用户名: 密码: 验证码:
核石墨热解炭涂层的辐照损伤及熔盐浸渗特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔盐反应堆是第四代核能系统中六种反应堆型之一,具有固有安全性、核资源有效利用、防止核扩散、燃料循环、经济性等优点。核石墨具有低原子序数、高慢化比、高热导率和优良的机械性能等优势,可作为熔盐堆的中子慢化剂、反射体和堆芯支撑结构。在熔盐堆中,熔盐在核石墨通道内流通。核石墨是多孔材料,高温熔盐及裂变产物气体会扩散渗透到核石墨中,并影响其力学性能、热学性能及辐照寿命等。为了阻隔熔盐及裂变产物气体的扩散与渗透,我们与中国科学院金属研究所合作在核石墨表面沉积热解炭涂层。本论文研究了热解炭涂层的结构及性能、热解炭涂层前后核石墨与熔盐相容性、辐照缺陷对热解炭涂层与熔盐相容性的影响。
     本论文利用同步辐射掠入射X射线衍射(GI-XRD)、场发射扫描电子显微镜(FE-SEM)、偏光显微镜(PLM)、高分辨的透射电子显微镜(HRTEM)研究了热解炭涂层的结构、石墨化度、孔径分布,同时采用透气性测试仪研究了热解炭涂层前后氦气渗透性,进行了静态熔盐实验来检验涂层前后核石墨与熔盐的相容性。实验结果揭示采用化学气相沉积技术在IG-110核石墨基底上沉积的热解炭涂层具有各向异性石墨化结构,结构致密、无裂纹,内部孔洞的孔径仅在纳米级别。热解炭涂层后核石墨的氦气渗透性降低至10-8cm2/s以下,能有效阻隔熔盐向核石墨中的渗透。
     在熔盐堆堆芯中,热解炭涂层需承受辐照与熔盐的协同作用。本论文采用离子束辐照热解炭涂层,并采用FE-SEM、GI-XRD、TEM、拉曼和X射线光电子能谱(XPS)研究了辐照对热解炭结构的影响。实验结果揭示300keVAr+离子辐照使热解炭涂层中沿C轴方向的石墨相堆垛结构退化、石墨层间距变大。随着离子辐照剂量增加,热解炭涂层中的辐照损伤深度增加,在峰值剂量为0.26DPA时辐照损伤深度达到最大值,在辐照损伤区热解炭的晶体结构趋于无序,并在峰值剂量为1.58DPA时完全非晶。
     对辐照后的热解炭涂层进行了静态熔盐实验,采用FE-SEM、拉曼、同步辐射近边X射线吸收精细结构(NEXAFS)和XPS研究了辐照缺陷对热解炭涂层与熔盐相容性的影响。实验结果揭示熔盐使热解炭涂层表面形成C-F键,辐照产生的缺陷进一步促进了热解炭涂层在熔盐中的氟化。
The Molten Salt Reactor (MSR) is one of the six reactors proposed by the Generation IVNuclear Energy System, with advantages of inherent safety, effective utilization of nuclearpower and nuclear nonproliferation, unique fuel cycle capabilities, economics, and so on.Nuclear graphite has been used as neutron moderator and structural material in MSR due to itslow Z, high moderating ratio, high thermal conductivity, mechanical strength and etc. Nucleargraphite is porous material. In MSR, molten salt flows through the nuclear graphite channels.Molten salt and gas fission product (primary, Xe-135) maybe diffuse into nuclear graphite, whichmaybe effect mechanical, thermal and irradiation properties of nuclear graphite, and so on.Therefore, we cooperated with the Institute of Metal Research (IMR), Chinese Academy ofSciences (CAS) to prepare pyrolytic carbon (PyC) coating to seal nuclear graphite. In this thesis,the structures and properties of PyC coating have been studied before and after ion irradiationand static FLiNaK molten salt experiments.
     In this thesis, synchrotron-based grazing incidence X-ray diffraction (GI-XRD),field-emission scanning electron microscopy (FE-SEM), polarized light microscopy(PLM) andhigh resolution transmission electron microscopy (HRTEM) were used to study themicrotopography, degree of graphitization, distribution of pore diameter in PyC coating.Meanwhile, static FLiNaK molten salt experiments and helium gas permeability were performed.Results show that PyC coating prepared by thermal chemical vapor deposition (CVD) exhibitsanisotropic with nano pores. There is no obvious crack in PyC coating, which make the gaspermeability of IG-110nuclear graphite decreased to less than10-8cm2/s. Therefore, it’s possiblefor PyC coating to decrease the diffusion of gases into nuclear graphite.
     In the core of MSR, nuclear graphite with PyC coating is irradiated by neutron and fissionproducts in molten salt. In this thesis, ion beam irradiation was used to induce defects in PyCcoating. FE-SEM, synchrotron-based GI-XRD, Raman, XPS and TEM were employed to studythe microstructure of PyC before and after ion irradiation. Results reveal that300keV Ar+ionirradiation leads to the structural deterioration along c axis and the increase of interlayerspacing of graphite. The damage depth in PyC coating increases with the increase of irradiationdose and reaches the maximum at the peak damage dose of0.26DPA. The surface crystalstructure in the irradiation damage zone of PyC coating tends to disorder with the increase ofirradiation dose and amorphous at the peak damage dose of1.58DPA.
