63-67.
    [35] 陈书明,成玉梅,王勤等.灵芝含氮多糖对小鼠溶血素含量的影响[J].中国食用菌,1996,15(4):27-30.
    [36] 罗建平,贾敬芬.植物寡聚糖的结构和生理功能[J].植物学通报,1996,18(4):28-33.
    [37] 徐明芳,高孔荣,刘婉乔.海藻多糖及其生物活性[J].水产科学,1996,15(6):8-10.
    [38] Jimenez Z, Escrig B S, Muniz F J. Dietary fibre fromedible seaweeds: chemical structure,physicochemical properties and effects on cholesterol metabolism [J]. Nutration Research,2000, 20 (4):585 - 598.
    [39] Maria I B, Alexey A G, Nadezhda E U, et al. A highly regularfraction of a fucoidan fromthe brown seaweed Fucusdistichus [J]. Carbohydrate Research, 2003, 339:511 -517.
    [40] 张欣华,杨海波,于媛,李英敏.不同培养条件对海洋微藻多糖含量的影响[J].生物学杂志,2000,17(6):17-19.
    [41] 谭绩业,赵连华.营养盐对小球藻生长及胞内多糖含量的影响[J].化学与生物工程,2004,1:34-36.
    [42] 王长海,孙颖颖.营养盐对球等鞭金藻生长及其多糖等生化成份含量的影响[J].食品与发酵工业,2005,31(11):13-17.
    [43] 刘艳,杨海波,于媛等.两种微藻多糖的性质及结构特征的研究[J].水产科学,2008,27(3):125-128.
    [44] 吴曼,李文权,张赛金等.海洋微藻多糖提取纯化条件的研究[J].海洋技术,2004,23(1):9-12.
    [45] 左绍远,田兴亚.螺旋藻多糖生物学活性研究进展[J].时珍国医国药,2001,12(6):553-554.
    [46] Wang C H, Wang Y Y, Sun Y Y, et al. Effect of Antibiotic Treatment on Toxin Production by Alexandrium Tamarense [J]. Biomedical and Environmental Sciences, 2003,16:340-347.
    [47] Padmakumar K, Ayyakkannu K. Seasonal variation of antibacterial and antifungal activities of the extracts of marine algae from Southern Coasts of India [J]. Bot. Mar, 1997, 40:507-510.
    [48] 王长海,钟响,鞠宝等.螺旋藻的光生物反应器高密度培养[J].食品与发酵工业,1999,25(5):7-10.
    [49] 许波,王长海.微藻的平板式光生物反应器高密度培养[J].食品与发酵工业,2003,29(1):36-40.
    [50] Wang C H, Sun Y Y, Xing R L. Effect of liquid circulation velocity and cell density on the growth of Parietochloris incise in flat plate photobioreactors [J]. Biotech. & Biororcess Engineering, 2005, 10:103-108.
    [51] 孙利芹,史磊,王长海.平板式光生物反应器在饵料微藻培养中的应用[J].烟台大学学报(自然科学与工程版),2007,20(2):112-115.
    [52] 康瑞娟,欧阳藩.用于微藻培养的气升式光生物反应器[J].化学反应工程与工艺,2002,15(3):153-158.
    [53] 陈必链.光生物反应器中螺旋藻培养条件的优化[J].植物资源与环境学,2005,4(2):19-22.
    [54] 缪国荣,宫庆礼.单胞藻薄膜袋封闭式培养技术的研究[J].青岛海洋大学学报,1989,19(3):53-58.
    [55] Li Z Y. Effect of electromagnetic field on the batch cultivation and nutritional composition of Spirulina plotensis in an air-lift photobioreactor [J]. Bioresource Technology, 2006, 105
    [56] 李师翁,李虎乾.玻璃管道光合生物反应器中小球藻大规模培养的研究[J].生物工程学报,1997,13(1):93-97.
    [57] 朱艺峰,林霞,徐同成等.光、氮和半连续培养更新率对微绿球藻生长和采收量的影响[J].中国水产科学,2004,11(2):159-165.
    [58] 徐志标,裴鲁青,骆其君等.绿色巴夫藻的光生物反应器半连续培养[J].海洋水产研究,2005,26(4):64-69.
    [59] 王克明.流加培养对杜氏盐藻生物量的影响[J].浙江科技学院学报,2005,17(3):167-170.
    [60] 任莉红,孙利芹,王长海.新月菱形藻的光生物反应器流加培养[J].大连水产学院学报,2008,23(3):25-28.
    [61] 孙利芹,任莉红,王长海.新月菱形藻的光生物反应器半连续培养[J].水产学报,2009.
