用户名: 密码: 验证码:
建筑物能效优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能减排,正成为各国转变经济发展方式,实现可持续发展的一种共识。中国作为一个负责任的大国,承诺“到2020年单位GDP减排40%~45%”,其中建筑节能是节能减排的重要组成部分。根据江忆院士等学者的研究报告,在2001年我国的建筑运行能耗就已经占据国民经济总能耗的25%左右。随着经济的发展,建筑能耗迅速增加。据权威部门公布的数据,在我国的建筑类型中,大型公共建筑总面积不足城镇建筑总面积的5%,总能耗却占全国城镇总耗电量的20%多,2007年国家机关办公楼年人均耗电3072.5度,是城镇居民的10-20倍,由此可见建筑运行能耗浪费严重,能源有效利用效率很低。因此研究建筑特别是公共建筑运行能耗的有效利用和运行节能问题,提高建筑物能效,不仅能够为有效降低建筑能耗提供理论指导,而且具有重要的社会效益和经济效益,对于兑现国家的庄严承诺具有重大意义。
     我国大中型建筑特别是公共建筑的能耗很高,能量浪费现象非常明显,节能潜力巨大。造成浪费的原因可主要分为两类:一类是系统设计不够优化,设备和系统的效率低下,比如“大马拉小车”造成的设备低效率运行;另一类是人为造成的浪费,比如办公室中的“长明灯”,长时间无人时不关闭空调等。对于系统设计不够优化造成的浪费,目前有多种理论成果和技术手段对其进行节能控制和管理。但对于第二现象造成的浪费,却没有一种比较好的方法量化能源浪费的状况,以便于采取相应的优化策略解决这个问题。
     在总建筑能耗中,空调系统所占比重最大。因此整个空调系统能效的高低,对于建筑节能具有重要的意义。构成空调系统的设备都有明确的能效指标,但这个指标通常是在某特定条件(比如额定功率)下测定的。在实际使用过程中,运行工况不断变化,满足额定工况的时间很少,大约只占总工作时间的5%左右,绝大多数时间的工作负荷只是满负荷的50-70%。低负荷时设备消耗的能源必定会降低,究竟降低多少能耗才是合理的?目前最常见的评价方法是比较平均能耗或总能耗,显然这种评价方式存在较大偏差。无论何种用能设备,对于特定的建筑负荷,只要设备的能效或整个建筑的系统能效保持在最优状态就可以说此时的能耗最低因此将能效作为评价建筑能源消耗效率优劣的指标更具科学性。虽然能效可以对独立工作设备的效率直接进行评价,但是对于以系统模式工作的用能设备,比如空调系统,仅依靠提高单个设备能效评价降低系统能耗的方式并不是完全可行,运行楼宇自动化系统(BAS)建筑物的能耗现状证明了这种方式的局限性。
     针对这些问题,本文就提高建筑能源的效率,优化建筑能效展开研究,主要的内容包括以下几点:
     1.简要分析了造成建筑高能耗问题的原因,讨论了降低建筑运行能耗需要解决的关键问题。建筑围护结构和建筑材料是影响建筑能耗的重要原因之一;建筑中用能设备的选择不合理,“大马拉小车”造成用能设备效率降低能耗增加;建筑中存在严重的浪费现象;缺乏建筑节能理论支持。虽然无法改变建筑围护结构产生的负荷,但是可以通过减少人为浪费,提高建筑用能设备的能效降低建筑能耗。目前关于建筑节能的研究成果对系统降低建筑能耗的效果并不十分明显,因此必须解决建筑节能的关键基础理论问题,才有可能切实降低建筑能耗。
     2.分析了建筑能效优化的研究现状及存在的问题。美国采暖、制冷和空调工程师协会(ASHRAE)最早采用能效评价制冷机工作效率,但这种方法不能有效评价整个工作周期内设备的能源效率,因此ASHRAE以及我国相关部门又相继提出了综合部分负荷性能系数(IPLV)、综合部分能效(IEER)、季节能效(SEER)、设计能效(DEER)等指标,从多角度评价制冷机设备的整体运行效率。近几年开始有采用系统能效评价中央空调系统效率和实施节能控制的报道,但还仅限于比较分析不同状态时整个系统的效率,没有就提高系统能效的优化理论展开研究。虽然系统能效优化理论成果还很少,但是注重系统节能的工程项目却取得了非常好的效果。比如汇通华城开发的BKS中央空调冷冻站模糊控制系统,把冷冻站(冷冻水泵、制冷机、冷却水泵)作为一个整体实施模糊控制,追求系统而不是其中每个设备最节能,最高可以达到了51%的节能效果。因此从理论上研究系统能效模型及其优化策略的问题,对于有效降低用能设备的能耗具有重要意义。
     建筑物消耗能源是为了提供舒适的工作、生活环境,即使建筑用能设备的效率再高,若人体没有充分利用舒适的建筑环境,所消耗的能源也是无效的和无意义的,因此有效降低建筑能耗必须建立能源消耗与人体利用之间的联系,研究人体对建筑能耗的利用程度。本文提出了评价建筑能耗有效性的模型——能量利用效率,能量利用效率为定量评价建筑物消耗能源的有效性提供了一种算法,通过能量利用效率模型为建筑末端的用能设备提供优化能效的控制策略。实验表明能量利用效率模型能够量化人体对能量的利用程度,对人体的用能模式进行甄别,发现能量浪费现象并优化控制用能设备的工作状态,通过减少或完全切断无效能耗输出,到达降低建筑负荷,相应提高建筑能效的目的。
     3.建立了建筑物用能设备系统能效模型,研究了系统能效优化的算法,解决了能效优化目标不确定的问题,明确了不同负荷时系统能效的优化目标以及寻优策略。建筑中的用能设备通常按照满足最不利的负荷状态进行设计,而建筑负荷随时间、天气和人员数量的变化而变化,随着负荷的变化,用能设备的效率会随着改变,像潜水泵等独立工作设备,由于其本身固有的特性,无法调节其工作状态的固有能效,只能通过变频、停机等措施,改善低负荷时的特性,降低总工作时间的方法相应的提高设备在一个时间区段的系统能效。对于空调等以系统形式工作的用能设备,单个设备能效的优化并不意味着整个系统能效的优化,而建筑能耗的优劣是通过整个系统而不是单个设备体现的,因此在保持用能设备稳定工作和满足建筑环境要求的条件下,系统能效越高建筑能耗越低。实验表明,系统能效模型和额定系统能效优化目标的确定能够为不同负荷时系统中的用能设备的工作模式提供优化策略,控制设备的工作状态使系统能效能够到达最优或近最优状态。