     Static FLiNaK molten salt experiments, FE-SEM, Raman spectroscopy, near-edge X-rayabsorption fine structure (NEXAFS) spectroscopy and XPS were performed to study the effect ofirradiation defect on the compatibility of PyC coating with FLiNaK salt. Results reveal that thereare C-F bond forming in the PyC coating after FLiNaK experiment. And results suggest thatirradiation defects maybe increase the fluorination of PyC coating in FLiNaK salt.
引文
[1] BETTIS E, SCHROEDER R, CRISTY G, et al. The aircraft reactor experiment—designand construction[J]. Nucl Sci Eng,1957,2(6):804-825.
    [2] FRAAS A, SAVOLAINEN A. Design Report on the Aircraft Reactor Test[R]. Oak RidgeNational Lab., Tenn.,1956.
    [3] ROSENTHAL M, KASTEN P, BRIGGS R. Molten Salt Reactors-History, Status, andPotential[J]. Nuclear Applications and Technology,1970,8(2):107-117.
    [4] LEBLANC D. Molten salt reactors: A new beginning for an old idea[J]. Nuclearengineering and design,2010,240(6):1644-1656.
    [5] FORSBERG C W, PETERSON P F, ZHAO H. An advanced molten salt reactor usinghigh-temperature reactor technology[C]//Proceedings of ICAPP.2004,4.
    [6] DOE U S. A technology roadmap for generation IV nuclear energy systems[C]//GIG-002-00. Nuclear Energy Research Advisory Committee and the Generation IVInternational Forum.2002.
    [7] FORSBERG C W. Molten-salt-reactor technology gaps[C]//International Congress onAdvances in Nuclear Power Plants (ICAPP’06).4-8.
    [8] BARDET P, BLANDFORD E, FRATONI M, et al. Design, analysis and development ofthe modular PB-AHTR[C]//Proceedings of ICAPP.2008,8:8-12.
    [9] NOVIKOV V, IGNATIEV V, FEDULOV V, et al. Molten Salt Nuclear EnergySystems–Perspectives and Problems[J]. Moscow, Energoatomizdat,1990.
    [10] MERLE-LUCOTTE E. Le cycle Thorium en réacteurs à sels fondus peut-il être unesolution au problème énergétique du XXIème siècle Le Concept de TMSR-NM[D].Institut National Polytechnique de Grenoble-INPG,2008.
    [11] SHIMAZU Y. Current situation of msr development in japan[J]. Current Situation of MSRDevelopment in Japan,2011.
    [12] UHLIR J, HRON M, PRIMAN V, et al. Current status of Czech R&D program inpartitioning and transmutation[C]//Proc. of OECD/NEA.7th Information ExchangeMeeting on Actinide and Fission Product Partitioning and Transmutation, Jeju, Korea.2002.
    [13]吕应中.关于研究钍增殖堆的建议[D].1969.
    [14]中国科学院原子核研究所零功率战斗队.铀石墨零功率装置首次临界实验方案[R].中国科学院原子核研究所,1971.
    [15]江绵恒,徐洪杰,戴志敏.未来先进核裂变能——TMSR核能系统[J].中国科学院院刊,2012,27(003):366-374.
    [16] ROBERTSON R, BRIGGS R, SMITH O, et al. Two-fluid molten-salt breeder reactordesign study[R]. ORNL-4528, Oak Ridge National Laboratory,1970.
    [17] ROBERTSON R C. CONCEPTUAL DESIGN STUDY OF A SINGLE-FLUIDMOLTEN-SALT BREEDER REACTOR[R]. ORNL-4541, Oak Ridge NationalLaboratory,1971.
    [18] H.E. MCCOY J, J.R. WEIR, JR. Materials Development for MSBRs[R]. ORNL-TM-1854,Oak Ridge National Laboratory,1967.
    [19] MCCOY JR H. Evaluation of the Molten-salt Reactor Experiment Haxtelloy Nsurveillance specimens:fourth group[R]. ORNL-TM-3063, Oak Ridge NationalLaboratory,1971.
    [20] ROSENTHAL M, HAUBENREICH P, BRIGGS R. Development Status of Molten-saltBreeder Reactors[R]. ORNL-4812, Oak Ridge National Laboratory,1972.
    [21] WEINBERG A M. A REVIEW OF MOLTEN SALT REACTOR TECHNOLOGY.PREFACE. MOLTEN-SALT REACTORS[R].1970.
    [22] SAVAGE H, COMPERE E, BAKER J. Reactor Chemistry Division Annual ProgressReport, January31,1964[R]. ORNL-3591, Oak Ridge National Laboratory,1964.
    [23] KASTEN P, BETTIS E, COOK W, et al. Graphite behavior and its effects on MSBRperformance[R]. ORNL-TM-2136, Oak Ridge National Laboratory,1969.
    [24] KEDL R, HOUTZEEL A. Development of a model for computing135Xe migration in theMSRE[R]. ORNL-4069, Oak Ridge National Laboratory,1967.