    [62] Sun Y Y, Wang C H, Chen J. Growth inhibition of the eight species of microalgae by growth-inhibitor from the culture of Isochrysis galbana and its isolation and identification [J]. J. Applied Phyco, 2008, 34:216-221.
    [63] 孙颖颖,王长海.球等鞭金藻生长抑制物对藻细胞的抑制效应及抗氧化剂对抑制效应的抵制作用[J].生物化学与生物物理进展,2007,34(11):340-44.
    [64] 谢苗,钟剑霞,甘纯玑.海藻多糖的药用功能与展望[J].中国药学杂志,2001,36(8):513-516.
    [65] 黄磊,詹勇,许梓荣.海藻多糖的结构与生物学功能研究进展[J].浙江农业学报,2005,17(1):49-53.
    [66] Zhou G F., Sun Y P., Xin H. In vivo antitumor and immunomodulation activities of different nolecular weight lambda-carrageenans from Chondrus ocellatus [J]. Pharmacological Reasearch, 2004, 50:47-53.
    [67] Guzman S, Gato A, Lamela M, et al. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum [J]. Phytother Res, 2003, 17:665-67.
    [68] 左绍远,朱正宇,马涧泉.螺旋藻多糖(PSP)对免疫功能的影响[J].药物与生物技术,1996,3(3):158.
    [69] 吴洁,张成武,刘义峰.极大螺旋藻多糖EPⅡ的分离纯化及免疫学研究[J].药物生物技术,1999,6(2):99-102.
    [70] 曲显骏,崔淑香,解砚英等.螺旋藻多糖抗癌作用的实验研究[J].中国海洋药物杂志,2000,4:10-13.
    [71] 项华,赵健忠,柏林.海藻多糖的抗突变性研究[J].癌变·畸变·突变,2001,13(1):42-44.
    [72] 季宇彬,高世勇,孔琦.海藻多糖对肿瘤细胞膜流动性的影响[J].中草药,2002,33(5):435-437.
    [73] 刘力生,郭宝江,阮继红等.螺旋藻多糖对移植性癌细胞的抑制作用及其机理的研究[J].海洋科学,1991,(5):33-35.
    [74] Zhu W, Ooi V E, Chan P K, et al. Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patensand determination of its anti-herpes activity [J].Biochem Cell Biol, 2003, 81:25-33.
    [75] Arad S, Huliheil M, Tal J. Antiviral agents [J]. Israel. PCT Int Appl, 1997, (89) : 201 -209.
    [76] Huleihel M, Ishanu V, Tal J, et al. Activity of Porphyridium sp polysaccharide against herpes simplex viruses in vitro and vivo [J]. Biochem Biophys Methods, 2002, 50:189-192.
    [77] 陈家童,张斌,白玉华等.红藻多糖抗AIDS病毒作用的体外实验研究[J].南开大学学报(自然科学版),1998,31(4):21-24.
    [78] 李八方,徐杰.3种海藻多糖调血脂作用比较研究[J].中国海洋药物杂志,2003,3:62-65.
    [79] 王艳梅,李智恩,牛锡珍等.孔石药多糖降血脂活性的初步研究[J].中国海洋药物,2003,2:33-36.
    [80] 左绍远,万顺康等.钝顶螺旋藻多糖降血糖调血脂实验研究[J].中国生化药物杂志,2000,21(6):289-291.
    [81] Trento F, Cattnaeo F, Peseador R, et al. Antithrombin activiy to Algal Polysaceharide [J].Thrombosis Research, 2001, 102:457-465.
    [82] Hyakaawa Y, Hyaashi T, Lee J B, et al. Inhibition of thrombin by sulatfed Polysachcarides Isolated from green algae [J]. Biochemical BioPhysic, 2000, 1543: 86-94.
    [83] 刘志峰,宫晓黎,魏淑贞.五种海藻多糖体外抗血小板聚集作用的观察[J].中国海洋药物杂志,2001,2:36-38.
    [84] Cuzzocrea S. Riley D, Caputi A P, et al. Antioxidant therapy: A new pharmacologicalapproach in shock, inflammation, and ischemia/reperfusion injury [J]. Pharmacol.Reviews, 2001,53:135-159.
    [85] Tasipari J, Yake K, Sekikana J, et al. Isolation and structure of a mycosporine from the red algae Chondrus yendoi [J]. Tetrahed. Lett, 1978, 23:1401-1402.
    [86] 张全斌,于鹏展,周革非等.海带褐藻多糖硫酸酯的抗氧化活性的研究[J].中草药,2003,34(9):11-13.