     4.介绍了基于能效优化的建筑物能量管理系统的开发。系统是典型的集散控制系统(DCS),针对建筑物中的用能设备和工作特点,引入了本文研究的能效优化算法。系统的开发采用了自行研发的微内核抢占式嵌入式操作系统,操作系统的引入对能量管理系统功能的持续扩展以及运行稳定性起了积极的作用,因此本文对微内核操作系统作了简要介绍。最后对基于能效优化的建筑物能量管理系统的工程应用实例和节能效果进行了简要介绍。
     通过提高建筑物能量利用效率,可以降低建筑末端的建筑负荷;通过优化建筑用能设备能效,可以用更少的能源消耗获得等同的建筑负荷,提高能量利用效率与提高建筑用能设备能效对建筑能耗的降低有着双倍的作用。本文研究的建筑能效优化包含两个层次的优化,一是对用能设备的优化,二是对建筑负荷的优化。用能设备的优化主要通过控制建筑用能设备的工作实现,随着优化策略的实施,降低了相同建筑负荷所需的能源消耗。通过能量利用效率算法控制末端用能设备的工作,不仅降低了末端用能设备的能耗,而且还相应的减少了建筑负荷,建筑负荷的减少,又可进一步促进了建筑能效的提高。
     主要创新点:
     1.提出了建筑物能量利用效率概念,给出了计算建筑物能量利用效率的模型和计算方法。
     2利用能量利用效率算法,对建筑能量有效利用程度进行量化评价,为降低建筑无效能耗提供了控制策略。
     3.提出了建筑中以系统形式工作的用能设备的系统能效模型,不同负荷时系统能效的优化目标和优化方法。通过对用能实施系统能效优化,有效降低用能设备的整体系统能耗。
It is well accepted that energy saving is to be the way of changing the style of economic development and achieving sustainable development in different Countries. China which is a responsible big country commitments to achieve40%~45%energy reductions in unit GDP in2020, including the building energy efficiency as an important part of energy saving. According to the research reports of academician Jiang Yi and other scholars, China's construction operation consumption had dominated about25%of the total energy of national economy consumption in2001. With the development of economy, building energy consumption increases rapidly. According to data released by the authoritative department, the total area of large-scale public buildings is fewer than5%that of towns, but the total energy consumption accounted for more than20%of towns, and the national office buildings annual per capita power consumption is3072.5degrees in2007, about10to20times that of towns, we can see that building operation consumption waste is serious, and the efficiency of energy efficient use is very low. So researching on building, especially the effective use of public building energy consumption and operating energy problems, improving the energy efficiency of building, not only provide theoretical guidance of effectively reduce the energy consumption, but also play an important role of social benefits and economic benefits,which is of great significance to honor the solemn commitment of the country.
