用户名: 密码: 验证码:
基于虚拟技术的农村电力网规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配电网直接给用户供电,与用户密切相关,对配电网进行科学合理的规划,可以降低配电系统的投资和运行费用,有助于电网的经济建设和运行,具有显著的经济和社会效益。农村电力网是配电网的重要部分,农网的建设关系到发展农业经济、提高农业生产、改善农民生活水平等许多问题,也关系到农网的可靠、经济、合理、高质量、低成本地运行。因此,做好农网规划工作非常重要。
     在系统地分析农网现状的基础上,提出了基于虚拟技术的农网规划新思想,确定了基于虚拟技术的农网规划应用系统的总体规划及实现方法。
     提出了构建农网规划虚拟系统的系统方法。根据农网的现状及发展趋势,建立了包括电源、电容器、线路、节点、负荷的图元库,完成虚拟系统的主界面、相关数据库的形成以及农网分析计算结果的显示。在虚拟系统的主界面建立虚拟运行系统,方便地进行农网的运行分析,实现对电气图编辑、绘制、数据的保存以及相关显示。并结合虚拟系统,分析了线路、电容器、负荷及PV节点在配电网潮流计算中的模型,给出了基于网络拓扑方法的配电网潮流计算方法。
     提出了基于虚拟系统的农网无功优化方法。针对农网无功优化问题,考虑了影响农网负荷统计的不确定因素,并且确定了不确定信息的数学模型。建立了无功优化模型,根据农网的运行特点以及历史数据,建立了三阶梯的负荷曲线。按照最大负荷时网络损耗最小确定补偿位置,然后以计算支出费用最少为目标确定无功补偿容量,并且提出了根据潮流分布确定主干线的方法。实现了农网无功优化结果在虚拟运行系统中的显示,可以直观地分析无功规划优化对不同负荷情况时农网节点电压、支路功率分布、支路损耗的影响,而且可以直观地观察无功补偿设备的位置和容量。
     提出了基于虚拟系统的分布式电源(DG)在农网中的优化配置方法。给出了适合农网应用的分布式电源类型,研究了农网中DG的配置问题。利用网络的节点优先度评价DG对节点电压、功率损耗以及短路电流的影响。在满足一定优先等级的前提下,根据年电能损失最小及年经济效益最高的原则确定配置DG的位置及容量。在安装DG总容量相同的情况下,将单点配置DG、两点配置DG及三点配置DG对节点电压的改善和电能损失减小的程度进行了计算和对比分析,并且将其显示在虚拟运行系统。借助农网DG规划优化结果在虚拟运行系统中的显示,更加直观地看出通过DG规划优化可以提高节点电压、改善支路功率的分布、减小支路的损耗,而且可以直观地观察DG的位置和容量。
     提出了农网现有网架结构更新的方法。结合虚拟系统,遵循满足电压质量、投资最小、损耗最低的原则,分析网络的薄弱环节,确定网络的更新方案。为了分析现有网架的薄弱环节,提出了适应度的模型,给出了不满足适应度路径的确定方法。在满足有功和无功功率的平衡、电压降落及电流限制的约束条件下,建立了以投资及损耗最小为目标函数的农网网架的更新模型。提出了根据最小、最大负荷增长率分析网络的适应度的方法,通过算例结果及比较分析,表明了方法的有效性。现有网架更新所需要的数据在虚拟系统的主界面输入,而且更新结果直观地显示在虚拟系统。
     提出了农网网架结构的规划优化方法。提出了供电区域分区的方法,确定了优化布线和可靠性分析的方法。在考虑地理条件、建筑物、节点电压和支路电流等条件的影响下,根据最短路径和最小负荷矩法优化规划配电网的网架,提出了确定主干线、连接负荷点、选择导线截面及线路拉手前后节点和支路的编号方法。提出了自动搜索连接负荷的交叉点(中间节点)以及相邻线路的联结点的方法,实现了相邻线路的拉手,实现了自动布线功能。为了保证正常运行,网架规划时必须根据拉手前后的潮流分布多次修正后确定网络结构参数。通过实例结果及比较分析,表明了方法的有效性。而且,结合虚拟系统,可以直观、方便地录入数据,自动布线,自动显示网架规划的相关结果。
     针对本文提出的配电网规划优化的各种方法,编制了相应的算法程序,并通过算例进行了测试和分析,结果验证了本文提出方法的有效性。
Distribution network correlates closely to the customers, which can provide a stable long-term supply of electric power to the users. It is important to plan distribution systems scientifically, reasonably and accurately, which can make lower investment and operational costs, and can help to economic development and operation of power system, and can yield remarkable social and economic benefits. Rural distribution system is the important part of the distribution network. The development of rural distribution touches on a wide range of problems such as the development of rural economy, the purpose of raising the level of agricultural production, and the improvement of the peasants' living standards, and also affects the reliable, economic, reasonable, low-budget and high-quality operation of the rural network. So, it is very important to make an overall plan on the rural distribution system.