    [87] 张全斌,赵婷婷,聂慧敏等.紫菜的营养价值研究概况[J].海洋科学,2005,29(2):69-72.
    [88] 张全斌,李大新,于鹏展等.坛紫菜多糖对脾细胞活性的影响[J].中国海洋药物杂志,2003,(6):14-17
    [89] Zhang Q B,Li Z N, Zhou G F.Immunosuppressive Activities of Fucoidan from laminaria japonica [J]. Chinese J of Oceanology and Limnology, 2003, 21 (4):324-328.
    [90] 张成武,曾昭琪,张媛贞等.钝顶螺旋藻多糖和藻蓝蛋白对小鼠急性放射病的防护作用[J].营养学报,1996,3:327-331.
    [91] 李德远,王海滨,张声华等.海带岩藻糖胶及褐藻胶抗辐射效应研究[J].武汉食品工业学院学报,1999,(2):18-22.
    [92] 顾宁琰,刘宇峰.紫球藻保外多糖抗辐射的生物学活性研究[J]:海洋科学,2002,26(12):53-56.
    [93] 张惟杰.复合多糖生化研究技术[M].杭州:浙江大学出版社,1997.
    [94] 郭振楚.糖类化学[M].北京:化学工业出版社,2005.
    [95] Egge H, Pete-rKatalinie J, et al. Fast atom bombardment mass spectrometry for structureal elucidation of glyeoeougates [J]. MasssPeetrom Rev, 1998, 6:331-333.
    [96] Sheng S Q, Chermiak R. Structure of the capsular polysaccharide of Clostridium perfingens Hobbs 10 determined by NMR spectroscopy [J]. Carbohydrate Research, 1998, 305(1) :65-72.
    [97] 蔡孟深,李中军.糖化学[M].北京:化学工业出版社,2006.
    [98] Yamaguchi F, Ota Y., Hatanaka C. Polysaccharides from soybean okara and enzymatic analysis of their structure [J]. Carbohydrate Polymers, 1996, 30 (4):265-273.
    [99] Watanabe H, Nishimoto T, Hajime A, et al. Enzymatic synthesis of a novel cyclic pentasaccharide consisting of -D-glucopyranose with 6-α-glucosyltransferase and 3-α-isomaltosyl transferase [J]. Carbohydrate Research, 2005, 340 (9): 1577-582.
    [100] Geresh S, Adin I., Yarmolinsky E, et al. Characterization of the extracellular polysaccharide of Porphyridium sp.: molecular weight determination and rheological properties [J]. Carbohydarate Polymers, 2002, 50:183-189.
    [101] Harding S E. Challenges for the modern analytical ultracentrifuge analysis of polysaccharides [J]. Carbohydrate Research, 2005, 340 (5):811-826.
    [102] Zhou G F, Yao W H, Wang C H. Kinetica of microwave degradation of λ-carrageenan from Chondrus ocellatus [J]. Carbohydarate Polymers, 2006, 64:73-77.
    [103] 李坚斌,李琳,李冰等.超声降解多糖研究进展[J].食品工业科技,2006,9(27):181-183.
    [104] Cunko R, Tomljenovic A. Changes of physical properties of cellulose fibers by the impact of ultrasound [J]. Tekstil, 2003, 52 (2): 47-54.
    [105] Tang A. M, Zhang H W, Chen G, et al. Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose [J]. Ultrasonics sonochemistry, 2005, 12(6): 467-472.
    [106] 马夏军,岑颖洲,邱玉明等.超声波辅助过氧化氢氧化降解制备相低分子质量异枝麒麟菜硫酸多糖[J].中国海洋药物杂志,2005,24(4):10-13.
    [107] 来水利,潘志友,李晓峰.微波辐射下壳聚糖降解性能的研究[J].陕西科技大学学报,2005,23(1):38-41.
    [108] 胡思前.微波条件下制备水溶性壳聚糖的研究[J].高等函授学报(自然科学版),2004,17(2):10-13.
    [109] 丁盈红,李若琦,伍锟贤等.微波辐射快速制备水溶性壳聚糖[J].中国生化药物杂志,2002,23(3):132-135.
    [110] 严淑兰,陆大年.壳聚糖降解初探[J].化学工程,2000,80(5):65-67.
    [111] 楼陈钰,刘羿君,封云芳等.过氧化氢制备壳低聚糖及分子量和其分布的研究[J].浙江理工大学学报,2006,23(1):5-7.
    [112] 王琪琳,曲爱琴,王海仁.海带硫酸多糖的降解、分离纯化及理化性质分析[J].药物生物技术,2004,11(5):316-320.