     The energy consumption of large and medium-sized construction especially public buildings is very high, and the phenomenon of energy wasting is very obvious, the potential of energy saving potential is huge. The main reason to create waste can be divided into two categories:the one is that the system design is not optimal, the equipment and the system efficiency is low. Such as "big horse draws small car" causes low efficiency of equipment operation; the other one is the Man-made waste, such as "ever-burning lamps" in the office and turn on air conditioning for a long time with no person in room. The waste generated about the former, there are a variety of theoretical results and the technical method to control and management the energy at present, but for the second phenomenon caused waste, there is not a better method to evaluate the situation of wasting, in order to take appropriate optimization strategy to solve this problem.
     In total energy consumption, the proportion of the air conditioning system is the largest. So the high and low efficiency of the air conditioning system is of great significance to building energy efficiency. The equipments which constitute air conditioning system has a clear energy efficiency indicator, but the indicator is usually detected in a particular condition (such as the power rating).In the actual using, operation condition often changes, the time to meet the rated operating conditions is very little, which is only about5%of the total working hours, the workload is only50-70%of full load in most of the time. The energy which the device consumed will certainly reduce in the low load. What is reasonable to reduce the amount of energy consumption? At present the common method of evaluation is to compare the average energy consumption or total energy consumption, it is clear that there is a large deviation in this evaluation. Regardless of any energy-using equipment, for specific building load, as long as the energy efficiency of the equipment or the system energy efficiency of the entire building is maintained at the optimal state, it can be said that the energy consumption is the lowest at this time, therefore we can take energy efficiency as a indicator evaluating the advantages and disadvantages of building energy consumption efficiency, which is more scientific. Energy efficiency can directly evaluate the efficiency of the equipment worked independently, but for the energy-using equipment which works in system mode, such as air-conditioning system, only by raising a single device energy efficiency evaluation to reduce system power consumption is not entirely feasible, the energy consumption status of running BAS(building automation system) building proved the limitations of this approach.
     Aiming at these questions, the article covers improving the energy efficiency in buildings, optimizing energy efficiency in buildings and launching the research, the main contents include the following factors:
     1. This article briefly analyzes the causes of high energy consumption, discusses the key issues that need to be addressed in reducing building energy consumption. Building palisade structure and building materials are one of the important reasons for the building energy consumption; The choices of equipment used in buildings are not reasonable, the "big horse draws small car" causes equipment efficiency declined and energy consumption increased; there exists serious waste in building; lack of theoretical support of building energy efficiency. Although it is impossible to change the load generated by building palisade structure, we can reduce human waste to improve the energy efficiency of building energy-using equipment and decrease energy consumption. At present, it is not very clear that the effect of research about building energy efficiency to reduce the system building energy consumption, So it is possible to effectively reduce energy consumption through solving the key basic theory of the building energy efficiency.
     2. This article analyzes the current situation of the building energy efficiency optimization and the existing problems. American Society of Heating, Refrigeration and Air Conditioning Engineers(ASHRAE) earliest adopted the energy efficiency to evaluate the work efficiency of the chiller, however, this method can not effectively evaluate the energy efficiency of the equipment throughout the work cycle, so ASHRAE and the relevant department in China have proposed an integrated part load coefficient of performance(IPIV), an integrated part of energy efficiency(IEER), seasonal energy efficiency(SEER), the design of energy efficiency(DEER) and other indicators, evaluating the overall operating efficiency of the chiller equipment from multiple perspective. In recent years, there began to have some reports which using the system energy efficiency to evaluate the system efficiency of the central air conditioning and implementing energy-saving control, but it is also limited to comparatively analyze the overall system efficiency in different states, not studying on the optimization theory that improve the system energy efficiency. Although the theoretical results of system energy efficiency are seldom, the projects focusing on the system energy saving have achieved splendidly results. Such as the BKS central refrigeration plant fuzzy control system developed by Huitong Huacheng, take a frozen station(chilled water pumps, chillers, cooling water pump) as a whole to implement fuzzy control, pursuing system rather than each of devices which is the most energy efficient, it can reach up to51%of the energy saving effect. Therefore, studying theoretically on the model of energy efficiency and optimization strategies to effectively reduce the energy consumption of energy-using equipment is of great significance.