     On the basis of systematically analyzing the the present state of the rural distribution, a new idea of rural power system planning is proposed based on virtual system, and the total planning and the methods are also presented on the same base.
     The systematic approach is put forward to found virtual system of the rural power network planning. According to the present conditions and its trend of the development in rural system, the elements included power source, capacitor, line, node and load are formed, and the main interface and databases related to the virtual system are completed, and also the relational analysising and computing results of are showed. Virtual system can be established on the main interface, which gets easy to analyze the operation of the rural power system, and easy to achieve the edit and drawing of electric map, and easy to save data, and easy to show the relational results. Combined with the virtual system, the models contained line, capacitor, load and PV node in the power flow of distribution system, and the method of power flow is given based on network topology analysis.
     Based on the virtual system, the systematic method of reactive power optimization is proposed in the rural power grid. In view of rural reactive power optimization, the load uncertainties are accounted in this paper, and the mathematical models of fuzzy information are determined. The model of rural reactive power optimization is formed. In accordance with operational chariacteristics and the historic data of the rural system, three load levels are given. According to the optimum of power losses at the maximum load to determine the reactive compensation positions, and then reactive power compensation capacity is calculated for the least accounting expenditure cost. On the basis of power flow analysis, the method to determine main line is presented in the rural. The results of reactive power optimization can be showed in the virtual system. And the effects to node voltage, branch power flow and branch power loss are analyzed for different load, and also the sitting and capacity of reactive compensation device can be observed intuitively.
     Based on the virtual system, the systematic method of distributed generation (DG) is proposed in the rural power network. The type of DG adapted to our rural network is given, and the problem to placing DG is advanced in rural distribution systems. The node priority is employed to describe the DG's effect of node voltage, power network loss and short-circuit current. According to the annual minimum electric power loss and maximum economic benefit after placing DG, the sitting and sizing of DG is determined under certain node priority. Under the same total capacity, effects of electric power loss and node voltage are calculated and compared by single, double and three sites of DG, which can be showed in the virtual system. In virtue of the optimal results showed in the virtual system, the effects illustrated that the node voltage is greatly improved, the power flow is reformed, and the power loss is significantly reduced, and also the sitting and capacity of DG can be observed intuitively.
     Optimal approach on renewing framework of upgrading rural power network is proposed in the rural power network. On the basis of the virtual system, and in the light of the principle to satisfied voltage quality, minimum investment, and lowest power loss, the weak part of rural distribution is confirmed, and the renewal schemes of network analyzed is determined. In order to analyze the weak part, the model of adaptabilities is proposed, and the method to confirm paths with bad adaptability is found subsequently. On the basis of satisfied active and reactive power balance, voltage quality, and current limit, and lowest power loss, the renewal model is presented according to the object function of minimum investment and lowest power loss. According to the minimum and maximum load increasing rate respectively, the method is put forward to analyze the adaptabilities of the rural network. The method proposed is applied to a real grid example, and methods are valide by results analysis and comparison.The necessary data can be inputed in the main interface of the virtual system, and the renewal results can be showed in the virtual system.
     Optimal planning method for distribution network is proposed in the rural power network. The method to partition load area is presented, and the ways to routing optimal problem and analyzing reliability are determined. Under taking account of constraint conditions such as physical conditions, buildings, node voltage, branch current, and so on, and on the basis of the shortest path and minimum load moment algorithm, thn distribution network is optimized and planed, and the approaches are given to determine main line, to connect load node, to select section of the lines and to ordering technology of nodes and branches before and after the lines connected. The methods are given to automatically search the cross point (intermediate nodes) and adjacent join points between two lines, and two adjacent lines can be connected hand in hand. Finally the function of automatic routing is achieved between adjacent lines. In order to ensure nomal operation, the configuration parameters must be modified many times according to the power flow before and after the lines connected. The methods proposed are applied to a real grid example, and methods are valide by results analysis and comparison. Moreover, on the basis of the main interface of the virtual system, the data can be inputed easily, and the autimatic routing and planning results can be showed in the virtual system.
     In view of the proposed approaches in this paper, corresponding algorithms and programs are made, and those methods are tested on various example grids.The results shows the feasibility of the proposed methods.
引文
1.蔡中勤,郭志忠.2000.基于逆流编号法的辐射型配电网牛顿法潮流[J].中国电机工程学报,20(6):13-16.
    2.陈根军,李继洗,王磊.2001.基于Tabu搜索的配电网络规划.电力系统自动化,25(7):40-44.