    [113] 师然新,徐祖洪.降解的角叉菜多糖的抗肿瘤活性[J].海洋与湖沼,2000,31(6):653-656.
    [114] 陈蕾,吴皓.多糖降解方法的研究进展[J].中华中医药学刊,2008,26(1):133-135.
    [115] 王征,刘万顺,韩宝芹等.低分子量壳聚糖及其衍生物的制备与溶菌酶对其降解的实验研究[J].海洋科学,31(10):36-39.
    [116] 王卫国,赵永亮.酶法降解植物纤维素技术研究[J].生物技术,2002,12(3):136-137.
    [117] 黄永春,谢清若,容元平.超声作用下淀粉酶降解壳聚糖的研究[J].食品科技,2006,10:74-77.
    [118] 苏畅,夏文水,姚惠源.木瓜蛋白酶降解壳聚糖[J].无锡轻工大学学报,2002,21(2):112-115.
    [119] Qi H M, Zhang Q B, Zhao T T, et al. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro [J]. International J. BiologicalMacromolecules, 2005,37:195-199.
    [120] 赵晓燕,王长云.海洋多糖分子修饰方法研究概况[J].海洋科学,2000,24:20-22.
    [121] Mill I J, Blunt J W. Desulfation of algal galactan [J]. Carbohydrate Res, 1998, 309:39-43.
    [122] 孟春,郭养浩,石贤爱等.海藻多糖生物活性及分子修饰[J].中国生物工程杂志,2004,24(3):35-39.
    [123] Uryu T, Ikushima N, Katsuraya K, et al. Sulfated alkyl oligoaacharides with potentinhibitory effects on HIV infection [J]. Biochem Pharmacol, 1992, 43:2385-2392.
    [124] 黄卉,王弘,刘欣.多糖的构效关系研究进展[J].广州食品工业科技,2004,20(3):159-162.
    [125] Demleitner S, Kraus J, Franz G. Synthesis and anti-tumor activity of derivatives of curdlan and lichenan branched at C6 [J]. Carbohydrate Reseach, 1992, 226 (2):239-246.
    [126] 冯慧琴.灰树花子实体多糖和菌丝体多糖的比较分析[J].华东师范大学学报(自然科学版),2001,18(3):91-96.
    [127] 聂凌鸿,宁正祥.活性多糖的构效关系[J].林产化学与工业,2003,23(4):89-92.
    [128] 史宝军,聂小华,许泓渝.灰树花多糖硫酸酯的制备及其抗肿瘤活性[J].中国医药工业杂志,2003,34(8):383-385.
    [129] 王长云,管华诗.多糖抗病毒作用研究进展Ⅰ-多糖抗病毒作用[J].生物工程进展,2000,20(1):17-20.
    [130] 赵吉福,么雅娟,陈英杰.磺酰化新茯苓多糖的制备及抗肿瘤作用[J].沈阳药科大学学报,1996,13(2):125-128.
    [131] 诸葛健,赵振锋,方慧英.功能性多糖的构效关系[J].无锡轻工大学学报,2002,21(2):209-212.
    [132] 张健,田庚元.羟乙基化牛膝多糖的合成及其活性研究[J].化学学报,2003,22(10):1692-1696.
    [133] Yang J H. Chemical modification, characterization and Structure -anticoagulant activity relationships of Chinese lacquer polysaccharides [J].International Journal of Biological Macromolecules, 2002, 31 (13):55-62.
    [134] 黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发,1999,11(5):90-98.
    [135] 来水利,潘志友,李晓峰.微波辐射下壳聚糖降解性能的研究[J].陕西科技大学学报,2005,23(1):38-40.
    [136] 王长云,管华诗.多糖抗病毒研究进展II:硫酸多糖抗病毒[J].中国生物工程杂志,2000,20:3-8.
    [137] Gao Y, Fukuda A , Katsuraya K, et al. Synthsis of regioselective substiguted curdlan sulfates with medium molecular weight and their specific anti-HIV1 activities [J].Macrom ,1997, 30(11):3224-3228.
    [138] 李战,庞婉婷,王全喜.三种紫球藻亲缘关系RAPD分析[J].植物研究,2008,28(1):64-72.
    [139] 王长海,李叙凤,鞠宝等.紫球藻及其应用研究[J].海洋通报,1998,17(3):79-83.
    [140] 华汝成.单细胞藻类的培养和利用[M].北京:北京农业出版社,1986.
    [141] Arad (Malis) S, Adda M, Cohen E. The potential of production of sulfatd polysaccharides from Porphyridium [J]. Plant and Soil, 1985, 89:117-127.