     The energy consumption of building is to provide a comfortable working and living environment, even if the efficiency of the energy-using equipment is high, if the body does not take full advantage of the comfortable building environment, the energy consumption is invalid and meaningless. Therefore reducing the building energy consumption must establish the link between energy consumption and human use, study on the level of utilization of the human body for building energy consumption. This paper presents a model of the evaluation of the effectiveness of building energy consumption-energy using efficiency, Energy using efficiency provides an algorithm for the quantitative evaluation of the effectiveness of the energy consumption of building, Energy utilization efficiency model for the energy consumption facility of the building ends can provide energy efficiency optimization control strategy. The experiments show that the model of the energy use efficiency can quantify the degree of utilization of the human body for energy, screening the body's energy-using mode can find energy waste and optimal control the work state of the energy-using equipment, we can achieve the goals of reducing the building load and correspondingly increasing energy efficiency in buildings by reducing or completely cutting off the ineffective energy consumption output.
     3. Establish the system energy efficiency model of the buildings energy consuming equipment. Research the system energy efficiency optimization algorithm. Solve the uncertain target of energy efficiency optimization. Explicate the energy efficiency optimization goals and optimization strategy under different load. Energy using equipment is usually designed in accordance to meet the most unfavorable load conditions, but building load changes with time, weather and number of personnel. As the load changes, the efficiency of energy using equipment will change. Like submersible pumps and other independently working equipments, because of its inherent characteristics, it's unable to adjust its inherent energy efficiency, only by adjusting frequency, downtime and other measures to improve the characteristics of low load conditions, reducing the total working time to increase equipment energy system efficiency in a time period. For air conditioners and other system working equipments, optimization of energy efficiency of a single device does not mean the entire system energy efficiency optimization, and the pros and cons of building energy consumption is embodied through the entire system, rather than a single device. So under the conditions of maintaining energy using equipment to stabilize working and meeting the requirements of the built environment, the higher energy efficiency, the lower building energy consumption. Experiments show that the realizations of system energy consumption model and rated energy efficiency optimization goals can provide an optimization strategy for system energy using equipment in different load operating mode. Working status of control equipment can make the system energy efficiency reach the optimal or near optimal state.
     4. Introduced the development of building energy management system based on energy efficiency optimization. The system is a typical distributed control system (DCS), according to the building energy-using equipment and work characteristics, introduce the energy efficiency optimization algorithms that this paper researched. The development of the system adopted the self-developed microkernel preemptive embedded operating system, the introduction of operating system has played a positive role for the continued expansion and operational stability of the energy management system functions. So the paper gave a brief introduction to the microkernel operating system. Finally it briefly introduced the engineering application of the building energy management system based on energy efficiency optimization and the energy-saving effect.
     It can reduce the building load of the building ends by improving building energy use efficiency; we can obtain the equivalent building load with less energy consumption by optimizing energy efficiency of the building energy-using equipment, it has a double role for reducing building energy consumption by improving energy use efficiency and energy efficiency of the building energy-using equipment. The building energy efficiency optimization researched in this paper contains two levels of the optimization: one is the optimization to the energy-using equipment, the other one is the optimization to the building load. Energy using equipment optimized is mainly realized through the control of energy using equipment in building. With the implementation of optimized strategy, reduce the energy consumption of the same building load required. Through energy utilization efficiency algorithms to control the energy use equipment can reduce energy consumption of the end-using equipment and also reduce the corresponding building load. Meanwhile, reduction in building load can further promote the improvement of building energy efficiency.
     The main innovation points:
     1. Propose the concept of building energy use efficiency, give the model and calculation method of the building energy efficiency.
     2. Through the calculation of energy use efficiency, we can do the quantitative evaluation of the effective use of building energy, and provide a quantitative indicator to reduce building energy consumption.
     3. Propose the system energy efficiency model of the energy-using equipment working in the form of systems, optimization goals and optimization methods of system energy efficiency at different loads. It will effectively reduce the overall system power consumption of the energy-using equipment by implementing system energy efficiency optimization for energy-using.
