用户名: 密码: 验证码:
CMP中抛光液膜特性的数值仿真和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学机械抛光(Chemical mechanical polishing),简称CMP,是目前在超大规模集成电路制造过程中全面平坦化应用最广泛的技术。但是CMP技术是从实践中发展起来的,其发明、发展及发展趋势、应用都是在工业界完成而不是在学术界,系统性的研究尤其是理论研究还比较缺乏。在CMP机理研究的过程中,抛光液膜厚特性的研究在CMP机理研究中占有非常重要的地位。以往所建立的抛光液膜分析模型大都以晶片与抛光垫不接触、晶片无变形、不考虑粗糙度的情况下的模型。本文根据CMP中晶片与抛光垫的三种不同接触方式,发展了两种抛光液膜的三维流体动压润滑模型和三维的部分膜流体润滑分析模型。在此基础上以抛光液膜为研究对象进行了较全面的分析和应用研究。
     以Reynolds方程和Reynolds出口边界条件为基础,考虑了晶片变形的影响因素,建立了抛光液膜的三维流体动压润滑分析模型。在MATLAB平台上用有限元法求解域离散,通过迭代计算得到了抛光液最小液膜厚度、液膜负荷力、晶片倾斜角、晶片变形量等性能参数。对比分析了抛光载荷、抛光转速对最小液膜厚度、晶片倾斜角的影响。
     抛光垫和晶片的表面粗糙度会对抛光液膜的润滑性能产生很大的影响。以三维流体动压润滑模型为基础将平均液膜厚度的几何方程联立,考虑了由粗糙度引起的压力流量因子和剪切流量因子,建立了部分膜流体润滑模型。此模型以平均Reynolds和Reynolds出口边界条件为基础,考虑晶片和抛光垫表面粗糙度的影响因素。通过数值计算得到了抛光液膜的平均液膜厚度、液膜负荷力、晶片倾斜角的性能参数。分析了抛光载荷、抛光转速、表面粗糙度、晶片变形量对平均液膜厚度、晶片倾斜角的影响。
     为了验证数值计算的正确性,采用了LIF技术用于CMP的可视化研究。在LIF实验装置上拍摄到抛光垫与晶片间抛光液的荧光强度图像,通过图像处理得到了不同的荧光强度值,把荧光强度值与厚度荧光强度校准曲线进行对比获得了在不同抛光转速和抛光载荷下的抛光液膜厚度。把二种模型的计算结果与实验进行了对比,结果表明三者基本一致,说明了计算模型的可行性,也为改善CMP加工工艺,提高加工效率和加工质量提供了依据。
Chemical Mechanical Polishing(CMP) is a global planarization technique for large scale integrated circuit.Recently,the CMP is becoming more and more important and being used widely for high precision and global planarization.But,the CMP is developed in experience,and its creation,development,trend of development and use are finished not in academy but in industries.So,The researches systematically,especially theory research are very lack.Now, the researches for parameters of CMP technology,CMP theory model are becoming a very important subject.
     In the study of CMP mechanism,the research of slurry film has plays an important role in study of CMP mechanism.In the past,the most of slurry film model was built without considering the contact of wafer and pad,the deformation of wafer,roughness.In this paper,a three-dimensional hydrodynamic lubrication model and a three-dimensional partial film hydrodynamic lubrication have been developed according to three types of the contact of wafer and pad.
     The three-dimensional hydrodynamic lubrication model is based on the Reynolds equation and Reynolds boundary condition,and the deformation of wafer that has effects on lubrication performances of slurry film is considered.The slurry minimum film thickness,load-resistant of slurry film and tilted angle of the wafer have been obtained in solving the lubrication model.At the same time,there is an analysis on influences of load and speed of polish to minimum film thickness,tilted angle of the wafer.
