用户名: 密码: 验证码:
具有可停缸动力系统的液压挖掘机功率匹配及节能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,液压挖掘机节能研究主要体现在:提高柴油发动机、液压元件性能,改进液压系统和改善柴油发动机-液压系统-执行器的功率匹配,以上措施具有一定的节能效果,但由于液压挖掘机负载变化频繁、波动较大,柴油发动机常常工作在高速小负荷工况,燃油消耗较高,所以为了改善小负荷时柴油发动机的经济性,减少液压挖掘机整机燃油消耗,提出在液压挖掘机中采用柴油发动机停缸控制的能量管理思想。
     论文分析了液压挖掘机的基本组成和工况特点,概述了试验样机YC60型挖掘机的主要技术参数,阐述了样机采用的恒功率泵的工作原理。由于试验样机液压系统采用LUDV系统,其压力补偿阀在多路阀后端,当系统流量饱和时,液压泵的供油量不能满足多执行元件需要时,各节流孔前后压差相应减小,使得压差仍然相等,各执行元件的流量仍取决于阀开口面积的大小,故结合样机多路阀、液压泵、液压执行元件的相关参数,建立了YC60挖掘机液压系统仿真模型。分析了柴油发动机速度特性、负荷特性、调速特性,明确了柴油发动机动力性、经济性的主要指标以及克服外负载的能力。由于采用微分方程建立的柴油发动机数学模型,仿真精度较高,但工作量大,结果分析困难,所以在本课题巾利用AMESim软件进行了建模,利用IFP-Engine元件库,建立准确的柴油发动机模型,通过设置系统参数,对柴油发动机的相关性能进行了仿真分析。
     液压挖掘机工作过程中得各工作装置的运动学分析和状态辨识是挖掘机工作分析的重要组成部分,有效地辨识判断整机的工作状态与负载,是实现液压挖掘机的柴油发动机停缸优化柴油发动机工作区域的重要前提,因此本课题的任务之一是完成液压挖掘机工作状态的辨识。目前液压挖掘机工况及负载的判断的方法有两种:一种是通过图像处理技术辨识挖掘机开挖工况的外形及特征,另一种是对挖掘机液压系统的压力值处理来判断负载。采用图像处理技术缺少了挖掘机铲斗与工作介质之间的作用关系的有效判断,而采用液压系统压力值缺少了工作装置位姿的有效数据。在挖掘机同样的位姿状态下,由于挖掘对象的不同甚至可能是空载,液压系统的压力值是不同的。因此本课题将液压挖掘机的各工作装置的位姿与液压系统的压力相结合,对挖掘机的工作状态进行辨识,即通过挖掘机回转马达、铲斗油缸、斗杆油缸、动臂油缸各腔安装压力传感器,检测挖掘时各腔压力来判断挖掘机的负载大小,同时在三个油缸处安装位移传感器,检测各油缸活塞位移实现对工作装置运动轨迹跟踪。
     对于目前在液压挖掘机上液压泵—柴油发动机匹配的节能方案所存在的在挖掘机小负荷时柴油发动机处于高转速、小负荷工况远离其最佳经济区域,所造成的油耗较高的问题,本课题采用了柴油发动机停缸节油技术,通过对挖掘机在一个工作循环内的能量消耗的理论分析,同时结合柴油发动机全部气缸工作和柴油发动机1缸断油停缸工作时的万有特性曲线,明确了在液压挖掘机上采用柴油发动机停缸技术的节油机理,根据柴油发动机停缸节油机理和挖掘机工作循环的能量消耗、动力系统各参数的变化规律,提出基于整机状态辨识的柴油发动机停缸节油控制策略。
     在挖掘机停缸动力系统具体控制策略的基础上,针对挖掘机动臂下降、空载回转等工况,对挖掘机的动力性、经济性进行对比试验和分析。液压挖掘机在实际工作中,常会出现挖掘机短时停止工作但柴油发动机不停车的状态,为降低此种状态时整机的燃油消耗,采用液压挖掘机自动怠速技术,但怠速工作时柴油发动机的燃油消耗并不向外做功,所以尽量减少怠速时燃油消耗,所以在研究内容中针对液压挖掘机柴油发动机怠速工作时燃油消耗的问题,进行了怠速停缸经济性试验。针对挖掘机回转过程工作循环时间长、能量消耗大的特点,以回转机构转动惯量为出发点对挖掘机回转过程进行试验研究和分析,并在挖掘机满载、小转动惯量回转时,柴油发动机采用停缸技术后,进行整机经济性试验。试验结果表明:采用柴油发动机停缸节油技术,有利于使柴油发动机在部分负荷时接近高效率区,在满足整机动力性的前提下,燃油消耗量下降。
Presently, energy-saving hydraulic excavators study is mainly reflected in improving the performance of diesel engine and hydraulic components, improving the hydraulic system and improving power match among diesel engine, hydraulic system and actuators. But because the big variable load in frequent, the diesel often works under the condition of high speed and low load, the fuel consumption is high. So to improve the economical efficiency of the fuel engine and to induce the consumption of the whole machine, the energy management thought that is to control the operating state of the diesel engine's cylinder is put forward.
     The basic components and working condition of the hydraulic excavators are analyzed. The main technical parameters of the machine (YC60-7made of yu-chai) are described in this paper. The working principal of constant output pump is elaborated adopted by the research prototype. Because system LUDV pressure-compensated valve is behind multi-way valve, when the rate of flow of the system saturated, the oil supply of oil hydraulic pump cannot meet the demand of excessive executive components need. The differential pressure between the head and the end of all the orifices becomes relatively lighter. That makes differential pressure keeping equal while the rate of flow of all the excessive executive components still depends on the opening area, it is widely used in small hydraulic excavator, so considering the relevant parameter of the multi-way valve, oil