引文
[1]寻寰中.着力建设节约型机关[J].求是,2008,(19):23-24.
    [2]张虹生,李亚杰,顾瑞珍.公务员一天耗电量够百姓用19天[DB/OL].http://news.qq.com/a/20060313/000604.htm,2006-03-13.
    [3]龙惟定,白玮,马素贞,范蕊.中国建筑节能现状分析[J].建筑科学,2008,24,(10):1-3.
    [4]张声远,杨秀,江亿.我国建筑能源消耗现状及其比较[J].中国能源,2008,30,(07):37-42
    [5]杨洁,涂光备,森山正和,高西茂彰.天津与神户地区公共建筑能耗调查分析[J].煤气与热力,2004,24,(01):13-16.
    [6]陈淑琴,李念平.公共建筑能耗统计方法的研究[J].煤气与热力,2006,26,(11):71-75.
    [7]高兴,杨风林,张兴文等.酒店建筑能耗及空调系统能耗合理性评价[J].暖通空调,2005,35,(04):34-38
    [8]白雪莲,孙纯武,郭林文等.公共建筑空调系统能耗实测与分析[J].重庆大学学报,2008,31,(06):637-641.
    [9]胡健,曾伟平,谷波等.基于多标准的空调系统设计能效比计算分析[J].流体机械,2007,35,(09):77-81
    [10]魏明华,付祥钊,卜增文.深圳市公共建筑不同空调系统设计能效比的比较[J].暖通与设备,2008,36,(08):1-3.
    [11]朱伟峰,江亿,薛志峰.空调冷冻站和空调系统若干常见问题分析[J].暖通空调,2000,30,(06):4-11.
    [12]Beasley Rodney, Haber Jeff S., Dan Turner, W. etc. Development of a methodology for baselining the energy use of large multi-building central plants[J]. ASHRAE Transactions,2002,108,(01):251-259.
    [13]Ma Zhenjun,Wang Shengwe. Energy efficient control of variable speed pumps in complex building central air-conditioning systems[J]. Energy and Buildings,2009,41,(02):197-205.
    [14]William, Chapman P. Fundamentals of linear control theory[J]. ASHRAE Journal, 2009,51,(08):58-62.
    [15]Anastaselos Dimitrisl, Giama Efrosinil,Papadopoulos Agis M. An assessment tool for the energy, economic and environmental evaluation of thermal insulation solutions [J]. Energy and Buildings,2009,41,(11):1165-1171.
    [16]Wenzhen Huang,Zaheeruddin M,Cho SH.Dynamic simulation of energy management control functions for HVAC systems in buildings[J]. Energy Conversion and Management,2006,47,(07):926-934.
    [17]Nassif N,Kajl S,Sabourin R. Two-objective on-line optimization of supervisory control strategy[J]. Building Services Engineering Research and Techonlogy,2004,25,(03):241-251.
    [18]谭志宣.饭店节能技术及应用实例[M].北京:化学工业出版社,2006.
    [19]Johnson Controls Inc.中央空调设备选型及设计手册.2006
    [20]黄翔.空调工程[M].北京:机械工业出版社,2006.
    [21]高兴,杨风林,张兴文等.酒店建筑能耗及空调系统能耗合理性评价[J].暖通空调,2005,35,(04):34-38.
    [22]许旺发,张旭.大型超市能耗动态模拟研究[J].暖通空调,2006,36,(11):106-109.
    [23]燕飞,梁毅,韩宁.最小焓差在空调节能控制系统中的应用及仿真[J].土木建筑与环境工程,2010,32,(05):65-70.
    [24]姚国梁.空调变频水泵节能问题探讨[J].暖通空调,2004,36,(06):32-34.
    [25]伍小亭芦岩.循环水泵变频调速运行实例研究[J].暖通空调,2006,36,(08):25-32.
    [26]张谋雄.冷水机组变流量的性能[J].暖通空调,2000,30,(06):56-58.
    [27]马最良,孙宇辉.冷却塔供冷系统运行能耗影响因素的研究与分析[J].暖通空调,2000,30,(06):20-22.
    [28]林其昌.福建省部分暖通设计问题初探及对策[J].暖通空调,2000,30,(06):62-64.
    [29]金星,张小松.变频冷水机组部分负荷下冷却水定变流量性能研究[J].建筑科学,2008,24,(08):85-89.