    3.陈海焱,陈金富,杨雄平,等.2006.配电网中计及短路电流约束的分布式发电规划.电力系统自动化,30(21):16-21.
    4.程浩忠,高赐威,马则良.2003.多目标电网规划的分层最优化方法.中国电机r工程学报,23(10):11-16.
    5.程新功,厉吉文,曹立霞,等.2003.基于电网分区的多目标分布式并行无功优化研究.中国电机工程学报,23(10):109-113.
    6.段刚,余贻鑫.2002.输配电系统综合规划的全局优化算法.中国电机工程学报,22(4):107-113.
    7.高炜欣,罗先觉.2004.基于蚂蚁算法的配电网网络规划.中国电机工程学报,24(9):110-114.
    8.高炜欣,罗先觉.2005.基于Hopfield神经网络的多阶段配电变电站的规划优化.电工技术学报,20(5):58-64.
    9.国家电力公司.1999.农村电网建设与改造技术原则[S].农村电气化,(6):4-5.
    10.《国家电网公司“十一五”电网发展规划及2020年远景目标》
    11.国家电网公司《农网“十一五”电压质量和无功电力规划纲要》
    12.《国家发展改革委关于做好“十一五”农村电网完善和无电地区电力建设工作的通知》
    13.黄丽华,曹秀玲,孙玉梅,等.2007.基于GIS技术的县级中压配电网架优化规划方法.农业工程学报,23(9):172-175.
    14.韩娜,许跃进.2009.农村低压电网规划设计应用软件开发.中国农业大学学报,14(4):119-123.
    15.胡骅,吴汕,夏翔,甘德强.2006.考虑电压调整约束的多个分布式电源准入功率计算.中国电机工程学报,26(19):13-17.
    16.黄伟,熊军,徐祥海,吴汕,甘德强.2007.考虑配电网电压调节的分布式电源准入功率极限计算.电力系统自动化,31(14):43-46,56.
    17.孔涛,程浩忠,李钢,谢欢.2009.配电网规划研究综述.电网技术,33(19):92-99.
    18.孔涛,程浩忠,许童羽.2008.基于组件式GIS网络分析与多目标遗传算法的城市中压配电网规划.中国电机工程学报,28(19):49-55.
    19.乐全明,吕飞鹏,郁惟镛,等.2006.形成节点阻抗矩阵的节点编号顺序优化算法.电网技术,30(6):88-91.
    20.雷金勇,黄伟,夏翔,吴汕,熊军,王函韵,甘德强.2008.考虑相间短路影响的分布式电源准入容量计算.电力系统自动化,32(3):82-86.
    21.李俊峰,时璟丽,施鹏飞,等.2005.风力12在中国[M].北京:化学工业出版社.
    22.李鹏,朴在林,王剑委.2009.基于改进蚁群算法的农网送电线路设计路径寻优.农业工程学报,25(11):232-235.
    23.李鹏,张玲,王伟,杨希磊,赵义术.2009.微网技术应用与分析.电力系统自动化,33(20):109-115.
    24.刘波,张焰,杨娜.2008.改进的粒子群优化算法在分布式电源选址和定容中的应用.电工技术学报,23(2):103-108.
    25.刘健,马莉,韦力,等.2004a.复杂配电网潮流的降规模计算.电网技术,28(8):60-63,76.
    26.刘健,杨文宇,余健明,宋蒙.2004b.一种基于改进最小生成树算法的配电网架优化规划.中国电机工程学报,22(10):103-108.
    27.刘清海,杨建华,杨普,阎剑.2002.农村电网变电站优化规划—基于GIS和改进混合遗传算法.农机化研究,(2):199-202,206.
    28.刘书如,孙启美.2005.可视化配电网仿真分析软件的设计.杭州电子科技大学学报,25(2):69-72.
    29.卢继平,叶全强,唐朝,徐琳.新农村建设中农村电网建设的探讨.2007.重庆大学学报(自然科学版),30(7):50-54.
    30.鲁宗相,王彩霞,闵勇,等.2007.微电网研究综述.电力系统自动化,31(19):100-107.
    31.《农村电力网规划设计导则》(DL/T 5118-2000).中华人民共和国电力行业标准.2000.
    32.欧阳武,程浩忠,张秀彬,等.2008.考虑分布式电源调峰的配电网规划.电力系统自动化,32(22):21,31,41,51,40.
    33.彭谦,张弘鲲,刘海燕,等.2007.基于集抄系统的配电网潮流计算方法.电网技术,31(7):69-72.
    34.朴在林,孟晓芳.2006.农村电力网规划[M].北京,中国电力出版社.
    35.朴在林,孙国凯,曹英丽,曲晓宇.2004.0.22kV低压绝缘导线束供电模式允许供电事径的探讨.中国电力,37(9):58-60.