    [142] Lee Y K, Tan H M. Effect of temperature, light intensity and dilution rate on thecellular composition of red alga Porphyridium cruentum in light-limited chemostat cultures [J].Mircen J., 1988,4:231-237.
    [143] Jahn W, Steinbiss J, Zetsche K. Light intensity adaptation of the phycobiliprotein content of the red alga Porphyridium [J]. Planta, 1984, 161: 536-539.
    [144] 曹吉祥.用途广泛的紫球藻.中国海洋药物杂志,1994,3:55-56.
    [145] Jones R E, Speer H L, Kury W. Study on the growth of the red alga Porphyridiun Cruentum [J]. Physiol Plant, 1999, 16:636-643.
    [146] Merchuk J C, Ronen M, Gris S et al. Light-dark cycles in the growth of the red microalga [J]. Biotechnol. Bioeng, 1998, 59:705-713.
    [147] Fabregas J, Gracia D, Morales E, et al. Renewal rate of semixontinuous cultures of the microalga Porphyridiun cruentum modifies phycoerythrin, exopolysacchride and fatty acid fproductivity [J]. J. Fermentation and Bioeng, 1998, 86 (5):477-481.
    [148] 王长海,鞠宝,欧阳藩.紫球藻的培养条件[J].化工冶金,1999,20(2):167-171.
    [149] 王长海,鞠宝,欧阳藩.紫球藻培养条件优化[J].化工冶金,1999,20(3):272-277.
    [150] 孙利芹,林剑,王长海等.均匀设计在紫球藻培养基优化中的应用[J].海洋通报,2004,23(6):66-70.
    [151] 孙利芹.紫球藻培养条件优化及提高活性物质含量的技术研究[D]:(硕士学位论文).青岛:中国海洋大学药物研究所,2004.
    [152] 王长海,鞠宝,温少红等.紫球藻的载体培养研究[J].应用与环境生物学报,1999,5(5):496-500.
    [153] 肖华山,范子南,郭建生.三十烷醇对紫球藻生长及生理活性的影响[J].福建师范大学学报(自然科学版),1999,15(4):76-79.
    [154] 王明兹,庄惠如,陈必链.有机物质对紫球藻生长的影响[J].微生物学通报,2001,28(1):31-35.
    [155] Rebolloso Fuentes M M, Garcia Sanchez J L, Fernandez Sevilla J M, et al. Outdoor continuous culture of Porphyridiun cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture paramenter [J]. J.Biotechnoloby, 1999, 70:271-288.
    [156] Iqbal M, Zafar S I, Stepan-Sarkissian G et al. Indoor mass cultivation of red alga Porphyridium cruentum in different types of bioreactors: effect of scale-up and vessel shape [J]. J Ferment. Bioeng, 1993,75 (l):76-78.
    [157] Merchuk J C, Gluz M, Mukmenev I. Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp [J]. J Chemical Technol Biotechnol., 2000, 75 (12):1119-1126.
    [158] Singh S, Arad (Malis) S, Richmond A. Extracellyular polysccharide production in outdoor mass cultures of Porphyridium sp [J]. In flat plate glass reactors. J Appl. Phyco., 2000,12:269-275.
    [159] 李叙凤,王长海,鞠宝.微藻及其生长动力学研究[J].海洋通报,1999,18(6):71-76.
    [160] 王长海,欧阳藩.紫球藻的光生物反应器培养[J].化工冶金,2000,21(1):47-51.
    [161] 温少红,王长海,鞠宝等.紫球藻培养液光衰减规律的研究[J].海洋通报,2001,20(2):35-39.
    [162] 史磊.平板式光生物反应器中紫球藻培养条件的优化[D]:(硕士论文).烟台:烟台大学,2008.
    [163] Sun L Q, Zhang S J, Wang C H. The 3nd international conference on Bioinfomatics and Biomedical Engineering, 2009[C]. Beijing.
    [164] 陈必链,梁世中,王娟等.搅拌式光生物反应器培养紫球藻的条件优化[J].福建师范大学学报(自然科学版),2004,20(2):91-96.
    [165] Gimenez G A, Gonzalez M J I, Medina A R, et al. Downstream processing and purification of eicosapentaenoic (20:5n-3) and arachidonic acids (20:4n-6 ) from the microalga P-orphyridium cruentum [J]. Bioseparation, 1998, 7 (2):89-99.
    [166] Guil-Guerrero J L, Belarbi E H, Rebolloso-Fuentes M M Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum [J]. Bioseparation, 2000, 9 (5):299-306.