     In the CMP,the roughness can produce great influences on lubrication performances of slurry film for the contacting of pad and wafer.The partial film lubrication mode has been presented based on three-dimensional hydrodynamic lubrication model,and considered the press flow factor and shear flow factor caused by the roughness.This model is based on the average Reynolds equation and Reynolds boundary condition,and the factors that have effects on lubrication performances of slurry film is considered,such as deformation of the wafer, roughness of the wafer and the pad are considered.The average slurry film thickness, load-resistant,tilted angle of the wafer have been obtained by solving the lubrication mode in finite element and have been analyzed influences on load,speed,roughness,deformations of the wafer.
     In addition,in the paper,a laser induced fluorescence technology is presented and the LIF experimental device is built for visualizing research to CMP.Using the experimental device,the slurry fluorescence intensity photos can be obtained.These fluorescence intensity photos can give the slurry film thickness information by image processing.
     At last,in the paper,it is found that the conclusions are similar by comparing the experiment data with numerical data.So,the models are reliable.
引文
[1]Schuler J.CMP technology and markets[C].SEM ICON China 99 Technical Symposium.Beijing,China,1999:17-18
    [2]苏建修,康仁科,郭东明.超大规模集成电路制造中硅片化学机械抛光技术分析[J].半导体技术,2003,10(28):27-32.
    [3]宋晓岚,李宇琨,江楠.化学机械抛光技术研究进展[J].化工进展,2008,27(1)26-30
    [4]C.J.Evans,E.Paul,D.Dornfeld,et.al.Material Removal Mechanisms in Lapping and Polishing[J].Annals of the CRIP,2003,Vol.52(2)pp611-633.
    [5]Bhushan B.Chemical mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5nm,recent development[J].Diam and Relat Mater,1999,8:1985-2015.
    [6]王建荣,林必窕.半导体平坦化CMP技术(修订版)[M].台湾:全华科技出版社,2002
    [7]梅燕,韩业斌,聂祚仁.用于超精密硅晶片表而的化学机械抛光(CMP)技术研究[J].润滑与密封,2006(9):206-212
    [8]江瑞生.集成电路多层结构中的化学机械抛光技术[J].半导体技术,1998,23(1):6-9.
    [9]Bhusham M,Rouse R,Lukens JE.Chemical-mechanical polishing in semidirect contact mode[J].J Electrochem Soc 1995;142(110:)3845-3851
    [10]Davari B,et al.A new planarization technique using a combination of RIE and chemical mechanical polish(CMP)[J].Tech dig IEDM.1989,61-65.
    [11]Fury Michael A.The early days of CMP[J].Solid State Technology,1997,40(5):81-86.
    [12]Ali I.Chemical-mechanical polishing of interlayer dielectric:a review[J].Solid State Technology,1994,34:63-70.
    [13]Rentln P.Chemical-mechanical planarization:fundamental issues of interlevel dielectric applications[C].Meet Solid State Sci Technol Subsection Proc,1992.
    [14]Martinez M A.Chemical-mechanical polishing-Route to global planarization[J].Solid State Technology,1994,37(5):26-31.
    [15]雷红,雒建斌,张朝辉.化学机械抛光技术的研究发展[J].上海大学学报,2003,9(6):499-451
    [16]雷红,雒建斌,马俊杰.化学机械抛光(CMP)技术的发展、应用及存在问题[J].润滑与密封,2002,4:73-77
    [17]Steigennald J.M.,Murarka S.P.,Gurmann R.J.Chemical mechanical planarization of microelectronic materials[M].New York,USA:A Wiley- Interscience Publication,John Wiley & sons,Inc.,1996:324-329.
    [18]Kaufman F.B.,Thompson D.B.,Broabie R.E.et al.Chemical mechanical polishing for fabricating patterned W metal features as chip interconnects[J].J.Electorchem.Soc.,1991,138(11):3460-3464.
    [19]Suvaran S.,Bath H.,Leggett R.et al,Planarizing interlevel dielectrics by chemical mechanical polishing[J],Solid State Technology,1992,5:87-91.
    [20]翁寿松,CMP的最新动态[J].电子工业专用设备.2005,(120):7-9.
    [21]R.Jairath J.Farkas,C.Huang,M.Stell,S.Tzeng.Chemical-Mechanical Polishing Process Manufacturability[J].Solid State Technology,1994,7:71-75.