    36.朴在林,杨涛,南俊星.2001.农村电网改造中若干技术经济问题的研究.农业工程学报,17(2):119-122.
    37.阮浩权.2007.可视化配电网管理系统的设计实现.水利电力机械,29(2):61-65.
    38.邵黎,谢开贵,何潇.2007.用于复杂配电网潮流计算和可靠性评估的树状链表和递归搜索方法.电网技术,31(13):39-43.
    39.索南加乐,李怀强,罗云照,等.2002.一种新的配网潮流常Jacobian牛顿算法.西安交通大学学报,,36(12):1222-1226.
    40.孙健,江道灼.2004.基于牛顿法的配电网络Zbus潮流计算方法.电网技术,28(15):40-44.
    41.汤红卫.2006.农村电网合理技术指标的研究.电网技术,30(增刊):295-297.
    42.汤红卫,郭喜庆.2002.基于地理信息系统的农村电网规划方法的研究.电力系统及其自动化学报,14(2):31-34.
    43.汤红卫,王华,郭喜庆.2002.一种基于地理信息系统的配电网规划方法.电网技术,26(12):79-82.
    44.王成山,陈恺,谢莹华,郑海峰.2006.配电网扩展规划中分布式电源的选址和定容.电力系统自动化,30(3):38-43.
    45.王成山,李鹏.2010.分布式发电、微网与智能配电网的发展与挑战.电力系统自动化,34(2):10-14,23.
    46.王成山,王守相.2008.分布式发电供能系统若干问题研究.电力系统自动化,32(20):1-4,31.
    47.王函韵,胡骅,朱卫东,等.2005.信息不确定性对电网无功优化的影响.中国电机工程学报,25(13):24-28.
    48.王守相,江兴月,王成山.2008.含分布式电源的配电网故障分析叠加法.电力系统自动化,32(5):38-42.
    49.王守相,王成山.2003.配电系统节点优化编号方案比较.电力系统自动化,27(8):54-58.
    50.王天华,王平洋,范明天.2000a.用演化算法求解多阶段配电网规划问题.中国电机工程学报,20(3):34-38.
    51.王天华,王平洋,范明天.2000b.用0-1规划求解馈线自动化规划问题.中国电机工程学报,20(5):54-58.
    52.王伟.2010.基于环境承载力理论的电网规划信号研究.电网技术,34(3):135-140.
    53.王锡凡.1990.电力系统优化规划[M],北京:水利电力出版社.
    54.王秀丽,李淑慧,陈皓勇.2006.基于非支配遗传算法及协同进化算法的多目标多区域电网规划.中国电机工程学报,26(12):11-15.
    55.吴文传,张伯明.2004.配网潮流回路分析法.中国电机工程学报,24(3):67-71.
    56.肖峻,崔艳妍,王建民,等.2008.配电网规划的综合评价指标体系与方法.电力系统自动化,32(15):36-40.
    57.颜伟,刘方,王官洁,等.2003.辐射型网络潮流的分层前推回代算法.中国电机工程学报,23(8):76-80.
    58.杨卫红,顾巧荣,黄歆璋.2006.新时期配电网规划中需要关注的几个问题.电网技术,30(增刊):588-590.
    59.杨旭英,段建东,杨文宇,等.2009.含分布式发电的配电网潮流计算.电网技术,33(18):140-143.
    60.于佳,朴在林,孙荣国,李骞.2009.GIS与粒子群算法在农村变电站选址规划中的应用.农业工程学报,25(5):146-149.
    61.曾祥辉,宋玮,邓健,杨以涵.2004.面向对象的电力图形系统的分析和设计.继电器,32(5):36-39.
    62.赵飞,许跃进,王宁.2009.农村电网经济供电半径和经济功率因数的研究.电力科学与工程,25(12):8-11.
    63.张伯明,陈寿孙,严正著.2007.高等电力网络分析[M].北京:清华大学出版社.
    64.张李盈,范明天.2004.配电网综合规划模型与算法的研究.中国电机工程学报,24(6):59-64.
    65.张铁峰,苑津莎,孔英会.2006.基于层次分析法和选择消去法Ⅲ的配电网规划辅助决策方法.中国电机工程学报,26(11):121-127.
    66.章文俊,程浩忠,程正敏,等.2008.配电网优化规划研究综述.电力系统及其自动化学报,20(5):16-23,55.
    67.张学松,柳焯,于尔铿,等.1998.配电网潮流算法比较研究.电网技术,22(4):45-49.
    68.张永伍,余贻鑫,严雪飞,罗风章.2005.基于区间算法和范例学习的配电网网架规划.电力系统自动化,29(17):40-44.