hydraulic pump, and hydraulic executive components of the prototype, systematic model of oil hydraulic excavator is set. Speed, load and speed regulation characteristics of the diesel engine are analyzed, the dynamic and economic leading indicators and the ability to overcome outer laden of the diesel engine. If we use math model of diesel engine set up by differential equation, the simulation precision is high, but the workload is too heavy and the result is too difficult to analyze. So here software AMESim is used to set the model. IEP-Engine component library is used to set precise diesel engine model. And the relative characteristics of the hydraulic excavator are emulation ally analyzed by setting system parameter.
     The kinematics analysis and state identification of all the working devices during the working process of the hydraulic excavator are important components of hydraulic excavator working analysis. Stating and judging the working state and load of the overall unit effectively is a crucial precondition to make the cylinder optimize the hydraulic excavator's diesel engine working area, so to achieve hydraulic excavator's working state identification is one of the aim of this paper. Presently there are two methods to do it:one is to state the outline and the characteristics of the working condition of the hydraulic excavator by image processing. The other one is to estimate the load by managing the pressure value of the hydraulic excavator system. The first one is lack of effective judgment of the function relation between the scraper pan and the working medium while the second one is lack of effective statistics of the working devices pose. Under the same pose, the pressure value of the hydraulic system is different because the objects are different, even empty. Here all the working devices poses of the hydraulic excavator and the pressure of the hydraulic system are combined to identify the working statement of the hydraulic excavator. That is by excavator slewing motor, bucket cylinder, bucket rod oil cylinder, the movable arm cylinder cavity pressure sensor installation, testing the pressure determining the load excavator digging size. At the same time install displacement sensor at three cylinders to detect the oil cylinders piston displacement in order to achieve the tracking of the working devices motion trajectory.
     On account of hydraulic pump-diesel engine matching scheme have the problem of high fuel consumption when the hydraulic excavator works under low load as well as the engine works under high speed, low load condition, the saving technology of stopping the diesel engine cylinder is adopted in this paper. Theoretical analysis of fuel consumption of a whole operating cycle combined with the engine universal performance characteristics map when the engine works under all cylinder or one deactivation, the fuel saving mechanism about cylinder deactivation is clear. On the basis of the fuel saving mechanism about cylinder deactivation, the fuel consumption of a whole operating cycle and changing law of parameters of Dynamic System, the fuel-saving control strategy about cylinder deactivation based on complete appliance condition identification is advanced.