    [22]马俊杰,潘国顺,雒建斌等.计算机硬磁盘CMP中抛光工艺参数对去除率的影响[J].润滑与密封,2004(1):1-2
    [23]Basim G.B.,Adler J.J.,Mahajan U.et al.Effect of Particle Size of Chemical Mechanical Polishing Slurries for Enhanced Polishing with Minimal Defects[J].Journal of the Electrochemical Society,2000,147(9):3523-3528.
    [24]廉进卫,张大全,高立新.化学机械抛光液的研究进展[J].化学世界,2006(9):565-568
    [25]童志义.化学机械抛光技术现状与发展趋势[J].电子工业专用设备,2004(6):26-30
    [26]陈杨,陈建清.纳米磨料对硅晶片的超精密抛光研究[J].摩擦学学报,2004,24(4):332-334.
    [27]F.W.Preston.The theory and design of plate glass polishing machines,J.Soc.Glass Technology[J],11(1927)214-256.
    [28]Joseph M.Steigerald,Shyam P.Murarka and Ronald J.Gutmann.Chemical Mechanical Planarization of Microelectronic Materials[M].American:A Wiley-interscience Publication,1997.
    [29]张泰昌.表面缺陷的检测与评定[J],制造技术与机床.2000,4:24-27.
    [30]尤政.用于表面缺陷检测的激光超声技术[J].宇航计测技术.1998,12:14-18.
    [31]王先逵主编.精密加工技术使用手册[M],北京:机械工业出版社.1999.
    [32]Cook,L.M.,1990,Chemical Processes in Glass Polishing[J].Journal of Non-Crystal Solids,Vol.120,pp.152-171.
    [33]Sivaram,S.,Bath,H.,etc.,1992,Measurement and Modelling of Pattern Sensitivity during Chemical-Mechanical Polishing of Interlevel Dielectrics[A].SEMATECH,Austin,TX,Tech.REP.
    [34]Warnock,J.A Two-Dimensional Process Model for Chemimechanical Polishing Polishing Planarization[J].Journal of Electrochemical Soc,1991,Vol.138,No.8,pp.2398-2402.
    [35]S.R.Runnels,L.M.Eyman.Tribology Analysis of Chemical-Mechanical Polishing[J].J.Electrochem.Soc.1994,141(6):1698-1701.
    [36]Lei S,John T,Steven D.Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing[J].Transactions of the ASME,2000,122:539-543.
    [37]S.Sundararajan,D.G.Thakurta,D.W.Schwendeman,et al.Two-Dimensional Wafer-Scale Chemical Mechanical Planarization Models Based on Lubrication Theory and Mass Trsport[J].J.Electrochem.Soc,1999,146(2):761-766.
    [38]Kuide Qin,Brij Moudgil,Chang-Won Park.A CMP model incorporating both the chemical and mechanical effects[J].Thin Solid Film,2004,446,pp277-286.
    [39]A.T.Kim,J.Seok,J.A.Tichy,et al.A Multiscale Elastohydrodynamic Contact Model for CMP[J].J.Electrochem.Soc,2003,150(9):G570-576.
    [40]J.Tichy.J,A.Levert,L.Shan,et al.Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polising[J].J.Electrochem.Soc,1999,Vol.146(4):1523-1528.
    [41]Dipto G.Thakurta,Christopher L.Borst,Donald W.Schwendeman,et al.Pad Porosity,Compressibility and Slurry Delivery Effects in Chemical-Mechanical Planarization:Modeling and Experiments[J].Thin Solid Films,2000,Vol.336,pp.181-190.
    [42]Dipto G.Christopher L,Donald W,et al.Three-Dimensional Chemical-Mechanical Planarization slurry flow model based on lubrication theory[J].Journal of The Electrochemical Society.2001,148(4):G207-G214.
    [43]赵志恒.晶圆化学机械研磨过程之磨浆流动模拟与分析[D].台湾:国立中山大学机械工程研究所硕士论文,2002.