    [30]梁彩华,张小松,梅奎等.变冷冻水流量对冷水机组性能影响及其节能优化控制研究[J].建筑科学,2008,24,(06):40-44
    [31]U.S. Department of Energy Consumption Characteristics of Commercial Building HVAC System[OL]. https://www.titance.com/module_detail.asp?ModuleID=247.2009.
    [32]U.S. Environmental Protection Agency Office of Air and Radiation. ENERGY STAR Buildings Upgrade Manual[OL]. http://www.epa.gov/appdstar/buildings/manual.
    [33]杨天,吴静怡,盐地纯夫等.EnergyPlus中变频多联空调系统蒸发温度控制能耗仿真模块的开发与实验验证[J].制冷学报,2011,32,(05):25-30.
    [34]邓小龙,张建林,陆锦军等.纺织空调系统的模糊PID控制研究及应用[J].仪器仪表学报,2011,32,(04):163-168.
    [35]马庆,李歧强,聂清珍.公共建筑空调温度设定值的动态优化控制研究[J].系统工程学报,2011,26,(04):435-441.
    [36]李慧星,耿耿,李贝妮等.公共建筑中央空调系统对室内空气品质的影响及控制[J].沈阳建筑大学学报2011,27,(04):725-729.
    [37]王雪梅,李炎锋,吕子强等.基于负荷动态模拟的冰蓄冷系统优化控制分析[J].沈阳建筑大学学报,2010,26,(03):552-556.
    [38]付培众,董洁,杨伟等.基于遗传算法的层流冷却系统优化控制策略[J].控制理论与应用,2009,26,(08):918-922.
    [39]闵晓丹,付祥钊,肖益民.空调系统运行能效及运行监测参数探讨[J].制冷与空调,2008,22,(06):34-40.
    [40]李界家,陈浩,李颖.神经网络解耦控制在中央空调系统中的应用[J].沈阳建筑大学学报.,2012,28,(01):182-186.
    [41]刘静纨,魏东,朱为明.神经网络模糊预测优化控制在VAV系统中的应用[J].系统仿真学报,2010,22,(12):2909-2914.
    [42]杨婉,王奇,冯光灿.实时专家控制系统在中央空调中的应用[J].制冷与空调,2010,24,(02):65-67.
    [43]Anderson, Michael 1,Buehner, Michael1,Young, Peter1 etc. MIMO robust control for HVAC systems[J]. IEEE Transactions on Control Systems Technology,2008,16,(03):475-483.
    [44]Meckler, Gershon. New directions in HVAC systems[J]. Energy Engineering:Journal of the Association of Energy Engineering,1994,91,(02):6-23.
    [45]Escriva-Escriva, Guillermo, Segura-Heras, Isidoro, Alcazar-Ortega. Application of an energy management and control system to assess the potential of different control strategies in HVAC systems[J] Energy and Buildings,2010,42,(11):2258-2267.
    [46]Fong, K.F, Hanby, V.I., Chow, T.T. HVAC system optimization for energy management by evolutionary programming[J]. Energy and Buildings,2006,38,(03):220-231.
    [47]Fasiuddin, M., Budaiwi, I.,Abdou, A. Zero-investment HVAC system operation strategies for energy conservation and thermal comfort in commercial buildings in hot-humid climate[J]. International Journal of Energy Research,2010,34,(01):1-19.
    [48]Wemhoff, A.P, Frank, M.V. Predictions of energy savings in HVAC systems by lumped models[J]. Energy and Buildings,2010,42,(10):1807-1814.
    [49]Karunakaran, R, Parameshwaran, R., Iniyan, S. Energy efficient controller for improving thermal comfort IAQ and energy saving in HVAC system[J]. Modelling, Measurement and Control B,2007,76,(03-04):31-49.
    [50]Wong, Johnny K.W. Li, Heng. Construction, application and validation of selection evaluation model (SEM) for intelligent HVAC control system[J]. Automation in Construction., 2010,19,(02):261-269.
    [51]Fong, K.F. Hanby, V.I., Chow, T.T. System optimization for HVAC energy management using the robust evolutionary algorithm[J]. Applied Thermal Engineering,2009,29,(11-12):2327-2334.
    [52]Platt, Glenn, Ward, John,Wall, Joshua. Optimal supervisory HVAC control:Experiences in Australia[J]. HVAC and R Research,2011,17,(03):297-308.
