用户名: 密码: 验证码:
沿面型介质阻挡放电相关特性和影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介质阻挡放电又称无声放电,能够在大气压条件下产生大体积、高能量密度的低温等离子体,在很多工业领域获得了巨大的技术突破。沿面型介质阻挡放电作为一种新型的介质阻挡放电形式,除了具有上述特征外,近年来发现其在应用等离子体实现主动气流控制方面具有独特的优势,在飞机起降、风力发电等空气动力学领域具有光明的发展前景。当前,沿面型介质阻挡放电等离子体气流控制技术以其经济、高效和高可控性引起了各方面的高度关注,激发了新的研究热潮,但其物理过程、作用机理等尚没有统一理论。因此,对沿面型介质阻挡放电相关特性和影响因素进行研究具有重要理论意义和应用价值。
     本文给出了沿面型介质阻挡放电的放电结构,搭建了沿面型介质阻挡放电的实验研究平台,在此平台基础上对其相关特性和影响因素进行了一系列实验研究并附以相应的理论分析。
     首先,对沿面型介质阻挡放电的放电机理和气流加速原理进行了探究;以不对称、对称两种电极结构为基础,分析了沿面型介质阻挡放电的电气特性和放电图像;给出了本文所用的放电功率计算方法;基于放电机理,建立了沿面型介质阻挡放电的等效电路,指出了等效参数的计算,推导了放电功率的计算公式,并与Lissajous图形法计算功率进行比较,验证了该模型的可行性。
     其次,对沿面型介质阻挡放电相关影响因素进行了系统的实验研究,给出了不同外加电压幅值、频率、电极宽度、电极间距和介质的相对介电常数时不同结构沿面介质阻挡放电的电压电流波形图、高速相机拍摄放电图像和放电功率。得出以下结论:外加电压幅值越大,放电越剧烈且越均匀,放电功率不断增大;频率对放电的影响复杂,不对称结构中存在最优频率,对称结构随着频率的升高放电越剧烈,同时,不同频率下,放电丝簇的位置基本不变;电极宽度和电极间距越小,放电越容易,放电丝分布越均匀,存在最优电极宽度和电极间距,使得沿面放电稳定且产生的等离子体相对均匀;相对介电常数越大,放电越容易但均匀性变差,功率线性增加。
Dielectric Barrier Discharge (DBD), also called silent discharge, can produce low temperature plasma with large size and high-energy density at normal atmosphere, which has achieved significant technological breakthroughs in many industrial fields. Besides the above characteristics, Surface Dielectric Barrier Discharge (SDBD), as a new kind of DBD, has competitive advantages in air flow control and bright prospects in many aerodynamics areas such as aircraft movements and wind power generation. Nowadays, SDBD has attracted much attention due to its economy, efficiency and high controllability, setting off a new upsurge in research. However, its physical process and function mechanism have not been well understood. Thus, it is of great theoretical significance and application value to study on SDBD about its characteristics and influencing factors.
     The discharge structure of SDBD and the experiment platform have been presented. Based on this experiment platform a series of researches have been carried out on its characteristics and influencing factors, with relevant theoretical analysis given.
     First of all, the discharge mechanism of SDBD and the principle of airflow acceleration are explored. Then, electrical characteristics and discharge pictures are analyzed, based on both symmetrical and asymmetrical electrode structures. Moreover, the method of computing discharge power is present. According to the discharge mechanism, the equivalent circuit is established, the calculation of equivalent parameters is pointed out, and the calculation formula of discharge power is deduced, which are proved to be right compared with Lissajous calculation method.
     Secondly, the influencing factors of SDBD are studied in the case of varied different applied voltages, frequencies, electrode widths, electrode gaps and relative dielectric constants. It is proved that the higher the applied voltage is, the more severe and uniform the discharge becomes, with the power increasing linearly. Frequency has complex effects on discharge characteristics. There is an optimal frequency in asymmetric structure, while the discharge of symmetric structure becomes more severe with the frequency increasing. At the same time, discharge wire clusters almost remain still under different frequencies. The smaller the electrode width and electrode gap are, the easier the discharge becomes and the more uniform the discharge wires are. In addition, there exists optimal electrode width and electrode gap, which makes the discharge more stable and uniform. Besides the bigger the relative dielectric constant is, the easier the discharge becomes and the less uniform the discharge wires are, with the power increasing linearly.
引文
[1]Grill A. Cold plasma in materials fabrication:from fundamentals to applications[M]. New York:IEEE Press,1994.
    [2]彭国贤.气体放电-等离子体物理的应用[M].上海:知识出版社,1988.