     On the basis of fuel-saving control strategy about cylinder deactivation, we carry out the comparison test and analysis about excavator power performance and economical about the boom down, no-load rotating conditions. In practical work, hydraulic excavator often appears short-term state to stop working, but not to stop the diesel engine. So in such the state, the auto-idling technology for hydraulic excavator is used to reduce fuel consumption,but this fuel consumption is out of doing work, it is necessary to minimize idling fuel consumption. In this study on hydraulic excavator diesel engine idling work cylinder deactivation, economic comparison test are operated.Considering the feature of long time and high fuel consumption rotating, we carry out the test about roting and do the economic experiment using the technology of cylinder deactivation when the machine worked under the condition of full load and small moment of inertia of rotating.The test results showed that it helps diesel energy working quite close to high efficiency area and on the premise of function, it decreases fuel consumption.
引文
[1]乔建刚,杨敦荣.液压挖掘机的节能技术[J].现代机械,2011,45(1):50-58.
    [2]任小青.液压挖掘机节能技术的发展概述[J].机床与液压,2009,37(8):48-50.
    [3]SH Cho, P Noskievic. Position tracking control with load-sensing for energy-saving valve-controlled cylinder system[J]. Journal of Mechanical Science and Technology,2012,26(2):617-625.
    [4]D Lovrec, M Kastrevc, S Ulaga. Electro-hydraulic load sensing with a speed-controlled hydraulic supply system on forming-machines[J]. The International Journal of Advanced Manufacturing Technology,2009,41 (12):1066-1075.
    [5]Ma Chong, Kong Xiaowu. Impact of flow force to the constant flow characteristic of load sensing pump[C]. ASME 2010 Dynamic Systems and Control Conference, Cambridge, Massachusetts, USA, 2010,(1):1-6.
    [6]路甫祥.液压气动技术手册[M].北京,机械工业出版社,2002,352-361.
    [7]T Radpukdee, P Jirawattana. Uncertainty learning and compensation:An application to pressure tracking of an electro-hydraulic proportional relief valve[J]. Control Engineering Practice,2009,17 (2):291-301.
    [8]V Milic, Z Situm, M Essert. Robust position control synthesis of an electro-hydraulic servo system[J]. ISA Transactions,2010,49(4):535-542.
    [9]E Bjorn. Mobile fluid power system design with a focus on energy efficient [D]. Sweden:Link Ping University,2010.
    [10]R Rahmfeld. Development and control of energy saving hydraulic servo drivers for mobile machine[D]. Hamburg:Technische Universitaet Hamburg,2002.
    [11]C Williamson, S Lee, M Ivantysynova. Active vibration damping for an off-road vehicle with displacement controlled actuators[J]. International Journal of Fluid Power,2009,10(3):5-16.
    [12]A Feuser, J Dantlgraber, D Spath. Servo pump closed loop controlled differential cylinder[J]. O+P, 1995,39(7):540-544.
    [13]M Ivantysynova. Variable displacement pump will be of great developmental potential[C].1st IFK, Aachen, Germany,1998:359-371.
    [14]权龙.泵控缸电液技术研究现状,存在问题及创新解决方案[J].机械工程学报,2008,44(11):87-92.
    [15]G Jorg, M Ivantysynova. Model adaptation for robust control design of hydraulic joint servo actuators[C].4th ISFP, Wuhan, China,2003:16-24.
    [16]R Rahmfeld, M Ivantysynova. Linear actuator with differential cylinder in displacement control for the use in mobile machinery[C].17th ICHP, Ostrava, Czech Republic,2001:129-137.