    [44]Tae-Wan Kim,Yong-Joo Cho.Average flow model with elastic deformation for CMP [J].Tribology International,2006(39),pp1388-1394.
    [45]张朝辉,雒建斌,温诗铸.化学机械抛光流动性能分析[J].润滑与密封,2004(4):31-33
    [46]张朝辉,雒建斌,温诗铸.CMP润滑方程的多重网格法求解[J].自然科学进展,2003,13(11):1224-1227
    [47]张朝辉,温诗铸,雒建斌.薄膜润滑的微极流体模拟[J].机械工程学报,2001,37(9):4-8.
    [48]张朝辉,雒建斌,温诗铸.考虑抛光垫特性的CMP流动性能[J].机械工程学报,2006,42(4):13-17
    [49]张朝辉,叶巍.抛光垫特性对抛光中流体运动的影响分析[J].润滑与密封,2007,32(11):59-64
    [50]张朝辉,雒建斌,温诗铸.化学机械抛光中纳米颗粒的作用分析[J].物理学报,2005,54(5):2123-2126
    [51]张朝辉,杜永平,常秋英.化学机械抛光中抛光垫作用分析[J].北京交通大学学报,2007,31(1):18-21
    [52]Hong Hocheng,Yun-Liang Huang,Lai-Juh Chen.Kinematic Analysis and Measurement of Temperature Rise on a Pad in Chemical Mechanical Planarization[J].J.Electrochem.Soc.1999,146(11):4236-4239.
    [53]D.White,J.Melvin,and D.Boning.Charaterization and Modeling of Dynamic Thermal Behavior in CMP[J].J.Electrochem.Soc.2003,150(4):G271-278.
    [54]Yuling Liu,Kailiang Zhang,Fang Wang;Investigation on the final polishing slurry and technique of silicon substrate in ULSI[J].Microelectronic Engineering Vol.66(2003) 438-444.
    [55]Woo.Jin Lee,Chang Hyun Ko,Effect of slurry pH on the defects induced during the plug isolation chemical mechanical polishing[J].Thin Solid Films Vol.489(2005)145-149.
    [56]S.B.Akonko,D.Y.Li.Effects of K_3Fe(CN)_6]slurry's pH value and applied potential on tungsten removal rate for chemical-mechanical planarization application[J].Wear,Vol 259(2005)1299-1307.
    [57]Lu.,J.,Coppeta,J.,Rogers,C.,Racz,L.Philipossian,A.The effect of Wafer Shape on Slurry Film Thickness and Friction Coefficients in Chemical Mechanical Planarization[A].Mater.Res.Soc.Symp.Proc,San Francisco,2000,613,E1.2.1
    [58]Coppeta,J.,Rogers,C.,Philipossian,A.Technique for Measuring Slurry_Flow Dynamics during Chemcial-Mechanical Polishing[A].Mater.Res.Soc.Symp.Proc.,Symposium L,1996.
    [59]Rogers,C.,Racz,L.,Coppeta,J.,etc.Analysis of Flow Between Wafer and Pad during CMP Process[J].J.Elec.Mater.,1998,Vol.27,pp.1082-11087.
    [60]White C C,Migler K B,Wu W L.Measureing Tg in ultra-thin polymer films with an excimer fluorescence technique.Plymer Engineering and Science.2001,41(9):1497-1505.
    [61]Smart A E,Ford R A.Measurement of thin liquid films by a fluorescence technique.Wear,1974,29:41-47.
    [62]Ford R A,Foord C A.Laser based fluorescence techniques for measuring thin liquid films.Wear,1978,51:59-66.
    [63]Hoult D P.Calibration of the laser fluorescence technique compared with quantum theory,Tribo.Trans.1991,34(3):440-444.
    [64]黄真理,李玉梁等.LIF技术测量浓度场的影响因素分析[J].实验力学,1994(9)No.3:232-240.
    [65]陈国珍著.荧光分析法[M],北京:科学出版社,1990。
    [66]赵建荣,陈立红,俞刚等.平面激光诱导荧光显示火焰中OH的分布图像[J].流体力学实验与测量.2000,14(2):67-71.
