用户名: 密码: 验证码:
介质阻挡放电反应器的结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介质阻挡放电反应器是利用介质阻挡放电方法脱除污染物的核心实验装置。通过对介质阻挡放电反应器的结构进行优化,可以提高反应器对污染物的脱除效率,同时可以降低电耗。本文首先建立了一个判断反应器优劣的评价方法:即电子平均动能与电子数密度是判断反应器优劣的主要参数。然后采用一维流体模型,对同轴电极反应器的结构进行简化分析,利用MATLAB编程,通过求解流体连续性方程和电流平衡方程,得到反应器内的电场强度与电子数密度的时空分布。通过比较电场强度与电子数密度,也就可以判断反应器的优劣。通过逐个改变反应器结构参数(外加电压幅值、电源频率、介质材料、介质层厚度、中心电极半径、放电间隙)来研究该参数对反应器脱除污染物效率的影响。模拟结果表明:外加电压幅值越大,越有利于污染物脱除;电源频率对脱除率的影响是非线性的;介质材料的介电常数越大,对污染物的脱除效果也就越好;介质层厚度可不作改动;中心电极半径越大,越有利于脱除污染物;在保证气体脱除效率的前提下,可以适当增加放电间隙的长度。
     最后针对模拟结果进行了验证实验。在本课题组搭建的实验台上,进行脱除NO的实验研究。分别研究了气体流量(6.3L/min和10.5L/min)、放电频率(10kHz和20kHz)、放电间隙(7.5mm和5mm)等参数对NO的脱除率的影响。通过该实验验证了模拟的正确性。本文研究成果对于提高反应器对污染物的脱除率以及反应器的工业化应用具有一定的参考价值。
Dielectric barrier discharge (DBD)reactor is the main equipment for pollutants removal by using dielectric barrier discharge method.The efficiency of pollutants removal will be improved by use of optimizing the structure of DBD reactor,simultaneously,the loss of power will be decreased.A evaluation method is established to estimate the performance of the reactor at the beginning of this paper:the mean electron energy and electron density are the main parameters to judge the performance of reactor.Then a simplified analysis for the structure of the axially symmetrical reactor is made to use the one-dimensional fluid model.compile program by means of MATLAB.it is easy to obtain the temporal and spatial distribution by solving the fluid continuity equation and the current conservation equation.So we can estimate the performance of reactor.Making a research on the impact of the reactor structure to pollutants removal by changing the value of structure parameter(applied voltage amplitude, power frequency, dielectirc material, the thickness of dielectric,inner electrode radius and discharge gap) one by one.The simulation results show that:the removal rate of pollutants increased with the increase of applied Voltage amplitude;the impact of power frequency to removal rate of pollutants is nonlinear;if the dielectric constant of the dielectric material is big,it is helpful to pollutants removal;the thickness of dielectric material should be keep constant;the length of the discharge gap should be increased on the premise of high removal rate of pollutants.
     At last,three verification experiments are conducted.These experiments about NO removal are finished on the lab table builded by our studying team.The three parameters are gas flow(6.3L/min and 10.5L/min),power frequency(10kHz and 20kHz),discharge gap(7.5mm and 5mm)respectively.The accuracy of the simulation is verified by the experiments.The research results in this paper are reference for reactor to improve the pollutants removal rate and industrial application.