    [25] PR KASTEN E B, SS KIRSLIS,, WH COOK H M, ET AL.,. graphite behavior and itseffects on MSBR performance [R]. ORNL-TM-2136, Oak Ridge National Laboratory,1969.
    [26] MANUFACTURE N F. FACILITIES AND TECHNOLOGY NEEDED FOR NUCLEARFUEL MANUFACTURE[J].415.
    [27] BRIGGS R B. Molten-salt Reactor Program Semiannual Progress Report For the PeriodEnding August31,1966[R]. ORNL-4037, Oak Ridge National Laboratory,1967.
    [28] BRIGGS R B. Molten-Salt Reactor Program Semiannual Progress Report for PeriodEnding July31,1964[R]. ORNL-3708, Oak Ridge National Laboratory,1964.
    [29] ROSENTHAL M W, HAUBENREICH P N, B.BRIGGS R. Molten-Salt Reactor Program:Semiannual Progress Report for Period Ending August31,1972[R]. ORNL-4832, OakRidge National Laboratory,1973.
    [30] ROSENTHAL M, BRIGGS R, KASTEN P. Molten Salt Reactor Program SemiannualProgress Report for Period Ending August31,1968[R]. ORNL‐4344, Oak RidgeNational Laboratory,1969.
    [31]刘树和,白朔,成会明.热解炭[J].炭素,2005,1:13-22.
    [32] GRAY R, CATHCART J. Polarized light microscopy of pyrolytic carbon deposits[J].Journal of Nuclear Materials,1966,19(1):81-89.
    [33] PIERSON H, LIEBERMAN M. The chemical vapor deposition of carbon on carbonfibers[J]. Carbon,1975,13(3):159-166.
    [34] DIEFENDORF R, TOKARSKY E. Air Force Report,1971[J]. AF,1971,33:615.
    [35] REZNIK B, H TTINGER K. On the terminology for pyrolytic carbon[J]. Carbon,2002,40(4):621-624.
    [36] OBERLIN A. Pyrocarbons[J]. Carbon,2002,40(1):7-24.
    [37] BOURRAT X, TROUVAT B, LIMOUSIN G, et al. Pyrocarbon anisotropy as measured byelectron diffraction and polarized light[J]. Journal of Materials Research,2000,15(01):92-101.
    [38] DE PAUW V, REZNIK B, KALH FER S, et al. Texture and nanostructure of pyrocarbonlayers deposited on planar substrates in a hot-wall reactor[J]. Carbon,2003,41(1):71-77.
    [39] KAAE J. The mechanism of the deposition of pyrolytic carbons[J]. Carbon,1985,23(6):665-673.
    [40] JE J H, LEE J-Y. How is pyrolytic carbon formed? Transmission electron micrographswhich can explain the change of its density with deposition temperature[J]. Carbon,1984,22(3):317-319.
    [41] RONG S. Study on microstructure and mechanical properties of carbon/carbon composites(热解炭基炭/炭复合材料的组织与力学性质研究)[D]. Xi an (西安): North westernPolytechnical University (西北工业大学),1997.
    [42] HU Z J, H TTINGER K J. Mechanisms of carbon deposition-a kinetic approach[J]. Carbon,2002,40(4):624-628.
    [43]孙立涛.粒子束诱导碳纳米管的相变研究[D].上海:中国科学院上海应用物理研究所,2005.
    [44] PIMENTA M, DRESSELHAUS G, DRESSELHAUS M S, et al. Studying disorder ingraphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics,2007,9(11):1276-1290.
    [45]晋勇,孙小松,薛屺. X射线衍射分析技术[M].国防工业出版社,2008.
    [46] KAELBLE E F. Handbook of X-rays: for diffraction, emission, absorption, andmicroscopy[J].1967.
    [47] TONEY M F, HUANG T C, BRENNAN S, et al. X-ray depth profiling of iron oxide thinfilms[J]. J Mater Res,1988,3(2):351-356.
    [48] NEERINCK D, VINK T. Depth profiling of thin ITO films by grazing incidence X-raydiffraction[J]. Thin Solid Films,1996,278(1):12-17.
    [49] HOLLANDER J M, JOLLY W L. X-ray photoelectron spectroscopy[J]. Accounts ofChemical Research,1970,3(6):193-200.
    [50] VAN DER HEIDE P. X-ray photoelectron spectroscopy: an introduction to principles andpractices[M]. John Wiley&Sons,2011.
    [51]徐彭寿,潘国强.同步辐射应用基础[M].中国科学技术大学:中国科学技术大学出版社,2009.
    [52]中华人民共和国行业标准编写组.气体吸附BET法测定固体物质比表面积[S].北京:中国标准出版社,2002.
    [53] BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume andarea distributions in porous substances. I. Computations from nitrogen isotherms[J].Journal of the American Chemical Society,1951,73(1):373-380.
    [54] ALLEN T. Particle Size Measurement: Volume2: Surface Area and Pore SizeDetermination[M]. Springer,1997.
    [55] LEOFANTI G, PADOVAN M, TOZZOLA G, et al. Surface area and pore texture ofcatalysts[J]. Catalysis Today,1998,41(1):207-219.