    [167] Octero A, Garcia D, Fabregas J. Factors controlling eicosapertaenoic acid production in semicontinuous cultures of marine microalgae [J]. J. Appl.Phycol., 1997, 9:465-469.
    [168] Cohen Z, Vonshak A, Richmond A. Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate [J]. J Appl.Phycol. 1988,24:328-332.
    [169] Ohta S, Chang T, Aozasa O, et al. Alterations in fatty acid composition of marine red alga Porphyridium cruentum by environmental factors [J]. Bot. Mar., 1993, 36: 103-107.
    [170] 温少红,王长海,鞠宝.紫球藻细胞中AA,EPA及色素提取的研究[J].中国海洋药物,1999,2:28-31.
    [171] 温少红,王长海.光照和培养时间对紫球藻细胞脂肪酸含量的影响[J].中国海洋药物,2000,1:47-50.
    [172] 孙利芹,郭尽力,江涛等.环境因子对紫球藻细胞脂肪酸组成的影响[J].中国油脂,2004,29(9):55-58.
    [173] Glazer A N. Phycobiliproteins a family of valuable, widely used fluorophores [J].J Applied Phycol.,1994,6:105-112.
    [174] 温少红,徐春野,鞠宝.紫球藻藻红蛋白的分离纯化及光谱特征研究[J].海洋通报,2000,19(3):90-93.
    [175] 王广策,曾呈奎.紫球藻两种藻红蛋白特性的比较研究-γ亚基在稳定藻红蛋白结构方面的作用[J].海洋与湖沼,2001,32(6):653-656.
    [176] Ruperto B, Eva M T, Jose M, et al. Chromatographic purification and characterization of B-phycoerythrin from Porphyridium cruentum: Semipreparative high-performance liquid chromatographic separation and characterization of its subunits [J]. Journal of Chromatography A,2001,917: 135-145.
    [177] Jorge B, Marco R P. Bioprocess intensification: a potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum [J]. Journal of Chromatography B. 2004, 807:33-38.
    [178] Ruperto B, Gabriel Acien F, Jose I, et al. Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography [J]. Journal of Chromatography B. 2003, 790: 317-325.
    [179] 朱桂芳,郭祀远,魏东.紫球藻多糖的研究进展[J].中国科技信息,2005,5:15-19.
    [180] Tao Y, Stanley M. Barnett. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum [J]. Biochemical Engineering Journal,2004, 19:251-258.
    [181] Fabregas J, Garcia D, Morales E. Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycorythrin, exopolysaccharide and fatty acid [J]. Fermentation and Bioengineering, 1998, 86:477-481.
    [182] Iqbal M., Zarfar S.I. Effects of photon flux density, CO2, aeration rate, and inoculum density on growth and extracellular polysaccharide production by Porphyridium cruentum [J], J. Folia Microbiol., 1993, 38 (6): 509-514.
    [183] 王明兹,陈必链,庄惠如等.倍频Nd:YAG激光对紫球藻生长与胞外多糖产量的影响[J].激光生物学报,2002,11(1),6-9.
    [184] Sun L Q, Wang C H, Shi L.The 2nd international conference on Bioinfomatics and Biomedical Engineering, 2008[C].Shanghai.
    [185] Sun L Q, Wang C H, Shi L Effects of nutrient profiles and light regime on the production of exopolysaccharide by Porphyridium cruentum [J]. J. Enviro. Science Engineering, 2008, 2(10): 71-79.
    [186] Huheihel M, Ishanu V, Tal J, et al. Activity of Porphyridium sp. Polysaccharide against herpes simples viruses in vitro and in vivo [J]. J. Biochem. Biophysical methods, 2002, 50:189-200.
    [187] 刘石生,魏东,王一飞.紫球藻胞外多糖抗呼吸道合胞病毒(RSV)活性研究[J].天然产物研究与开发,2007,19:401-404.
    [188] 刘石,魏东,朱桂芳等.紫球藻胞外多糖抗柯萨奇B3病毒活性[J].华南理工大学学报(自然科学版),2005,33(2):82-90.
    [189] 刘石生,魏东,王一飞.紫球藻胞外多糖抗柯萨奇B3病毒活性研究Ⅰ[J].中国海洋药物杂志,2000,24(5):18-21.
    [190] 黄键,陈必链,游文朗.紫球藻胞外多糖的分离及体外抗乙肝病毒活性的初步研究[J].天然产物研究与开发,117(11):16-19.
    [191] Ginzberg A, Cohen M, Sod-Moriah UA et al. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk [J]. J Apll Phycol., 2000, 12 (35):325-330.