    [3]葛袁静,张广秋,陈强.等离子体科学技术及其在工业中的应用[M].北京:中国轻工业出版社,2011.
    [4]Miles R B. Flow control by energy addition into high-speed air[C]. Fluids Conference and Exhibit,2000. AIAA Paper,2000-2324.
    [5]刘勇,李清泉.电流体动力等离子体发生器特性实验研究[J].电工电能新技术,2009,28(2):29-33.
    [6]J. Reece Roth. Industrial Plasma Engineering Vol.2[M]. London:IoP,2001.
    [7]Gadri, R B. One atmosphere glow discharge structure revealed by computer modeling[J]. IEEE Transactions on Plasma Science,1999,27(1):36-37.
    [8]Kogoma M, Okazaki S. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure[J]. J. Phys. D:Appl. Phys,1994,27:1985-1987.
    [9]Van Veldhuizen E M, Rutgers W R. Pulsed positive corona streamer propagation and branching[J]. Phys. D:Appl. Phys,2002,35:2169-2179.
    [10]Kang W S, Park J M, Kim Y, Hong S H. Numerical study on influences of barrier arrangements on dielectric barrier discharge characteristics[J]. IEEE Trans. Plasma Sci, 2003,31:504-510.
    [11]Gibalov V, Pietsch G J. The development of dielectric barrier discharges in gas gaps and on surfaces[J]. J. Phys. D:Appl. Phys,2000,33:2618-2636.
    [12]Kanazawa S, Kogoma M, Moriwaki T, et al. Stable glow plasma at atmospheric pressure[J]. J. Phys. D:Appl. Phys,1988,21:838-840.
    [13]Okazaki S, Kogoma M, Uehara M, et al. Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50Hz source[J]. J. Phys. D: Appl. Phys,1993,26:889-892.
    [14]Sawada Y, Tamaru H, Kogoma M, et al. The reduction of copper oxide thin films with hydrogen plasma generated by an atmospheric-pressure glow discharge[J]. J. Phys. D: Appl. Phys,1996,29:2539-2544.
    [15]Mangolini L, Orlov K, Kortshagen U, et al. Radial structure of a low-frequency atmospheric pressure glow discharge in helium[J]. Appl. Phys. Lett,2002,80:1722-1724.
    [16]Nikonov V, Bartnikas R, Wertheimer M R. Surface charge and photoionisation effects in short air gaps undergoing discharges at atmospheric pressure[J]. J. Phys. D:Appl. Phys, 2001,34:2979-2986.
    [17]Laroussi M, Alexeff I, Kang W L. Biological decontamination by nonthermal plasmas[J]. IEEE Trans. Plasma Sci,1998,28:184-188.
    [18]Laroussi M. Sterilization of contaminated matter with an atmospheric pressure plasma[J]. IEEE Trans. Plasma Sci,1996,24:1188-1191.
    [19]Laroussi M, Sayler G S, Glascock B B, et al. Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure[J]. IEEE Trans. Plasma Sci, 1999,27:34-35.
    [20]Pater M P, Ng T T, Vasudevan S. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle[C].3rd AIAA Flow Control Conference, San Francisco, California,2006, AIAA 2006-3495.
    [21]Tanner, Scott D, Holland, et al. Plasma Source Mass Spectrometry:New evelopments and Applications[C]. International conference on Plasma Source Mass Spectrometry 6th, University of Durham,1988.
    [22]孙红华.介质阻挡放电低温等离子体脱硫脱硝研究[D].北京:华北电力大学,2009.
    [23]周志培.介质阻挡放电脱除烟气中NO的实验研究[D].北京:华北电力大学,2010.
    [24]王莹.低压孔板电极介质阻挡放电特性及匹配电源的研究[D].大连:大连理工大学,2009.
    [25]Astrom K.J, Wittenm ark B. Adaptive control[Z]. Reading, MA:Addison-Wesley,1989.
    [26]Corke T C, He C, Pater M P. Plasma flaps and slats:an application of weakly Ionized plasma actuators[C].2nd AIAA Flow Control Conference, Portland, Oregon,2004; AIAA Paper 2004-2127.
    [27]Thomas F O, Kozlov A, Corke T C. Plasma actuators for landing gear noise reduction[C]. 11th AIAA/CEAS Aeroacoustics Conference, Monterey, California,2005, AIAA Paper 2005-3010.
    [28]Ramakumar K, Jacob J D. Flow control and lift enhancement using plasma actuators[C]. 35th Fluid Dynamics Conference, Toronto, ON,2005, AIAA Paper 2005-4635.