    [17]K. Heybroek, J Larsson, JO Palmberg. Open circuit solution for pump controlled actuators[C]. Proc of 4th FPNI PhD Symp,2006:27-40.
    [18]C Williamson, M Ivantysynova. Pump mode prediction for four-quadrant velocity control of valveless hydraulic actuators[C]. Proceedings of the 7th JFPS International Symposium on Fluid Power, TO YAM A,2008:1-13.
    [19]J Rose, M Ivantysynova. A study of pump control systems for smart pumps[C]. Proceedings of the 52nd National Conference on Fluid Power,2011:683-692.
    [20]付永领,张卫卫,纪友哲.电机泵阀作动系统的分级压力控制及效率分析[J].北京航空航天大学学报,2011,37(12):1552-1556.
    [21]JH Jiang. Direct drive variable speed electro-hydraulic servo system to position control of a ship rudder[C].4th IFK, Dresden, Germany,2004:103-114.
    [22]权龙.转速可调泵直接闭环控制差动缸伺服系统的动特性[J].机械工程学报,2003,39(2):13-17.
    [23]C Williamson, J Zimmerman, M Ivantysynova. Efficiency study of an excavator hydraulic system based on displacement-controlled actuators[C]. ASME Symposium on Fluid Power and Motion Control, Bath, UK,2008.
    [24]D Margolis. Energy regenerative actuator for motion control with application to fluid Power systems[J]. Journal of Dynamic Systems, Measurement, and Control,2005,127(1):33-40.
    [25]G Stecklein. Regenerative hydraulics-the use of multiple hydraulic pumps can satisfy the needs of circuits in off-highway equipment[J].SAE2006 OHE off-highway engineer,2006,14(6):65-66.
    [26]徐兵,林建杰,杨华勇.液压电梯中的能量回收技术[J].液压与气动,2004,(6):72-74.
    [27]张树忠.基于液压式能量回收的挖掘机动臂节能研究[D].西南交通大学,2011.
    [28]Li Xiaofeng, Luo Wenguang, Yang Xu. Research on energy-saving control for hydraulic excavators based on fnn[C]. Measuring Technology and Mechatronics Automation (ICMTMA),2010,3:66-69.
    [29]周新民,周东祥.起重机混合动力系统控制策略的研究[J].武汉理工大学学报(交通科学与工程版),2011,35(4):688-692.
    [30]李武,崔毅,潘国远.液压挖掘机分工况控制中泵-发动机的匹配[J].装备制造技术,2008,(8):9-12.
    [31]Tao Wang, Qingfeng Wang, Zheng Chen. Sensorless speed tracking control of PMSG applied in hydraulic power regeneration[C]. Advanced Intelligent Mechatronics (AIM),2011:832-837.
    [32]Feng Gao, Suyu Wang, Juan Gao. Automatic control method research on pendulum speed of roadheader's cutting arm[C]. Mechanic Automation and Control Engineering (MACE),2011:4789-4791.
    [33]高峰,高宇,冯培恩.挖掘机载荷自适应节能控制策略[J].同济大学学报,2001,(9):1036-1040.
    [34]Liu Zhi, Liu Shaoju, Huang Zhonghua. Hydraulic excavator hybrid power system parameters design[C]. Digital Manufacturing and Automation (ICDMA),2011:602-605.
    [35]M Kagoshima, H Kinugawa. Control apparatus for a hydraulic excavator [P]. U.S. Patent 6,618,658, 2003.
    [36]路晶,王庆波.韩国大宇挖掘机---Ⅲ型EPOS系统[J].建筑机械,1998,08:37-41.
    [37]梁杰.韩国大宇挖掘机电子控制系统[J].建筑机械,1995,10:38-43.
    [38]余化.负荷传感液压控制技术及其在工程机械中的应用[J].建筑机械,2006,08:64-66.
    [39]王鹏宇,张俊.混合动力挖掘机节能机理分析[J].工程机械,2011,42(02):33-37.
    [40]M Matsubara. Hybrid system for construction machine[P].JP2001173024.2001-06-2.