    [192] Dvir I, Chayoth R, Sod-Moriah U et al. Soluble polysaccharide and biomass red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats [J]. Br J Nutr. 2000, 84 (4):469-476.
    [193] 陈必链,黄键,梁世中等.光生物反应器培养紫球藻及藻粉降血脂的研究[J].应用与环境生物学报,2004,10(4):432-436.
    [194] 黄键,刘丽平,余颖等.紫球藻胞外多糖对四氧嘧啶糖尿病小鼠血糖的调节作用[J].福建师范大学学报(自然科学版),2006,22(3):77-80.
    [195] 叶锦林,王明兹.紫球藻及其多糖抗菌性能初探[J].亚热带植物科学,2004,33(3),31-33.
    [196] 陈晓清,郑怡,林雄平.紫球藻多糖的分离纯化及抗菌活性[J].漳州师范学院学报(自然科学版),2008,2:95-98.
    [197] Irit D, Renven C, UrielSod M, et al. Solube polysaccharide and biomass of red microalga P. spalterintestinal morphology and reduce serumcholesterol in rats [J]. British Journal of Mutrition, 2000, 184 (4):469-475.
    [198] 顾宁琰,刘宇峰.紫球藻胞外多糖抗辐射的生物学活性研究[J].海洋科学,2002,20(12),53-56.
    [199] Tehila T S, Margalit B, Dorit V M. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp [J]. Journal of Applied Phycology, 2005, 17:215-222.
    [200] Muller F A, Gue'des R L, Pruvost J. Benefits and limitations of modeling for optimization of Porphyridium cruentum cultures in an annular photobioreactor [J]. J Biotechnol, 2003, 103:153-163.
    [201] Joung H Y, Sung J K, Se H A, Lee H K. Optimal conditions for the production of sulfated polysaccharide by marine microalga Gyrodinium impudicum strain KG03 [J]. Biomolecular Engineering, 2003, 20:273-280.
    [202] 肖华山,谢志强,郭建生等.5种不同形式氮源对紫球藻生长影响的研究[J].福建师范大学学报,2001,17(42):78-80.
    [203] Wang, J, Chen, B L, Rao, X Z. Optimization of culturing conditions of Porphyridium cruentum using uniform design [J]. World J Microbiol Biotechnol, 2007, 6:117-123.
    [204] Zhu, Y F, Lin, X, Xu, T C, et al. Effects of light intensity, concentration of nitrogen and renewal rate in semicontinuous cultures on growth and recovery yield of Nanochloropsis oculate (Droop) Hibberd [J]. J of Fishery Sciences of China, 2004, 11: 159-164.
    [205] Otero, A., Fabregas, J. Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rate [J]. Aquaculture, 1997a, 159:111-123.
    [206] 国家环保局.水和废水分析方法检测[M].北京:中国环境科学出版社,1989.
    [207] 曾昭钧.均匀设计及其应用[M].北京:中国医药科技出版社,2005.
    [208] Otero, A, Dominguez, A, Lamela, T, et al Steady-states of semicontinuous cultures of a marine datom: Effect of saturating nutrient concentrations [J]. Journal of Experimental Marine Biology and Ecoogy, 1998, 227: 233-234.
    [209] Maria, A, Guzman, M, Claudia, C, et al Effects of fertilizer-based culture media on the production of exocellular polysaccharides and cellular superoxide dismutase by Phaeodactylum tricornutum (Bohlin) [J]. J Appl Phycol, 2007, 19:33-41.
    [210] Zhang, D L, He, P M, Zhou, H Q. Experiment on different culture methods of Chlorella spp [J]. Jounal of shanghai fisheries university, 1999, 8:1-5.
    [211] Zhu, Y F, Wu, S J, Guo, X Q. Effects of nitrogen, phosphorus concentration and renewal rate on recovery yields of Phaeodactylum tricornutum in semicontinuous cultures [J]. Marine Science, 2000, 24: 35-38.
    [212] 中华人民共和国药典委员会.中华人民共和国药典[M].北京:人民卫生出版社,2005.
    [213] 林颖,黄琳娟,田庚元.一种改良的糖醛酸含量测定方法[J].中草药,1999,30(11):817-819.
    [214] 何忠效.生物化学实验及技术[M].北京:化学工业出版社,2004.
    [215] Bohn, J A, BeMiller, J N. (1-->3)-beta-Glucans as biological response modifiers: a review of structure-functional activity relationships [J]. Carbohydrate Polymers, 1995, 28:3-14.
    [216] 刘纯慧.海胆黄活性多糖SEP的研究[D](博士学位论文).北京:中国药科大学,2006.