    [53]Trcka, Marija, Hensen, Jan L.M. Overview of HVAC system simulation[J]. Automation in Construction,2010,19,(02):93-99.
    [54]Rieger, C., Naidu, D.S. Demonstration of a hybrid Intelligent control strategy for critical building HVAC systems[J]. Control and Intelligent Systems,2010,38,(02):10-119.
    [55]席裕庚,李德伟.预测控制定性综合理论的基本思路和研究现状[J].自动化学报,2008,34,(10):1225-1234.
    [56]杨祯山,邵诚.基于双层规划模型的电梯交通系统群组优化[J].沈阳建筑大学学 报,2007,23,(01):170-176.
    [57]李申,沈嘉,张学军等.恒温恒湿空调系统的优化控制与性能模拟[J].制冷学报,2012,33,(01):22-27.
    [58]杜晓通,李忠意.关于中央空调系统节能设计问题的评论[J].数学的实践与认识,2009,39,(16):226-228.
    [59]Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp:Process Dynamics and Control, Second Edition John Wiley &sons, Inc 2004
    [60]晋欣桥,孙金龙,杜志敏.变风量空调系统中基于预测的末端再热控制策略[J].上海交通大学学报,2006,40,(02):316-325.
    [61]Ma Zhenjun,Wang Shengwe. Energy efficient control of variable speed pumps in complex building central air-conditioning systems[J]. Energy and Buildings,2009,41,(02):197-205.
    [62]Dale E.Seborg,Thomas F.Edgar,Duncan A.Mellichamp:Process Dynamics and Control,Second Edition[M].John Wiley&Sons, Inc.2004.
    [63]Xu Min,Li Shaoyuan,Qi,Chenkun etc. Auto-tuning of PID controller parameters with supervised receding horizon optimization[J].ISA Transactions,2005,44,(04):491-500.
    [64]Moretra V D,Amaral W C,Ferreira P A. A new approach for robust model predictive control with an application to an air-conditioning system[C].//Proceedings of IEEE International Conference on Control Applications, Taipei,2004:667-672.
    [65]Guo Chengyi,Song Qing, Cai Wenjian. A neural network assisted cascade control system for air handling unit[J]. IEEE Transactions on Industrial Electronics,2007,54,(01):620-628.
    [66]Ding Baocang, Xie Lihua, Cai Wenjian. Robust MPC for polytopic uncertain systems with time-varying delays[J]. International Journal of Control,2008,81,(08):1239-1252.
    [67]Ding Baocang,Xie Lihua,Cai Wenjian. Distributed model predictive control for constrained linear systems[J]. International Journal of Robust and Nonlinear Control,2010,20,(11):1285-1298.
    [68]Chen Hua Lee Weiling. Benchmarking of energy efficiency standards for residential buildings in China[J]. Journal of Southeast University,2010,26,(02):151-155.
    [69]Du Xiaotong, Qi Xiaomei, Ai Maoliang. The Analysis of the energy efficiency of refrigeration stations in HVAC[C].// Proceedings of the IEEE International Conference on Automation and Logistics Shenyang, China August 2009:175-180
    [70]Du Xiaotong, Cai Wenjian, Jia Lei. Air-conditioning System Energy Efficiency and Energy Consumption Evaluation[C].//Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China 2010.1908-1913.
    [71]肖健,吕爱琴,陈吉忠等.无线传感器网络技术中的关键性问题[J].传感器世界,2004(07):20-23
    [72]杜晓通.无线传感器网络技术与工程应用[M].北京:机械工业出版社.2010.
    [73]薛志峰,刘晓华,付林,江亿.一种评价能源利用方式的新方法[J].太阳能学 报,2006,27,(04):349-354.
    [74]Saidur R. Energy consumption, energy savings, and emission analysis in Malaysian office buildings[J]. Energy Policy,2009,37,(10):4104-4113.
    [75]Chang Chenchen, Zhao Jing, Zhu Neng. Energy saving effect prediction and post evaluation of air-conditioning system in public buildings[J]. Energy and Buildings,2011,43,(11):3243-3249.
    [76]李峥嵘,李浩翥,郁盛,诸英霞.建筑能效当量能耗方法研究[J].同济大学学报(自然科学版),2010,38,(03):353-357.