    [29]Jukes T N, Choi K-S, Johnson G A. Turbulent boundary-layer control for drag reduction using surface plasma[C].2nd AIAA Flow Control Conference, Portland,2004, AIAA Paper 2004-2216.
    [30]Jacob J D, Rivir R, Carter C, et al. Boundary layer flow control using acdischarge plasma actuators[C].2nd AIAA Flow Control Conference, Portland, Oregon,2004, AIAA Paper 2004-128.
    [31]Balcer B E. Boundary layer flow control using plasma induced velocity[D]. USA:Air Force Institute of Technology(AU),2005.
    [32]Corke T C, Mertz B, Patel M P. Plasma flow control optimized airfoil[C]. AIAA 44th Aerospace Sciences Meeting, Reno, Nevada,2006, AIAA Paper 2006-1208.
    [33]Vorobiev A N, Renier R M, Jumpre E J. An experimental invertigation of lift enhancement and roll control using plasma actuators[C].37th AIAA Plasmadynamics and Lasers Conference, San Francisco, California,2006, AIAA Paper 2006-3383.
    [34]Morris S C, Corke T C, Van Ness D. Tip clearance control using plasma actuators[C]. 43rd Aerospace Sciences Meeting, Reno, Nevada,2005, AIAA 2005-0782.
    [35]Schatzman D M, Thomas F O, Corke T C. Quad tilt rotor fuselage ramp separation control using plasma actuators[R]. Progress Report for Purchase Order Number, 300144-332101.
    [36]Pons J, Moreau E, Touchard G. Electrical and aerodynamic characteristics of atmospheric pressure barrier discharge in ambient air[C]. ISNTPT-2004, Floride,2004,307-310.
    [37]Pons J, Moreau E, Touchard G Asymetric surface barrier discharge in air at atmospheric pressue:electric properties and induced airflow characteristics[J]. J. Phys. D:Applied Physics,38:3635-3642.
    [38]S raudie A, Aubert E, Naud6 N, et al. Effect of plasma actuators on a flat plate laminar boundary layer in subsonic conditions[C]. AIAA Meeting, San Francisco,2006.
    [39]Enloe CL, McLaughlin TE, VanDyken RD, et al. Plasma structure in the aerodynamic plasma actuator[C]. AIAA Meeting, Reno,2004.
    [40]Roth JR, Dai X. Optimization of the aerodynamic plasma actuator as an EHD electrical device[C]. AIAA Meeting, Reno,2006.
    [41]Enloe CL, McLaughlin TE, VanDyken RD, et al. Mechanisms and response of a single dielectric barrier plasma actuator:plasma morphology[J]. AIAA Journal,2004,42(3): 589-594.
    [42]Roth JR, Dai X, Rahel J, et al. The physics and phenomenology of paraelectric one atmosphere glow discharge plasma actuators for aerodynamic flow control[C]. AIAA Meeting, Reno,2005.
    [43]Rivir R, White A, Carter C, et al. AC and pulsed plasma flow control[C]. AIAA Meeting, Reno,2004.
    [44]Hong D, Dong B, Bauchire JM, et al. Experimental study of a dielectric barrier discharge dedicated to airflow control[C]. Proc.5th ISNTPT, Reno,2006.
    [45]Litvinov V M, Skvortsov V V, Uspenski i A A. Role of the static pressure in experiments on flow control by means of surface capacitor discharges[J]. Fluid Dynamics,2006,41(2): 286-291.
    [46]Bonds T, Sherman D, Briggs R. A plasma actuator optimization study exploring the effects of geometric design and dielectric materials selection using thrust and power measurements[J]. Plasma Science,2006,15:395-402.
    [47]李钢.等离子体流动控制机理及其应用研究[D].北京:中国科学院工程热物理研究所,2008.
    [48]吴云,李应红,苏长兵,等.等离子体气动激励系统的谐振特性实验研究[J].高电压技术,2008,34(1):87-90.
    [49]李清泉,许光可,房新振.电流体动力等离子体发生器的能量转化效率分析及其优化设计[J].高电压技术,2011,30(7):1426-1431.
    [50]许光可,房新振,刘勇,等.用于电流体动力气流控制的等离子体发生器[J].高压电器,2011,47(1):95-99.
    [51]李清泉,房新振,许光可,等.沿面型介质阻挡放电的电气特性[J].电工电能新技术,2012,31(1):26-29.
    [52]江中和.大气压沿面辉光放电的理论与实验研究[D].武汉:华中科技大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700