    [56] BARTON T J, BULL L M, KLEMPERER W G, et al. Tailored porous materials[J].Chemistry of Materials,1999,11(10):2633-2656.
    [57] ZHANG X, FENG J, LIU X, et al. Preparation and characterization of regeneratedcellulose/poly (vinylidene fluoride)(PVDF) blend films[J]. Carbohydrate Polymers,2012,89(1):67-71.
    [58] ZHANG X, ZHU J, LIU X, et al. The study of regenerated cellulose films toughened withthermoplastic polyurethane elastomers[J]. Cellulose,2012,19(1):121-126.
    [59] INOU S, HYDE W L. Studies on depolarization of light at microscope lens surfaces II.The simultaneous realization of high resolution and high sensitivity with the polarizingmicroscope[J]. The Journal of biophysical and biochemical cytology,1957,3(6):831-838.
    [60] BURCHELL T D. Carbon materials for advanced technologies[M]. Elsevier,1999.
    [61] EVANS III R, RUTHERFORD J, MALINAUSKAS A. GAS TRANSPORT IN MSREMODERATOR GRAPHITE. II. EFFECTS OF IMPREGNATION. III. VARIATION OFFLOW PROPERTIES[R]. ORNL-4389, Oak Ridge National Laboratory,1969.
    [62] BRIGGS R. Molten salt reactor program semiannual progress report for period endingfebruary28,1966[R]. ORNL-3936, Oak Ridge National Laboratory,1966.
    [63] IYOKU T, SHIOZAWA S, ISHIHARA M, et al. Graphite core structures and theirstructural design criteria in the HTTR[J]. Nuclear engineering and design,1991,132(1):23-30.
    [64] OKU T, ISHIHARA M. Lifetime evaluation of graphite components for HTGRs[J].Nuclear engineering and design,2004,227(2):209-217.
    [65] ZHENG G, XU P, SRIDHARAN K, et al. PORE STRUCTURE ANALYSIS OFNUCLEAR GRAPHITES IG-l10AND NBG-l8[J]. Advances in Materials Science forEnvironmental and Nuclear Technology II: Ceramic Transactions,2011,116:251.
    [66] ROSENTHAL M, HAUBENREICH P, BRIGGS R. The Development Status of MoltenSalt Breeder Reactors [R]. ORNL-4812, Oak Ridge National Laboratory,1972.
    [67] KIM E S, SONG J S, HONG S D, et al.2012. Porosity of Nuclear Grade Graphite,2012[C]. Jeju, Korea.
    [68] KIM E S, NO H C. Experimental study on the oxidation of nuclear graphite anddevelopment of an oxidation model[J]. Journal of Nuclear Materials,2006,349(1):182-194.
    [69] SHIBATA T, SUMITA J, TADA T, et al. Non-destructive evaluation methods fordegradation of IG-110and IG-430graphite[J]. Journal of Nuclear Materials,2008,381(1):165-170.
    [70] EVANS R, MARCONI U M B, TARAZONA P. Fluids in narrow pores: Adsorption,capillary condensation, and critical points[J]. The Journal of chemical physics,1986,84(4):2376-2399.
    [71] STEVENS F, KOLODNY L A, BEEBE T P. Kinetics of graphite oxidation: monolayer andmultilayer etch pits in HOPG studied by STM[J]. The Journal of Physical Chemistry B,1998,102(52):10799-10804.
    [72] CUESTA A, DHAMELINCOURT P, LAUREYNS J, et al. Comparative performance ofX-ray diffraction and Raman microprobe techniques for the study of carbon materials[J].Journal of Materials Chemistry,1998,8(12):2875-2879.
    [73] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. The Journal of chemicalphysics,2003,53(3):1126-1130.
    [74] WILHELM H, LELAURAIN M, MCRAE E, et al. Raman spectroscopic studies onwell-defined carbonaceous materials of strong two-dimensional character[J]. Journal ofapplied Physics,1998,84(12):6552-6558.
    [75] CUESTA A, DHAMELINCOURT P, LAUREYNS J, et al. Raman microprobe studies oncarbon materials[J]. Carbon,1994,32(8):1523-1532.
    [76] NAKAMURA K, KITAJIMA M. Real‐time Raman measurements of graphite under Ar+irradiation[J]. Applied physics letters,1991,59(13):1550-1552.
    [77] MATTHEWS M, PIMENTA M, DRESSELHAUS G, et al. Origin of dispersive effects ofthe Raman D band in carbon materials[J]. Physical Review B,1999,59(10): R6585.
    [78] FERRARI A, ROBERTSON J. Interpretation of Raman spectra of disordered andamorphous carbon[J]. Physical Review B,2000,61(20):14095-14107.
    [79] ZICKLER G A, SMARSLY B, GIERLINGER N, et al. A reconsideration of therelationship between the crystallite size Laof carbons determined by X-ray diffraction andRaman spectroscopy[J]. Carbon,2006,44(15):3239-3246.
    [80] ZHANG H-L, LIU S-H, LI F, et al. Electrochemical performance of pyrolyticcarbon-coated natural graphite spheres[J]. Carbon,2006,44(11):2212-2218.