    69. Alejandro Navarro, Hugh Rudnick.2009. Large-Scale Distribution Planning—Part Ⅱ: Macro-Optimization With Voronoi's Diagram And Tabu Search. IEEE Transactions on Power Systems,24(2):752-758.
    70. Arias V.R. I., Ardila R., Ruiz J..2006. Distributed Generation: Regulatory and Commercial Aspects. (?)2006 IEEE:1-4.
    71. Arturo Losi, Mario Russo.2003. Object-oriented load flow for radial and weakly meshed distribution networks. IEEE Transactions on Power Systems,18 (4):1265-1274.
    72. Arturo Losi, Mario Russo.2005. Dispersed Generation Modeling for Object-Oriented Distribution Load Flow. IEEE Transactions on Power Systems,20(2):1532-1540.
    73. Ault G.W., McDonald J.R., Burt G.M.2003. Strategic analysis framework for evaluating distributed generation and utility strategies. IEEE Proceeding Generation Transmission Dsitribution, 150(4):475-481.
    74. Baghzouz Y.1991. Effects of nonlinear loads on optimal capacitor placement in radial feeders. IEEE Transactions on Power Delivery,6(1):245-251.
    75. Barker P.P, Mello R.W.D.2000. Determining the Impact of Distributed Generation on Power Systems in Radial Distribution Systems. IEEE Power Engineering Society, Summer Meeting,2000,3: 1645-1656.
    76. Berg A., Krahl S., Paulun T..2008. Cost-efficient integration of distributed generation into medium voltage networks by optimized network planning. CIRED Seminar 2008:SmartGrids for Distribution, 23-24June 2008:1-4.
    77. Bhowmik A., Maitra A., Halpin S.M., et al.2003. Determination of Allowable Penetration Levels of Distributed Generation Resources Based on Harmonic Limit Considerations. IEEE Transactions on Power Delivery,18(2):619-624.
    78. Brahma S M, Cirgis A A.2004. Development of adaptive protection scheme for distribution systerms with high penetration of distributed generation. IEEE Transaction on power Deli vey,19(1):56-63.
    79. Britton J..1992. An open, object-based model as the basis of an architecture for distribution control centers. IEEE Trans. Power Syst.7 (4):1500-1508.
    80. Carpaneto E, Chicco G, Akilimali J S.2006. Branch Current Decomposition Method for Loss Allocation in Radial Distribution Systems With Distributed Generation. IEEE Transactions on Power Systems,21(3):1170-1179.
    81. Carpinelli G., Celli G., Pilo F., et al.2001. Distributed generation siting and sizing under uncertainty.2001 IEEE Porto Power Tech Conference 10th-13th September, Porto, Portugal, 2001:7-14.
    82. Celli G., Pilo F..2001a. Optimal Distributed generation allocationin MV distribution networks.22nd IEEE Power Engineering Society international Conference on Power Industry Computer Application, May 2001:81-86.
    83. Celli G., Pilo F..2001b. MV Network Planning under uncertainties on Distributed Generation penetration. Power Engineering society summer Meeting, IEEE, July 2001,1:485-490.
    84. Celli G., Pilo F., Pismo G..2004. Optimal distribution network planning with stochastic assessment of voltage dips.8th International Conference on Probabilistic Methods Applied to Power Systems, Iowa State University, Ames, Iowa, September 12-16:801-806.
    85. Chengshan Wang, Saiyi Wang.2004. The Automatic Routing System of Urban Mid-Voltage Distribution Network Based on Spatial GIS.2004 International Conference on Power System Technology-POWERCON 2004 lngapore,21-24 November 2004:1827-1832.
    86. Chiang H.D., Wang J.C., Cockings O., et al.1990. Optimal capacitor placements in distribution systems:Part Ⅰ and Part Ⅱ. IEEE Trans, on Power Delivery,5 (2):634-649.
    87. Chiradeja P..2005. Benefit of Distributed Generation: A Line Loss Reduction Analysis.2005 IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific Dalian,2005: 1-5.
    88. Chiradeja P., Ramakumar R..2004. An approach to quantify the technical benefits of distributed generation. IEEE Trans. Energy Convers.,19(4):764-773.
    89. Chowdhury A. A., Agarwal S. K., Koval D. O..2003. Reliability modeling of distributed generation in conventional distribution systems planning and analysis. IEEE Transactions on Industry Applications (Trans. Ind. Appl.),39(5):1493-1498.
    90. Chowdhury A.A., Koval D.O..2004. Current Practices and Customer Value-Based Distribution System Reliability Planning. IEEE Transactions on Industry Applications,40(5):1174-1182.
    91. Chung C. Y., Tse C. T., David A.K..1997. New Load Flow Technique Based on Load Transfer and Load Buses Elimination. Proceedings of the 4th International Conference on Advances in Power System Control, Operation and Management, APSCOM-97, Hong Kong, November 1997:614-619.