    [41]K Yamashita. Flow rate control device in a hydraulic excavator[P]. U.S.Patent 6,202,411,2001.
    [42]M Naruse, N Oji. Hybrid type construction machine[P]. JP2004011502,2004-01-15.
    [43]Sun Hui, Jing Junqing. Research on the system configuration and energy control strategy for parallel hydraulic hybrid loader[J]. Automation in Construction,2010,19(2):213-220.
    [44]Y Yan, G Liu, J Chen. Integrated modeling and optimization of a parallel hydraulic hybrid bus[J]. International Journal of Automotive Technology,2010, 11(1):97-104.
    [46]KT Chau, YS Wong. Overview of power management in hybrid electric vehicles[J]. Energy Conversion and Management,2002, (43):1953-1968.
    [47]E Egawa, M Ochiai, S Yamashita. Drive control device for hybrid construction machine[P]. JP2003102106,2003-04-04.
    [48]M Naruse, Tamaru M, K Kimoto. Hybrid construction equipment[P]. US6708787,2004.
    [49]S Riyuu, M Tamura, M Ochiai. Hybrid construction machine [P]. JP2003328397,2003-11-19.
    [52]王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究[J].机械工程学报,2005,41(12):135-140.
    [53]于安才,姜继海.液压混合动力挖掘机回转装置控制方式的研究[J].西安交通大学学报,2011,45(7):30-33.
    [54]刘刚,宋德朝,陈海明.并联混合动力挖掘机系统建模及控制策略仿真[J].同济大学学报(自然科学版),2010,38(7):1079-1084.
    [55]董玉刚,张承宁,孙逢春.履带式混合动力车辆发动机-发电机组控制策略研究[J].北京理工大学学报,2010,30(4):405-409.
    [56]周龙宝,刘巽俊,高宗英.内燃机学[M].北京:机械工业出版社,2005.
    [57]魏春源,张卫正,葛蕴珊.高等内燃机学[M].北京:北京理工大学出版社,2007
    [58]Osman Akin Kutlar, Hikmet Arslan. Alper Tolga Calik. Methods to improve efficiency of four stroke, spark ignition engines at part load[J]. Energy Conversion and Management,2005,46:3202-3220.
    [59]T.G. Lenoe, M. Pozar. Fuel economy benefit of cylinder deactivation sensitivity to vechicle application and operating constraints[J]. SAE 2001-01-3591.
    [60]张登攀,袁银南,崔勇.车用汽油机的停缸节油技术[J].小型内燃机与摩托车,2007,36(06):89-93.
    [61]俞晓旋,常思勤.基于电磁驱动气门的发动机停缸技术研究[J].车用发动机,2011,02:29-32.
    [62]武涛,李元平,孔毅.汽油机节油技术应用与展望[J].上海汽车,2010,11:38-41.
    [63]许红平.基于液压挖掘机分段功率控制的节能技术[J].浙江工业大学学报,2002,8(4):328-331.
    [64]彭天好,杨华勇.液压挖掘机泵与发动机匹配研究[J].中国公路学报,2001,14(4):118-120.
    [65]尚涛,赵丁选,肖银奎.液压挖掘机节能系统的控制策略[J].农业机械学报,2005,36(3):1-4.
    [66]尚涛,赵丁选,肖银奎.液压挖掘机功率匹配节能控制系统[J].吉林大学学报:工学版,2004,34(4):592-596.
    [67]彭天好,杨华勇,傅新.液压挖掘机全局功率匹配与协调控制[J].机械工程学报,2001,37(11):50-53.
    [68]冯培恩,高峰,高宇.液压挖掘机节能控制方案的组合优化[J].农业机械学报,2002,33(4):5-8.
    [69]凌智勇.关于液压泵容积效率的修正[J].江苏工学院学报,1994,15(01).:97-101.
    [70]陈晓飞,陆亦工,王爱民.基于粒子群神经网络液压泵效率特性仿真分析[J].液压与气动,2012,9:52-55.