    [81] SING K, EVERETT D, HAUL R, et al. Reporting physisorption data for gas/solidsystems[J]. Pure Appl Chem,1982,54(11):2201.
    [82] FENG S, XU L, LI L, et al. Sealing nuclear graphite with pyrolytic carbon[J]. Journal ofNuclear Materials,2013,441(1):449-454.
    [83]周伟敏,徐南华.聚焦离子束(FIB)快速制备透射电镜样品[J].电子显微学报,2004,23(4):513-513.
    [84] COFFIN I. Structure‐Property Relations for Pyrolytic Graphite[J]. Journal of theAmerican Ceramic Society,1964,47(10):473-478.
    [85]孟广耀.化学气相淀积与无机新材料[M].科学出版社,1984.
    [86] SUN W-C, LI H-J, HAN H-M, et al. Microstructure of the pyrocarbon matrix prepared bythe CLVI process[J]. Materials Science and Engineering: A,2004,369(1):245-249.
    [87] ZHONGMING Z, LINONG L, XIAONA Y, et al.热解石墨的形貌结构及缺陷[J].2000.
    [88] BOURRAT X, FILLION A, NASLAIN R, et al. Regenerative laminar pyrocarbon[J].Carbon,2002,40(15):2931-2945.
    [89] WILSON M. X-ray powder diffraction methods[J]. A handbook of determinative methodsin clay mineralogy,1987:26-98.
    [90] LIM G, PARRISH W, ORTIZ C, et al. Grazing incidence synchrotron x-ray diffractionmethod for analyzing thin films[J]. Journal of Materials Research,1987,2(04):471-477.
    [91] VINEYARD G H. Grazing-incidence diffraction and the distorted-wave approximation forthe study of surfaces[J]. Physical Review B,1982,26(8):4146.
    [92] REYNIER Y, YAZAMI R, FULTZ B, et al. Evolution of lithiation thermodynamics withthe graphitization of carbons[J]. Journal of power sources,2007,165(2):552-558.
    [93] TZENG S-S, CHR Y-G. Evolution of microstructure and properties of phenolic resin-basedcarbon/carbon composites during pyrolysis[J]. Materials Chemistry and Physics,2002,73(2):162-169.
    [94] ZALDIVAR R J, RELLICK G S. Some observations on stress graphitization incarbon-carbon composites[J]. Carbon,1991,29(8):1155-1163.
    [95] BERNARDET V, GOMES S, DELPEUX S, et al. Protection of nuclear graphite towardfluoride molten salt by glassy carbon deposit[J]. Journal of Nuclear Materials,2009,384(3):292-302.
    [96] BLANKENSHIP F F, FRIEDMAN H A, GRIMES W R, et al. Phase Diagrams of NuclearReactor Materials [R]. ORNL-2548, Oak Ridge National Laboratory,1959.
    [97] YANG X, FENG S, ZHOU X, et al. Interaction between nuclear graphite and moltenfluoride salts: a synchrotron radiation study of the substitution of graphitic hydrogen byfluoride ion[J]. The Journal of Physical Chemistry A,2012,116(3):985-989.
    [98] HAMWI A. Fluorine reactivity with graphite and fullerenes. Fluoride derivatives and somepractical electrochemical applications[J]. Journal of Physics and Chemistry of Solids,1996,57(6):677-688.
    [99] HAMWI A, DAOUD M, COUSSEINS J. Graphite fluorides prepared at room temperature1. Synthesis and characterization[J]. Synthetic metals,1988,26(1):89-98.
    [100] DELABARRE C, GU RIN K, DUBOIS M, et al. Highly fluorinated graphite preparedfrom graphite fluoride formed using BF3catalyst[J]. Journal of fluorine chemistry,2005,126(7):1078-1087.
    [101] NAZAROV A, MAKOTCHENKO V, FEDOROV V. Preparation of low-temperaturegraphite fluorides through decomposition of fluorinated-graphite intercalationcompounds[J]. Inorganic materials,2006,42(11):1260-1264.
    [102] GIRAUDET J, DUBOIS M, GU RIN K, et al. Solid-state NMR study of thepost-fluorination of (C2.5F) n fluorine-GIC[J]. The Journal of Physical Chemistry B,2007,111(51):14143-14151.
    [103] KITA Y, WATANABE N, FUJII Y. Chemical composition and crystal structure of graphitefluoride[J]. Journal of the American Chemical Society,1979,101(14):3832-3841.
    [104] DUBOIS M, GU RIN K, PINHEIRO J, et al. NMR and EPR studies of room temperaturehighly fluorinated graphite heat-treated under fluorine atmosphere[J]. Carbon,2004,42(10):1931-1940.
    [105] SATO Y, ITOH K, HAGIWARA R, et al. On the so-called “semi-ionic” C–F bondcharacter in fluorine–GIC[J]. Carbon,2004,42(15):3243-3249.
    [106] PANICH A. Nuclear magnetic resonance study of fluorine–graphite intercalationcompounds and graphite fluorides[J]. Synthetic metals,1999,100(2):169-185.
    [107] TOUHARA H, KADONO K, FUJII Y, et al. On the structure of graphite fluoride[J].Zeitschrift für anorganische und allgemeine Chemie,1987,544(1):7-20.