    92. Deependra Singh, Devender Singh, K. S. Verma.2009. Multiobjective Optimization for DG Planning With Load Models. IEEE Transactions on Power Systems,24 (1):427-436.
    93. Dragoslav Rajicic, Risto Ackovski, Rubin Taleski.1994. Voltage correction power flow. IEEE Transactions on Power Delivery,9(2):1056-1062.
    94. Edelmiro Miguez, Jose Cidras, Eloy Diaz-Dorado.2002. An Improved Branch-Exchange Algorithm for Large-Scale Distribution Network Planning. IEEE Transactions on Power Systems,17(4): 931-936.
    95. El-Khattam W., Hegazy Y.G., Sdama M. M. A..2003. Stochastic Power Flow Analysis of Electrical Distributed Generation Systems. (?)2003 IEEE:1141-1144.
    96. Eloy Diaz-Dorado, Jose Cidras Pidre.2004. Optimal Planning of Unbalanced Networks Using Dynamic Programming Optimization. IEEE Transactions on Power Systems,19(4):2077-2085.
    97. Eloy Diaz-Dorado, Jose Cidras, Edelmiro Miguez.2002. Application of Evolutionary Algorithms for the Planning of Urban Distribution Networks of Medium Voltage. IEEE Transactions on Power Systems,17(3):879-884.
    98. Fan Zhang, Carol S. Cheng.1997. A Modified Newton Method for Radial Distribution System Power Flow Analysis. IEEE Transactions On Power Systems,12(1):389-397.
    99. Fangxing Li, Robert P. Broadwater.2004. Software Framework Concepts for Power Distribution System Analysis. IEEE Transactions on Power Systems,19(2):948-956.
    100. Gheorghe Cartina, Claudia Bonciu, Eugen Birladeanu, et al.2000. Optimization of the Decisions for the Renewal/Reinforcements on Distribution Networks.10th Mediterranean Electrotechnical Conference, MEleCon, Vol. Ⅲ(?)2000 IEEE:911-914.
    101. Gomez J.F., Khodr H.M. et al.2004. Ant Colony System Algorithm for the Planning of Primary Distribution Circuits. IEEE Transactions on Power Systems,19(2):996-1004.
    102. Gohokar V.N., Khedkar M.K., Dhole G.M..2004. Formulation of distribution reconfiguration problem using network topology: a generalized approach. Electric Power Systems Research,2004, 69:305-310.
    103. Goswami S.K..1997. Distrbution system planning using branch exchange technique. IEEE Transactions on Power Systems,12(2):718-723.
    104. Goswami S.K., Basu S.K.1991. Direct solution of distribution systems. Proceedings of IEE, Part C,138(1):78-88.
    105. Graham W. Ault, Colin E.T. Foote, James R. McDonald.2002. Distribution System Planning in Focus. IEEE Power Engineering Review, January 2002:60-63.
    106. Haffner S., Pereira L. F. A., Pereira L. A., Barreto L. S..2008a. Multistage model for distribution expansion planning with distributed generation—Part Ⅰ:Problem formulation. IEEE Transactions on Power Delivery,23 (2):915-923.
    107. Haffner S., Pereira L. F. A., Pereira L. A., Barreto L. S..2008b. Multistage Model for Distribution Expansion Planning with Distributed Generation—Part Ⅱ:Numerical Results. IEEE Transactions on Power Delivery,23(2):924-929.
    108. Hamid Falaghi, Mahmood-Reza Haghifam.2007. ACO Based Algorithm for Distributed Generation Sources Allocation and Sizing in Distribution Systems. (?)2007 IEEE, PowerTech 2007:555-560.
    109. Hans B.P., Paul R.M., Lambert F.C..2003. Distributed Generation: Semantic Hype or the Dawn of a New Era. IEEE power & energy magazine, january/february 2003:22-26.
    110. Hegazy Y. G., Salama M.M. A., Chikhani A. Y..2003. Adequacy assessment of distributed generation systems using Monte Carlo simulation. IEEE Transactions on Power Systems,18(1):48-52.
    111.Hossein Daneshi, Mohammad Shahidehpour, Azim Lotfjou Choobbari.2008. Long-Term Load Forecasting in Electricity Market. (?)2008 IEEE:395-400.
    112. Hsiao-Dong Chiang, Jin-Cheng Wang, Karen Nan Miu.1997. Explicit Loss Formula, Voltage Formula and Current Flow Formula for Large-scale Unbalanced Distribution Systems. IEEE Transactions on Power Systems,12 (3):1061-1067.
    113. Huang S.J..2000. An immune-based optimization method to capacitor placement in a radial distribution system. IEEE Transactions on Power Delivery,15(2):744-749.