引文
[1]郭静,阮宜纶.大气污染控制工程[M].北京:化学工业出版社,2001:7-11
    [2]姜玉波.汽车运用基础[M].北京:机械工业出版社,2006:66-80
    [3]张欣.烟气等离子体-催化SOx转化脱除研究[D].东南大学硕士论文,2004:1-2
    [4]李飞.介质阻挡放电脱硫脱硝的化学反应动力学模拟[D].北京:华北电力大学硕士论文,2009:1-2
    [5]郝艳红,黄成群,傅毓赞.火电厂环境保护[M].北京:中国电力出版社,2008:10-15
    [6]张磊,刘树昌.大型电站煤粉锅炉烟气脱硫技术[M].北京:中国电力出社,2009:1-20
    [7]孙克勤,钟秦.火电厂烟气脱硝技术及工程应用[M].北京:化学工业出版社.2006:1-20
    [8]A.G.Chmielewski, A.Ostapczuk, Z.Zimek,J.licki, K.Kubica.Reduction of VOCs in flue gas from coal combustion by electron beam treatmen[J]. Radiation Physics and Chemistry.2002,63(3):653-655
    [9]Hyun-Su Kim,Woo Seok Kang,Gon-Ho Kim et al. Metal surface oxidation by using dielectric barrier discharge[J].Thin Solid Films.2010,518(22):6394-6398
    [10]Nongnuch Rueangjitt,Thammanoon Sreethawong, Sumaeth Chavadej et al. Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effects of input power, reactor thickness and catalyst existence[J]. Chemical Engineering Journal,2009,155(3):874-880
    [11]高听听.大气压射频Ar/SiH4/H2辉光放电数值模拟[D].辽宁:大连理工大学硕士论文,2009:7-9
    [12]王新新.介质阻挡放电及其应用[J].高电压技术,2009,35(1):1-11
    [13]刘亮,张贵新,朱志杰.微波等离子体设备场分布的仿真和实验[J].清华大学学报(自然科学版),2008,48(1):28-31
    [14]唐祖臣.介质阻挡放电等离子体电热转化特性研究[D].江苏:东南大学硕士论文,2006:2-4
    [15]Lee,Y.H.,J.W.Chung,Y.R.Choi. NOx removal characteristics in plasma plus catalyst hybrid process J S[J]. Plasma chemistry and Plasma Processing, 2004,24(2):137-154
    [16]董冰岩,吴彦,李杰.脉冲流光电晕脱硫反应器电极配置数值模拟[J].大连理工大学学报,2005,45(2):157-160
    [17]S.Masuda,K.Akutsu,M.Kuroda et al.,A ceramic-based ozonizer using high-frequency discharge[J]. IEEE Trans. Ind.Applicant.1988,24(2):223-231
    [18]董冰岩,吴彦.李杰.线板式脉冲流光放电脱硫反应器电场数值计算[J].中原工程院学报,2003,14(S1):29-30
    [19]何涛,丁可,张菁等.圆筒状DBD放电特性模拟研究[J].核聚变与等离子体物理,2008,28(2):177-181
    [20]夏卫东,李居峰,丁兴贵.NOx在净化中的反应动力学特性的试验研究与数值模拟[J].机械制造,2009,47(536):73-76
    [21]Michael G Kong.Deng XuTao. Electrically Efficient Production of a Diffuse Nonthermal Amospheric Plasma[J]. IEEE Transation on Plasma Science, 2003,31(1):7-18
    [22]张远涛,王德真,于艳辉.大气压介质阻挡丝状放电时空演化数值模拟[J].物理学报,2005,54(10):4808-4815
    [23]钟侃,聂勇,汪晶毅等.填充石英球对DBD等离子体转化NO的影响[J].电工电能新技术,2007,26(4):71-74
    [24]余刚,余奇,蒋彦龙等.低能耗非热等离子体NO还原特性[J].南京航空航天大学学报,2005,37(1):106-109
    [25]H.Sadat,N.Dubus,V.Le Dez,J,M. Tatibou e t,J.Barrault.A simple model for transient temperature rise and fall in a dielectric barrier discharge reactor after ignition and shut down[J].Journal of Electrostatics.2010,68:27-30
    [26]Mario Moscosa-Santillan,Axel Vincent,Esteban Santirso,Jacques Amouroux. Design of a DBD wire-cylinder reactor for NOx emission control:experimental and modeling approach[J]. Journal of Cleaner Production.2008,16:198-207
    [27]吴宇煌,杨学昌,陈波等.非热等离子体对柴油尾气中NOx的治理[J].清华大学学报(自然科学版),2009,49(1):1-4
    [28]聂超群,李刚,朱俊强等.介质阻挡放电等离子体流动控制的研究[J].中国科学E辑:技术科学.2008,38(11):1827-1835
    [29]Koichi Takaki,Masaki Shimizu,Seiji Mukaigawa,Tamiya Fujiwara. Effect of Electrode Shape in Dielectric Barrier Discharge Plasma Reactor for NOx Removal [J]. IEEE Transaction On Plasma Science.2004,32(1):32-38
    [30]Kogelschatz U. Dielectric-barrier discharge:their history,discharge physics,and industrial applications[J]. Plasma Chemistry and Plasma Processing.2003, 23(1):41-46
    [31]金伟成.介质阻挡放电脱除NO的实验研究[D].江苏:南京理工大学硕士论文,2006,9-13
    [32]张文静.大气压介质阻挡放电物理过程的数值模拟[D].东华大学硕士论文,2007:10-12
    [34]高旭东,孙保民,肖海平等.介质阻挡放电脱除NOx反应器的评价方法及运行流量特性分析[J].中国电机工程学报,2010,30(11):27-32
    [35]Jeong Hoon Byeon,Jae Hong Park,Yoon Shin Jo et,al.Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor[J]. Journal of Hazardous Materials,2010,175(1-3):417-422.