    [108] LAGOW R J, BADACHHAPE R B, WOOD J L, et al. Some new synthetic approaches tographite–fluorine chemistry[J]. J Chem Soc, Dalton Trans,1974,(12):1268-1273.
    [109] SEKIGUCHI T, BABA Y, SHIMOYAMA I, et al. Characterization of F+irradiated graphitesurfaces using photon-stimulated desorption spectroscopy[J]. Surface and interfaceanalysis,2006,38(4):352-356.
    [110] ZHANG W, DUBOIS M, GUERIN K, et al. Effect of curvature on C–F bonding influorinated carbons: from fullerene and derivatives to graphite[J]. Physical ChemistryChemical Physics,2010,12(6):1388-1398.
    [111] RIBAS M A, SINGH A K, SOROKIN P B, et al. Patterning nanoroads and quantum dotson fluorinated graphene[J]. Nano Research,2011,4(1):143-152.
    [112] DELABARRE C, DUBOIS M, GIRAUDET J, et al. Electrochemical performance of lowtemperature fluorinated graphites used as cathode in primary lithium batteries[J]. Carbon,2006,44(12):2543-2548.
    [113] JEON K-J, LEE Z, POLLAK E, et al. Fluorographene: a wide bandgap semiconductorwith ultraviolet luminescence[J]. ACS nano,2011,5(2):1042-1046.
    [114] WATANABE N. Characteristics and applications of graphite fluoride[J]. Physica B+C,1981,105(1):17-21.
    [115] NAKAJIMA T, WATANABE N, KAMEDA I, et al. Preparation and electrical conductivityof fluorine-graphite fiber intercalation compound[J]. Carbon,1986,24(3):343-351.
    [116] HAMWI A, DAOUD M, COUSSEINS J. Graphite fluorides prepared at room temperature2. A very good electrochemical behaviour as cathode material in lithium non-aqueouselectrolyte cell[J]. Synthetic metals,1989,30(1):23-31.
    [117] BRIGGS R B. Molten Salt Reactor Program Semiannual Progress Report for PeriodEnding Feb28,1962[R]. ORNL-3282, Oak Ridge National Laboratory,1962.
    [118] BRIGGS R B. Molten-Salt Reactor Program: Semiannual Progress Report for PeriodEnding August31,1962[R]. ORNL-3369, Oak Ridge National Laboratory,1962.
    [119] LOREN FULLER E, OKOH J M. Kinetics and mechanisms of the reaction of air withnuclear grade graphites: IG-110[J]. Journal of Nuclear Materials,1997,240(3):241-250.
    [120] CORWIN W R. US Generation IV reactor integrated materials technology program[J].Nuclear Engineering and Technology,2006,38(7):591.
    [121] HE Z, XIA H, ZHOU X, et al. Raman study of correlation between defects andferromagnetism in graphite[J]. Journal of Physics D: Applied Physics,2011,44(8):085001.
    [122] HARADA I, FURUKAWA Y, TASUMI M, et al. For a collection of references[J]. J ChemPhys,1980,73:4746.
    [123] INAGAKI F, TASUMI M, MIYAZAWA T. Vibrational analysis of polyene chains.Assignments of the resonance Raman lines of poly (acetylene) and β-carotene[J]. Journalof Raman Spectroscopy,1975,3(4):335-343.
    [124] MAKAROVA T, RICC M, PONTIROLI D, et al. Ageing effects in nanographitemonitored by Raman spectroscopy[J]. physica status solidi (b),2008,245(10):2082-2085.
    [125] SADEZKY A, MUCKENHUBER H, GROTHE H, et al. Raman microspectroscopy ofsoot and related carbonaceous materials: spectral analysis and structural information[J].Carbon,2005,43(8):1731-1742.
    [126] IWAKI M, WATANABE H. Analyses of Raman spectra for Na-ion implantedpolyacetylene[J]. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms,1998,141(1):206-210.
    [127] MEGURO T, HIDA A, SUZUKI M, et al. Creation of nanodiamonds by single impacts ofhighly charged ions upon graphite[J]. Applied physics letters,2001,79(23):3866-3868.
    [128] FERRARI A, ROBERTSON J. Origin of the1150cm-1Raman mode in nanocrystallinediamond[J]. Physical Review B,2001,63(12):121405.
    [129] TOGASHI H, SAITO K, KOGA Y, et al. Formation of large carbon cluster ions at graphite(HOPG) surfaces by laser irradiation[J]. Applied surface science,1996,96:267-271.
    [130] TANG Y, SHAM T, HU Y, et al. Near-edge X-ray absorption fine structure study ofhelicity and defects in carbon nanotubes[J]. Chemical physics letters,2002,366(5):636-641.
    [131] TANG Y, ZHANG P, KIM P, et al. Amorphous carbon nanowires investigated bynear-edge-x-ray-absorption-fine-structures[J]. Applied physics letters,2001,79(23):3773-3775.
    [132] ZHANG P, ZHOU X, TANG Y, et al. Organosulfur-functionalized Au, Pd, and Au-Pdnanoparticles on1D silicon nanowire substrates: Preparation and XAFS studies[J].Langmuir,2005,21(18):8502-8508.