    114. Huang Y.C., Yang H.T., Huang C.L..1996. Solving the capacitor placement problem in a radial distribution system using tabu search approach. IEEE Transactions on Power Systems,11(4): 1868-1873.
    115. Hugo A.G, Geza J..2008. Models for Quantifying the Economic Benefits of Distributed Generation. IEEE Transactions on Power Systems,23(2):327-335.
    116. Ignacio J. Ramirez-Rosado, Jose Antonio Dominguez-Navarro.2006. New Multiobjective Tabu Search Algorithm for Fuzzy Optimal Planning of Power Distribution Systems. IEEE Transactions on Power Systems,21(1):224-233.
    117. Johan Driesen, Farid Katiraei.2008. Design for Distributed Resources. IEEE power & energy magazine, may/june(8):30-40.
    118. Jun Xiao, Lei Hou, Fengzhang Luo.2008. Load Forecasting and its Calibration Method Considering the Influence of Temperature. DRPT2008 6-9 April 2008 Nanjing China ■2008DRPT:1255-1258.
    119. Kumpulainen L. K., Kauhaniemi K. T..2004. Analysis of the impact of distributed generation on automatic reclosing. (?)2004IEEE:1-6.
    120. Li F., Broadwater R.P..2004. Software framework concepts for power distribution system analysis. IEEE Transactions on Power Systems,19 (2):948-956.
    121. Luis F. Ochoa, Antonio Padilha-Feltrin, Gareth P. Harrison.2006. Evaluating Distributed Generation Impacts With a Multiobjective Index. IEEE Transactions on Power Delivery,2006,21(3): 1452-1458.
    122. LUO G.X., Semlyen A..1990. Efficient load flow for large weakly weakly meshed networks. IEEE Transactions on Power Systems,5(4):1309-1316.
    123. Marie Blanchard, Louis Delorme, Christiane Sim.1996. Experience With Optimization Software for Distribution System Planning. IEEE Transactions on Power Systems,11(4):1891-1898.
    124. Marija Prica, Marija D. Ilic.2007. Optimal Distribution Service Pricing for Investment Planning. (?)2007 IEEE:1-7.
    125. M.H.Haque.1996. Efficient load flow method for distribution systems with radial or mesh configuration. IEE Proc-Germ Transm. Distrib.,143 (1):33-38.
    126. Nagaraj Balijepalli, Subrahmanyam S. Venkata, Richard D. Christie.2004. Modeling and Analysis of Distribution Reliability Indices. IEEE Transactions on Power Delivery,19(4):1950-1955.
    127. Vempati N., Shoults R. R., et al.1987. Simplified feeder modeling for load flow calculations. IEEE Transactions on Power Systems, PWRS-2(1):168-174.
    128.Nahman J., Peric D..2003. Distribution system performance evaluation accounting for data uncertainty. IEEE Transactions on Power Delivery,18(3):694-700.
    129. Nicholas G. Boulaxis, Michael P. Papadopoulos.2002. Optimal Feeder Routing in Distribution System Planning Using Dynamic Programming Technique and GIS Facilities. IEEE Transactions on Power Delivery,17(1):242-247.
    130. Omar F. Fajardo, Alberto Vargas.2008. Reconfiguration of MV Distribution Networks With Multicost and Multipoint Alternative Supply, Part Ⅱ:Reconfiguration Plan. IEEE Transactions on Power Systems,23(3):1401-1407.
    131. Raj Kumar Singh, S. K. Goswami.2008. Evaluation of Nodal Prices and Revenue of Distributed Generation in Distribution Network Including Load Model.2008 IEEE Region 10 Colloquium and the Third ICIIS, Kharagpur, INDIA December 8-10,2008, (498):1-6.
    132. Ray D. Zimmerman, Hsiao-Dong Chiang.1995. Fast Decoupled Power Flow for Unbalanced Radial Distribution Systems. IEEE Transactions on Power System,10(4):2045-2052.
    133. Robert H. Fletcher, Kai Strunz.2007. Optimal Distribution System Horizon Planning-Part I: Formulation. IEEE Transactions on Power Systems,22(2):791-799.
    134. Robert MACDONALD, Graham AULT, Robert CURRIE.2008. Deployment of active network management technologist in the UK and their Impact on the Planning and Design of Distribution Networks. CIRED Seminar 2008:SmartGrids for Distribution, Frankfurt,23-24 June 2008:NO0087.
    135. Pandit S., Soman S.A., Khaparde S.A..2001. Design of generic direct sparse linear system solver in C++for power system analysis. IEEE Trans. Power Syst.16 (4):647-652.