    [67]常用分析技术在临床生物化学中的应用[EB/OL].HYPERLINK http://www.windrug.com/pic/30/11/67/067.htm.
    [68]David Dornfeld.Development of an Integrated Model for Chemical-Mechanical Planarization (CMP)[R].CMP 2001 Symposium,October 11,2001.
    [69]温诗铸.摩擦学原理(第二版)[M].北京:清华大学出版社,2002,246-260。
    [70]高创宽,齐秀梅.雷诺方程数值解中的几个问题[J].太原重型机械学院学报.1993,14(3):96-102.
    [71]张直明.滑动轴承的流体动力润滑理论[M].北京:高等教育出版社.1986.
    [72]周桂如,马骥,全永昕.流体润滑理论[M].杭州:浙江工业大学出版社1990.
    [73]王惠民.流体力学基础(第二版)[M].北京:清华大学出版社,2005.
    [74]刘鹤年.流体力学[M].北京:中国建筑工业出版社,2004.
    [75]孔繁荣,混合润滑实验技术和特性研究[D].北京:清华大学精密仪器与机械学系,1993.
    [76]刘焜,谢友柏.内燃机缸套—活塞环混合润滑特性及摩擦力分析[J].内燃机学报,1995,13(3):299-305.
    [77]陈矛章.粘性流体动力学基础[M].北京:高等教育出版社,1993.
    [78]John D.Anderson著 吴颂平 刘赵淼 译.计算流体力学基础及其应用[M].北京:机械 工业出版社,2007.
    [79]王福军.计算流体动力学分析--CFD软件原理与应用[M].北京:清华大学出版社,2006.
    [80]Ma M T,Smith E H,Sherrington I.A Three-dimensional Analysis of Piston Ring Lubrication:Part Ⅰ-Modeling.Proc.Inst.Mech.Eng.Part[J].Journal of Engineering Tribology,1995,209:1-14.
    [81]Sang-Shin Park,Chul-Ho Cho,Yoomin Ahn.Hydrodynamic analysis of chemical mechanical polishing process[J].Tribology International 33(2000)723-730.
    [82]孟凡明,刘永军,张优支.基于MATLAB的流体润滑求解和可视化研究[J].润滑与密封,2004年5月第3期,50-51.
    [83]田兴丽,王培俊,吴鹿鸣.用MATLAB求解动静压混合轴承的承载能力[J].机械设计与制造工程,2002,31(5),72-73.
    [84]陆君安,尚涛,谢进.偏微分方程的MATLAB解法[M].武汉大学出版社,2001-08
    [85]张百红.二维渗流场的MATLAB仿真在土力学教学改革中的应用[J].高等建筑教育,2006,15(4):97-99
    [86]张森,张正亮.MATLAB仿真技术与实例应用教程[M].北京:机械工业出版社,2004.
    [87]赵德奎,刘勇.MATLAB在有限差分法数值计算中的应用[J].四川理工学院学报(自然科学版),2005,18(4):61-64.
    [88]熊彬,阮百尧.MATLAB在有限差分法中的应用[J].桂林工学院学报,2001,21(2):104-109.
    [89]蔡宏荣.颗粒流在粗糙表面之润滑理论模式的建立与应用[D].台湾:国立中正大学机械工程研究所.
    [90]White,J.W.,Road,P.E.,Tabrizi,H.A.,et al.A Numerical Study of Surface Roughness Effects on Ultra-Thin Gas Films[J].ASME Journal of Tribology,Vol.108,pp.171-177.
    [91]Rhow,S.K.and Elrod,H.G.The effect on Bearing Load-Carry Capacity of Two-Sided Striated Roughness[J].ASME Journal of Lubrication Technology,1974,Vol.96,pp.554-560.
    [92]Patir N and Cheng H S.An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication[J].ASME Journal of Lubricatoin Technology,1978,Vol.100,No.1,pp.12-17.
    [93]Parir N and Cheng H S.Application of Average Flow Model to Lubricationbetween Rough Sliding Surfaces[J].ASME,Journal of Lubrication Technology,1979,Vol.101,No.4,pp.220- 230.