    [133] HEMRAJ‐BENNY T, BANERJEE S, SAMBASIVAN S, et al. Near-Edge X-rayAbsorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials[J].Small,2006,2(1):26-35.
    [134] ST HR J. NEXAFS spectroscopy[M]. Springer,1992.
    [135] PAPAGNO M, FRAILE RODR GUEZ A, GIRIT, et al. Polarization-dependent CKnear-edge X-ray absorption fine-structure of graphene[J]. Chemical physics letters,2009,475(4):269-271.
    [136] HEMRAJ-BENNY T, BANERJEE S, SAMBASIVAN S, et al. Near-Edge X-rayAbsorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials[J].Small,2006,2(1):26-35.
    [137] ATAMNY F, BL CKER J, HENSCHKE B, et al. Reaction of oxygen with graphite: x-rayabsorption spectroscopy of carbonaceous materials[J]. The Journal of Physical Chemistry,1992,96(11):4522-4526.
    [138] SCHL GL R. Modification of the electronic structure of graphite by intercalation,chlorination and ion etching[J]. Surface science,1987,189:861-872.
    [139] HE Z, YANG X, XIA H, et al. Role of defect electronic states in the ferromagnetism ingraphite[J]. Physical Review B,2012,85(14):144406.
    [140] PLASHKEVYCH O, YANG L, VAHTRAS O, et al. Substituted benzenes as buildingblocks in near-edge X-ray absorption spectra[J]. Chemical physics,1997,222(2):125-137.
    [141] BRZHEZINSKAYA M, MURADYAN V, VINOGRADOV N, et al. Electronic structure offluorinated multiwalled carbon nanotubes studied using x-ray absorption andphotoelectron spectroscopy[J]. Physical Review B,2009,79(15):155439.
    [142] HITCHCOCK A, FISCHER P, GEDANKEN A, et al. Antibonding. sigma.*valence MOsin the inner-shell and outer-shell spectra of the fluorobenzenes[J]. Journal of PhysicalChemistry,1987,91(3):531-540.
    [143] MORAR J, HIMPSEL F, HOLLINGER G, et al. C1s excitation studies of diamond (111).I. Surface core levels[J]. Physical Review B,1986,33(2):1340.
    [144] MEREL P, TABBAL M, CHAKER M, et al. Direct evaluation of the sp3content indiamond-like-carbon films by XPS[J]. Applied surface science,1998,136(1):105-110.
    [145] ERMOLIEFF A, CHABLI A, PIERRE F, et al. XPS, Raman spectroscopy, X-raydiffraction, specular X‐ray reflectivity, transmission electron microscopy and elasticrecoil detection analysis of emissive carbon film characterization[J]. Surface and interfaceanalysis,2001,31(3):185-190.
    [146] RATS D, VANDENBULCKE L, HERBIN R, et al. Characterization of diamond filmsdeposited on titanium and its alloys[J]. Thin Solid Films,1995,270(1):177-183.
    [147] CHUANG T, WINTERS H, COBURN J. An XPS and Auger investigation of CF3+ionbombardment of silicon[J]. Applications of Surface Science,1979,2(4):514-531.
    [148] TAKAHAGI T, ISHITANI A. XPS study of an ion sputtering process of fluoropolymersusing Monte Carlo simulation[J]. Macromolecules,1987,20(2):404-407.
    [149] TRESSAUD A, MOGUET F, FLANDROIS S, et al. On the nature of C-F bonds invarious fluorinated carbon materials: XPS and TEM investigations[J]. J Phys Chem Solids,1996,57(6-8):745-751.
    [150] DICENZO S, BASU S, WERTHEIM G, et al. In-plane charge distribution inpotassium-intercalated graphite[J]. Physical Review B,1982,25(2):620.
    [151] YANG S J, CHOE J-M, JIN Y-G, et al. Influence of H+ion irradiation on the surface andmicrostructural changes of a nuclear graphite[J]. Fusion Engineering and Design,2012,87(4):344-351.
    [152] PEDRAZA D, KOIKE J. Dimensional changes in grade H-451nuclear graphite due toelectron irradiation[J]. Carbon,1994,32(4):727-734.
    [153] ABRAM T, ION S. Generation-IV nuclear power: A review of the state of the science[J].Energy Policy,2008,36(12):4323-4330.
    [154] MANSUR L, ROWCLIFFE A, NANSTAD R, et al. Materials needs for fusion, GenerationIV fission reactors and spallation neutron sources–similarities and differences[J]. Journalof Nuclear Materials,2004,329:166-172.
    [155] FURUKAWA K, LECOCQ A, KATO Y, et al. Thorium molten-salt nuclear energysynergetics[J]. Journal of nuclear science and technology,1990,27(12):1157-1178.
    [156] NUTTIN A, HEUER D, BILLEBAUD A, et al. Thorium fuel cycles: a graphite-moderatedmolten salt reactor versus a fast spectrum solid fuel system[C]//Thorium fuel cycles: agraphite-moderated molten salt reactor versus a fast spectrum solid fuel system.Proceedings GLOBAL2001.2001.