    [77]Li, Xiaoli, Bowers, Chris P., Schnier, Thorste. Classification of Energy Consumption in Buildings With Outlier Detection[J]. IEEE Transactions on Industrial Electronics, 2010,57,(11):3639-3644.
    [78]Sjo " gren J.-U., Andersson S., Olofsson T. An approach to evaluate the energy performance of buildings based on incomplete monthly data[J]. Energy and Buildings,2007,39,(08):945-953.
    [79]Yu Zhun, Fung Benjamin C.M., Haghighat, Fariborz, et al, A systematic procedure to study the influence of occupant behavior on building energy consumption[J]. Energy and Buildings, 2011,43,(06):1409-1417.
    [80]刘丹丹,陈启军,森一之,木田幸夫.基于数据的建筑能耗分析与建模[J].同济大学学报,2010,38,(12):1841-1845.
    [81]Linda P. Use of different methodologies for thermal load and energy estimations in buildings including meteorological and sociological input parameters[J].ScienceDirect Renewable and Sustainable Energy Reviews,2007,43,(11):998-1007.
    [82]李楠,姚润明.概念设计阶段建筑能效计算机辅助评价及系统开发[J].土木建筑与环境工程,2009,31,(04):88-92.
    [83]LEE W S.Benchmarking the energy efficiency of government buildings with data envelopment analysis[J].Energy and Buildings,2008,40,(05):891-896.
    [84]Carlo J, Lamberts R.Development of envelope efficiency labels for commercial buildings: effect of different variables on electricity consumption[J].Energy and Buildings,2008,40,(11): 2002-2007.
    [85]蔡文剑,贾磊,王雷等.建筑节能技术与工程基础[M].北京:机械工业出版社,2008.
    [86]卜增文,夏春海,周俊杰.复杂空调系统输送能效比计算方法[J].制冷与空调,2011,22,(05):21-24.
    [87]闵晓丹,戎向阳.公共建筑空调冷源系统季节能效比研究[J].暖通空,2010,40,(11):63-67.
    [88]卢苇,郑立星,廖宇航等.广西空调季节能效比分析[J].暖通空调,2010,40,(10):81-84.
    [89]蔡宏武,魏庆芃.空调系统特性及均衡控制理念[J].暖通空调,2010,40,(10):27-30.
    [90]李玉街,蔡小兵,郭林.中央空调系统模糊控制节能技术及应用[M].中国建筑工业出版社,2009.
    [91]杜晓通,姜治臻,贾磊,王雷.建筑物中的能量利用效率[J].土木工程学报,2010,43,(06):128-133.
    [92]杜晓通,李靖,王存东.建筑物公共区域能量有效性确定[J].土木建筑与环境工程,2011,33,(02):92-96.
    [93]郑灵翔.嵌入式系统设计与应用开发[M].北京:北京航空航天大学出版社,2006.
    [94]Jean J.Labrosse著,邵贝贝译.μC/OS-Ⅱ—源代码公开的实时嵌入式操作系统[M].北京:中国电力出版社,2001.
    [95]晨风.嵌入式实时多任务软件开发基础[M].北京:清华大学出版社,2004.
    [96]朱珍民,隋雪青,段斌.嵌入式实时操作系统及其应用开发[M].北京:北京邮电大学出版社,2006.
    [97]夏靖波,王航,陈雅蓉.嵌入式系统原理与开发[M].西安:西安电子科技大学出版社,2006.
    [98]周航慈,吴光文.基于嵌入式实时操作系统的程序设计技术[M].北京:北京航空航天大学出版社,2006.
    [99]Microchip Technology Incorporated. PIC24F Family Reference Manual,Sect.02 CPU [DB/OL].Microchip Technology Incorporated,2007.
    [100]Microchip Technology Incorporated. PIC24FJ32GA002 Family Data Sheet[DB/OL]. Microchip Technology Incorporated,2007.
    [101]Microchip Technology Incorporated. High-Performance PIC24 Microcontroller Family [DB/OL]. Microchip Technology Incorporated,2007.
    [102]Microchip Technology Incorporated.MPLAB ASM30, MPLAB LINK30 and Utilities User's Guide [DB/OL]. Microchip Technology Incorporated,2007.
    [103]Microchip Technology Incorporated. MPLAB C30 C Compiler User's Guide[DB/OL]. Microchip Technology Incorporated,2007.
    [104]Microchip Technology Incorporated. MPLAB C30 C Compiler Getting Started [DB/OL]. Microchip Technology Incorporated,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700