    [94]付昊,王文中,王慧.粗糙表面弹性变形对流量因子的影响[J].润滑和密封,2007,32(1):68-71
    [95]叶晓明.活塞环组三维润滑数值模拟及其应用研究[D].华中科技大学博士论文,2004,18-23.
    [96]江晓禹,金学松.考虑表面微观粗糙度的轮轨接触弹塑性分析[J].西南交通大学学报,36(6),2001:588-560
    [97]汪家道,陈大融,孔宪梅.粗糙峰微接触及其对润滑的影响[J].摩擦学学报,1999,19(4):362-367.
    [98]周龙,白敏丽.基于FEPG系统的活塞组、气缸套传热、润滑、摩擦耦合分析[C].飞箭用户大会论文集,2006,342-354.
    [99]Coppeta.J,Rogers.C,Philipossian.A,et al.Characterizing Slurry Flow During CMP Using Laser Induced Fluorescence.Proceedings of the Second International Chemical-Mechanical Polish For ULSI Multilecvel Interconnection[R].Conference,Santa Clara,Ca.February,1997.
    [100]Coppeta J.Investigating Fluid Behavior Beneath a Wafer during Chemical Mechanical Polishing Processes[D].tufts university,1999,2.
    [101]王立强,陆祖康,杜斌.荧光在生物芯片及其信号检测中的应用[J].光学仪器,2000,24(4-5):7-9.
    [102]杜红世.荧光技术在弹流润滑中的应用研究[D].北京:清华大学精密仪器与机械学系,1999
    [103]Apone D,Gray C,Rogers C.Dual Emission Laser-Induced Fluorescence(DELIF) in Chemical Mechanical Planarization[DB/OL].
    [104]楼飞燕,赵萍,郑晓锋.基于激光诱导荧光技术的化学机械抛光机理的应用研究[J],新技术新工艺,2008,第4期,53-56
    [105]沈中伟,袁巨龙等.抛光参数对抛光液传输影响的研究[C],第十一届全国磨削技术学术会议论文集.2001,pp.104-107.
    [106]林彬,沈中伟等.抛光加工中工件与抛光盘间的液流分析[C],第十一届全国磨削技术会议论文集.2001,pp.54-59.
    [107]Coppeta.J,Rogers,L.Racz,et al.Investigating Slurry Transport Beneath a Wafer during Chemical Mechanical Polishing Processes[J].J.Electrochem.Soc.2000,147(5):pp.1903-1909
    [108]王庆有.图像传感器应用技术[M].北京:电子工业出版社,2003,90-99,281-415.
    [109]阎春生,赖淑蓉,廖延彪等.用光学层析成像方法研究二相流流场[J].中国计量学报,2001:122-123
    [110]李相民,周立伟,金伟其.科学级致冷CCD相机的性能和技术[J].大连理工大学学报,1997,37(2):163-166
    [111]周求湛,钱志鸿,刘萍萍,虚拟仪器与LabVIEW~(TM) 7 Express程序设计[M].北京:北京航空航天大学出版社,2004.6,82-91,198-199.
    [112]李介谷.图像处理技术[M].上海交通大学出版社,1990,第一版
    [113]顾月清,陶宝祺,钱志余.激光诱导荧光及其应用[J].激光与光电子学进展.1996,367(7):pp,22-24
    [114]张磊.利用荧光技术对SiO_2胶体流动性能的实验研究[D].清华大学硕士论文,2004,31-33
    [115]陆霄露,邓康耀.采用激光诱导荧光法测量油膜厚度的研究[J].内燃机学报,2008,26(01):45-49.
    [116]李韬,邓康耀,程用胜.激光诱导荧光法测平板油膜厚度[C].中国内燃机学会第七届学术年会,2007
    [117]Johnson M F G,Schluter R A,Bankoff S G.Fluorescent imaging system for global measurement of liquid film thickness and dynamic Contact angle in free surface flows.Rev.Sci.Instrum.1997,68(11):4097-4103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700