    136. Sadeghzadeh S. M., Ansarian M.,2006. Distributed Generation and Renewable Planning with a Linear Programming Model. First International Power and Energy Coference PECon 2006 November,, Putrajaya, Malaysia 28-29,2006:48-53.
    137. Santoso N I, Tan O T.1990. Neural-net based real-time control of capacitors installed on distribution systems. IEEE Transactions on Power Delivery,5(1):266-272.
    138. Sbrfi R.J., Salama M.M.A., Chikhani A.Y..1996. Distribution system reconfiguration for loss reduction: an algorithm based on network partitioning theory. IEEE Transactions on Power Systems, 11(1):504-510.
    139. Selvan M.P., Swarup K.S..2004. Distribution system load flow using objectoriented methodology. IEEE International Conference on Power System Technology POWERCON 2004, Singapore, November 21-24.
    140. Selvan M.P., Swarup K.S..2006. Modeling and analysis of unbalanced distribution system using object-oriented methodology. Electric Power Systems Research,76 (3):968-979.
    141. Senjyu T, Miyazato Y, Yona A, et al.2008. Optimal Distribution Voltage Control and Coordination with Distributed Generation. IEEE Transactions on Power Delivery,23(2):1236-1242.
    142. Shirmohammadi D., Hong H. W., Semlyen A., Luo G. X..1988. A Compensation-Based Power Flow Method for Weakly Meshed Distribution and Transmission Networks. IEEE Transactions on Power Systems,3(2):753-762.
    143. Snjezana Blagajac, Slavko Krajcar, Davor Skrlec.2000. A Computational Tool To Support Spatial Electric Load Forecasting.10th Mediterranean Electrotechnical Conference, MEleCon 2000, (?)2000 IEEE:1116-1119.
    144. Sree Rama Kumar Yeddanapudi, Yuan Li.2008. Risk-Based Allocation of Distribution System Maintenance Resources. IEEE Transactions on Power Systems,23(2):287-295.
    145. Sundhararajan S, Pahwa A.1994. Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Transactions on Power Systems,9(3):1499-1506.
    146. The Distribution Working Group of the IEEE.2003. Power System Planning and Implementation Committee. Planning for Effective Distribution. IEEE power & energy magazine, september/october 2003:54-62.
    147. The Distribution Working Group of the IEEE Power System Planning and Implementation Committee.2003. Planning for Effective Distribution. IEEE power & energy magazine, september/october:54-62.
    148. Viktoria Neimane.2001. Distribution Network Planning Based on Statistical Load Modeling Applying Genetic Algorithms and Monte-Carlo Simulations.2001 IEEE Porto Power Technology Conference 10th-13th September, Porto, Portugal.
    149. Vinit Gupta, Anil Pahwa.2004. A Voltage Drop-Based Approach to Include Cold Load Pickup in Design of Distribution Systems. IEEE Transactions on Power Systems,19(2):957-963.
    150. Walid El-Khattam, Y.G. Hegazy.2005. An Integrated Distributed Generation Optimization Model for Distribution System Planning. IEEE Transactions on Power Systems,20(2):1158-1165.
    151. Walid El-Khattam, Y. G. Hegazy, M. M. A. Salama.2005. An Integrated Distributed Generation Optimization Model for Distribution System Planning. IEEE Transactions on Power Systems, 20(2):1158-1164.
    152. Wang Jili, He Renmu, Ma Jin.2007. Load Modeling Considering Distributed Generation. (?)2007 IEEE:1072-1077.
    153. Yasin Z M, Rahman T K A.2006. Service Restoration in Distribution Networkwith Distributed Generation.4th Student Conference on Research and Development, Shah Alam, Selangor, 2006:200-205.
    154. Yeh(M) E.-C., Hahn Tram(SM).1997. Information Integration in Computerized Distribution System Planning. IEEE Transactions on Power Systems,12(2):1008-1013.
    155. Zhang Z.R., Yin Z.D., Hu F.X..2006. Research of Multi-Farms Transmission of Distributed Generation Based on HVDC Light.2006 International Conference on Power System Technology, (?)2006 IEEE:1-6.
    156. Zhu Y., Tomsovic K..2002. Adaptive power flow method for distribution system with dispersed generation. IEEE Transactions on Power Delivery,17 (3):822-827.
    157. Zhuding Wang, Haijun Liu, David C. Yu, Xiaohui Wang, Hongquan Song.2000. A Practical Approach to the Conductor Size Selection in Planning Radial Distribution Systems. IEEE Transactions on Power Delivery,15(1):350-354.
    158. Zuhaila Mat Yasin, Titik Khawa Abdul Rahman.2006. Influence of Distributed Generation on Distribution Network Performance during Network Reconfiguration for Service Restoration. First International Power and Energy Coference November 28-29,2006, Putrajaya, Malaysia, PECon 2006: 566-570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700