    [217] Gloaguen V, Ruiz G, Morvant H, et al. The extracellular polysaccharide of Porphyridium sp: an NMR study of lithium-resistant oligosaccharidic fragments [J].Carbohydrate Research, 2004, 339:97-103.
    [218] 朱桂芳,魏东,刘石生等.紫球藻胞外多糖的分离纯化与性质分析[J].天然产物研究与开发,2005,17(5):542-548.
    [219] 郭振楚.糖类化学[M].北京:化学工业出版社,2005.
    [210] 张倩,乐以伦,万昌秀.低分子量肝素的制备及纯化[J].四川联合大学学报(工程科学版),1999,3(2):40-46.
    [221] Yu G L, Laurie L, Nurs G. Haparinase acts on a systhetic heparin-pentasaccharide corresponding to the antithrombin Ⅲ binding site [J]. Throm Res, 2000, 100 (6): 549-556.
    [222] Shuvaev V V, Siest G. Heparin specifically inhibit binding of apolipoprotein E to amyloid beta-pep tide [J]. Neurosci Lett, 2000, 280 (2):131-134.
    [223] 钟广泉,郑必胜.超声场作用下裂褶多糖溶液的粘度变化规律[J].现代食品科技,2007,23(5):26-27.
    [224] 王长云,顾谦群,周鹏等.红藻多糖卡拉胶分子修饰研究Ⅰ.酸降解[J].中国海洋药物,2003,22(2):24.
    [225] 史宝军,聂小华,许泓渝.灰树花多糖硫酸酯的制备及其抗肿瘤活性[J].中国医药工业杂志,2003,34(8):383-385.
    [226] 周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2001,25(2):197-204.
    [227] 李明.微波高压消化法在试样分解中的应用[J].理化检验(化学分册),1988,24(5):51-55.
    [228] 孙玉岭,刘景振.微波溶样在元素检测方面的应用研究[J].中国公共卫生,2002,18(2):231-235.
    [229] Kardos N , Luche J L. Sonochemistry of carbohydrate compounds [J].Carbohydrate Research , 2001, 332 :115.
    [230] Umemuraa K, Yanasea K, Suzukia M, et al. Inhibition of DNA topoisomerases I and Ⅱ,and growth inhibitionof human cancer cell lines by a marine microalgal polysaccharide [J]. Biochemical Pharmacology, 2003, 66:481-487.
    [231] Tsipai E, Whalcy S, Kalbflcich J, et al. Glucans cxhibit weak antioxidant activity, but stimulatc macrophage free radical activity [J]. Free Rad Biol Med. 2001, 30 (4):393-402.
    [232] Smirnoff N., Cumbes Q. Hydroxyl radical scavenging activity of compatible solutes [J].Phytochemistry, 1989, 28: 71-73.
    [233] 夏晓凯,张庭廷,陈传平.黄精多糖的体外抗氧化作用研究[J].湖南中医杂志,2006,22(4):90-95.
    [234] 葛斌,陈立德,张振明.4-磺酸酯-2,2,6,6-四甲基哌啶氮氧自由基对大鼠组织和红细胞的抗脂质过氧化作用[J].中国药理学与毒理学杂志,2001,15(1):47-50.
    [235] Haslin C, Lahaye M, Pellegrini M. In vitro anti-HIV activity of sulfated cell-wall polysaccharides from gametic, carposporic andtetrasporic stages of the Miditerranean red alga Asparagopsisarmata [J]. Planta Med, 2001, 67: 301-305.
    [236] 王健,龚兴国.多糖的抗肿瘤及免疫调节研究进展[J].中国生化药物杂志,2001,22:52-54.
    [237] 王青青,余海.SRB显色法用于抗癌药物敏感性试验的研究[J].科技通报,2000,16(2):104-107.
    [238] 徐叔云,卞如濂,陈修.药理实验方法学(第三版)[M].北京:人民卫生出版社,2002.
    [239] 周革非.角叉菜的化学组成及其抗肿瘤活性研究:(博士学位论文).青岛:中科院海洋所,2004.
    [240] 刘秋英,孟庆勇,刘志辉.海藻多糖抗肿瘤作用的研究进展[J].中国海洋药物,2003,4:45-48.
    [241] 刘秋英,孟庆勇,刘志辉.两种海藻多糖的提取分析及其体外抗肿瘤作用[J].广东药学院学报,2003,19(4):336-337.
    [242] 季宇彬,高世勇.羊栖菜多糖体外抗肿瘤作用及其作用机制的研究[J].中草药,2003,43(12):1111-1114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700