    [36]Juyoung Jeong,Jongsoo Jurng.Removal of gaseous elemental mercury by dielectric barrier discharge[J].Chemosphere,2007,68(10):2007-2010
    [37]Morgan W L,Penetrate B M.A time-dependent Boltzmann solver for partially ionized plasmas[J].Computer Physics Communications,1990,58(1-2):127-152.
    [38]Mclarnon C R,Penetrate B M.Effect of reactor design on the plasma treatment of NOx[C].1998 Society of Automotive Engineers Fall Fuels And Lubricants Meeting,San Francisco,USA,1998
    [39]M.M.Becker,D.Loffhagen,W.Schmidt.A stabilized finite element method for modeling of gas discharges[J]. Computer Physics Communications,2009,180(8): 1230-1241
    [40]Y.H.Choi,J.H.Kim, Y.S.Hwang. One-dimensional discharge simulation of nitrogen DBD atmospheric pressure plasma[J]. Thin Solid Films,2006, (506-507):389-395
    [41]Bogarts A,Gijbels R,Goedheer.Hybrid Monte Carlo-fluid model of a direct current glow discharge.J.Appl.Phys.1995,78(4):2233-2241
    [42]Passchier J D P,Goedheer W J.Relaxation phenomena after laser-induced photodetachment in electronegative rf discharge[J]. J.Appl.Phys.1993,73(3): 1073-1079
    [43]Boeuf J P.A two-dimensional model of dc glow discharge[J]. J.Appl.Phys.1988, 63(5):1342-1349
    [44]Young F F,Wa C H.Comparisons of one-and two-dimensional three-moment fluid models for rf glow discharge.J.Appl.Phys.1993,74(2):839-847
    [45]Wu C,Kunhardt E E,Formation and propagation of streamers in N2 and N2SF6 mixture[J],Phys.Rev.A,1988,37,4396-4406
    [46]Vitello P A,Penetrante B M,Bardsley J N,Multi-dimensional modeling of the dynamic morphology of streanmer[In], ed B M Penetrante and S E Schultheis, coronas Non Thermal Techniques for Pollution Control part A, Berlin,Springer, 1993,249-272
    [47]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996:1-200
    [48]Meeks E,Larson R S,Vosen S R,Shon J W.Modeling chemical sownstream etch systems for NF3/O2 nixtures[J]. J.Electronchem.Soc.1997,144(1):357-366
    [49]Guerra V and Loureiro J.Electron and heavy particle kinetics in a low-pressure nitrogen glow discharge[J].Plasma Source Sci.Technol.,1997,6:361-372
    [50]方志,邱毓昌,王辉.介质阻挡放电的放电过程仿真研究[J].高电压技术,2006,32(8):62-65
    [51]D.L.Scharfetter,H.K.Gummel.Large-signal analysis of a silicon read diode oscillator[J]. IEEE Trans.Electron Devices,1969,16(64):64-77
    [52]J.P.Boeuf,L.C.Pitchford.Pseudospark discharge via computer simulation[J]. IEEE Trans, Plasma Sci,1991,19(2):286-296
    [53]A.Fiala,L.C.Pitchford,J.P.Boeuf,Physics Review E,1991,49(6):5607
    [54]张红艳.同轴电极介质阻挡大气压辉光放电数值模拟[D].辽宁:大连理工大学硕士论文,2006:21-23
    [55]冯允平.高电压技术中的气体放电及其应用[M].北京:水利电力出版社,1990:1-200
    [56]孙岩洲,邱毓昌,丁卫东.电源频率对介质阻挡放电的影响[J].高电压技术,2002,28(11):43-53
    [57]王艳辉,王德真.介质阻挡均匀大气压辉光放电数值模拟研究[J].物理学报,2003,52(7):1694-1700
    [58]竹涛,李坚,梁文俊等.高频介质阻挡放电降解甲苯的实验研究[J].高电压技术,2009,35(2):359-363
    [59]孙红华.介质阻挡放电低温等离子体脱硫脱硝研究[D].北京:华北电力大学硕士论文,2009:1-58
    [60]王成遇,陶瑛.玻璃成分的设计与调整[J].玻璃与搪瓷,2004,32(6):56-59
    [61]周志培.介质阻挡放电脱除烟气中NO的实验研究[D].华北电力大学硕士论 文,2010,1-54
    [62]Eliasson B, Kogelschatz U.Modeling and applications of silent discharge plasmas[J]. IEEE Trans on Plasma science,1991,19(2):309-322
    [63]Phillip D Boyle.Multi-Pollutant Control Technology for Coal-fired Power Plant[C]. Clean Coal and Power Conference,2005:1-1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700