    [157] FURUKAWA K, GREAVES E D, ERBAY L B, et al. New Sustainable Secure NuclearIndustry Based on Thorium Molten-Salt Nuclear Energy Synergetics(THORIMS-NES)[M].//TSVETKOV P. Nuclear Power-Deployment, Operation andSustainability. Croatia: InTech,2011:407-444.
    [158] HONMA Y, SHIMAZU Y, NARABAYASHI T. Flattening of Fast Neutron FluxDistribution in Molten Salt Reactor for Longer Graphite Moderator Lifetime[C]//PacificBasin Nuclear Conference2006. Australian Nuclear Association:213.
    [159] OKU T, ETO M, ISHIYAMA S. Irradiation creep properties and strength of a fine-grainedisotropic graphite[J]. Journal of Nuclear Materials,1990,172(1):77-84.
    [160] TELLING R, HEGGIE M. Radiation defects in graphite[J]. Philosophical Magazine,2007,87(31):4797-4846.
    [161] BAKER C, KELLY A. An electron microscope study of radiation damage in single crystalgraphite[J]. Philosophical Magazine,1965,11(112):729-746.
    [162] BOLLMANN W, HENNIG G. Electron microscope observations of irradiated graphitesingle crystals[J]. Carbon,1964,1(4):525-533.
    [163] HEERSCHAP M, SCH LLER E. Vacancy and interstitial loops in graphite single crystalsreactor-irradiated at900and1200°C[J]. Carbon,1969,7(5):624-625.
    [164] SHTROMBAKH Y I, GUROVICH B, PLATONOV P, et al. Radiation damage of graphiteand carbon-graphite materials[J]. Journal of Nuclear Materials,1995,225:273-301.
    [165] BORISOV A, MASHKOVA E, NEMOV A, et al. Sputtering of HOPG under high-dose ionirradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms,2007,256(1):363-367.
    [166] ZIEGLER J F, ZIEGLER M, BIERSACK J. SRIM–The stopping and range of ions inmatter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms,2010,268(11):1818-1823.
    [167] GIANNUZZI L A, DROWN J L, BROWN S R, et al. Applications of the FIB lift‐outtechnique for TEM specimen preparation[J]. Microscopy research and technique,1998,41(4):285-290.
    [168] GIANNUZZI L A, KEMPSHALL B, SCHWARZ S, et al. FIB lift-out specimenpreparation techniques[M].//Introduction to Focused Ion Beams. Springer,2005:201-228.
    [169] HUANG Z. Combining Ar ion milling with FIB lift-out techniques to prepare high qualitysite-specific TEM samples[J]. Journal of microscopy,2004,215(3):219-223.
    [170] LANGFORD R, CLINTON C. In situ lift-out using a FIB-SEM system[J]. Micron,2004,35(7):607-611.
    [171] GIANNUZZI L, STEVIE F. A review of focused ion beam milling techniques for TEMspecimen preparation[J]. Micron,1999,30(3):197-204.
    [172] PAULMIER T, BALAT-PICHELIN M, LE QU AU D. Structural modifications ofcarbon–carbon composites under high temperature and ion irradiation[J]. Applied surfacescience,2005,243(1):376-393.
    [173] OHTSUKA Y, OHASHI J, UEDA Y, et al. Erosion of pyrolytic graphite and Ti-dopedgraphite due to high flux irradiation[J]. Journal of nuclear science and technology,1997,34(8):792-798.
    [174] REICH S, THOMSEN C. Raman spectroscopy of graphite[J]. Philosophical Transactionsof the Royal Society of London Series A: Mathematical, Physical and EngineeringSciences,2004,362(1824):2271-2288.
    [175] NIWASE K, TANABE T. Defect Structure and Amorphization of Graphite Irradiated byD^+and He^+[J]. Materials transactions-JIM,1993,34:1111-1111.
    [176] NIWASE K, NAKAMURA K, SHIKAMA T, et al. On the amorphization ofneutron-irradiated graphite[J]. Journal of Nuclear Materials,1990,170(1):106-108.
    [177] HARADA I, FURUKAWA Y, TASUMI M, et al. Spectroscopic studies on dopedpolyacetylene and β-carotene[J]. The Journal of chemical physics,2008,73(10):4746-4757.
    [178] WATANABE H, TAKAHASHI K, IWAKI M. Structural characterization of ion implantedpyrolytic graphite[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,257(1):549-553.
    [179] BLYTH R, BUQA H, NETZER F, et al. XPS studies of graphite electrode materials forlithium ion batteries[J]. Applied surface science,2000,167(1):99-106.
    [180] LEUNG T, MAN W, LIM P, et al. Determination of the sp3/sp2ratio of aC: H by XPS andXAES[J]. Journal of non-crystalline solids,1999,254(1):156-160.
    [181] ESTRADE-SZWARCKOPF H. XPS photoemission in carbonaceous materials: a “defect”peak beside the graphitic asymmetric peak[J]. Carbon,2004,42(8):1713-1721.
    [182] L PEZ-HONORATO E, MEADOWS P, SHATWELL R, et al. Characterization of theanisotropy of pyrolytic carbon by Raman spectroscopy[J]. Carbon,2010,48(3):881-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700