    [71]赵喜敬.基于热边界层理论的液压传动系统效率分析[J].煤矿机械,2011,32(11):74-75.
    [72]张建卓,李康康,关丽喆.挖掘机合成式先导压力正流量控制系统研究[J].中国机械工程,2012,23(13).:1537-1541.
    [73]贾文华,殷晨波,曹东辉.挖气机正流量泵控液压系统的特性分析[J].南京工业大学学报,2011,33(6):98-101.
    [74]王爽,李志远.液压挖掘机负流量控制系统的节能分析与实现[J].合肥工业大学学报(自然科学版),2006,29(2):213-216.
    [75]Krns H P, Jansson A, Palmberg J O. The design of pressure compenators for sensing hydraulic system[J], Control 96, UKACC Inernational Conference on,1996,1451-1461.
    [76]王晨,应富强.液压挖掘机的智能化节能控制策略[J].浙江工业大学学报(自然科学版),2000,28(2):108-111.
    [77]高峰.负流量工控制模型与试验研究[J].机械工程学报,2005,41(7):107-110.
    [78]王庆丰.电液比例方向阀稳态流量控制特性的试验及分析[J].液压与气动,1994,04:17-19.
    [79]邱清盈,陆银,冯培恩,管城.负载敏感液压挖掘机作业循环时间建模与优化[J].农业机械学报,2011,42(10):39-44.
    [80]王炎.液压挖掘机负荷传感系统的仿真研究及节能分析[D].长沙:中南大学,2009.
    [81]王纪森,林志纲.基于AMESim的负载敏感系统仿真与分析[J].机床与液压,2012,40(8):78-79.
    [82]张海涛,何清华,施圣贤LUDV负荷传感系统在液压挖掘机上的应刚[J].建筑机械,2004,10:61-63.
    [83]汪国耀.力士乐LUDV系统---全新液压挖掘机解决方案[J].建设机械技术与管理,2004,05:19-21.
    [84]Edgar W. Trinkel, J. Equalizing flow from pressure compensated pumps, with or without load sensing, in a multiple pump circuit[P]. US 6931846B 1.2005.8.23
    [85]黄亮,于兰英,吴文海.基于AMESim的液压挖掘机用柴油发动机特性仿真[J].机床与液压,2012,40(11):132-134.
    [86]刘永长.内燃机热力过程模拟[M].北京:机械工业船板社,2001.
    [87]付永领,祁晓野AMESim系统建模与仿真[M].北京:北京航空航天大学出版社,2006.
    [88]Chooper Tan, Yahya H Zweiri, Kaspar Althoefer. On-line soil property estimation for autonomous excavator vehicles[C]. Proceeding of the 2003 IEEE International Conference on Robotics & Automation Taipei, Taiwan. September 14-49,2003:121-126.
    [89]郝鹏.液压挖掘机动力系统匹配及节能控制研究[D].长沙:中南大学博士学位论文,2008.
    [90]Fuad Mrad, M. Asem Abdul-malak, Salah Sadek, et al. Automated excavation in construction and Architectural Management.2002,9(4).325-336.
    [91]史青录.液压挖掘机[M].北京:机械工业出版社,2012.
    [92]Fuad Mard, M. Asem Abdul-malak, Salah Sadek, et al. Automated excavation in construction using robotics trajectory and envelop generation[J]. Engineering, Construction and Architectural Management.2002,9(4):325-336
    [93]Parvaneh Saeedi, Peter D. Lawrence, David G. Lowe, et al. An autonomous excavator with vision based track slippage control[C]. IEEE Transactions on control sysytems technology.2005,13(1): 67-84.
    [94]白帆.小型液压挖掘机工作过程能耗特性的联合仿真及试验研究.太原:太原理工大学硕士学位论文,2011
    [95]王水林,邹月伟,李海伟.基于ADAMS的仿真技术在履带行走装置的应用[J].机电产品开发与创新,2008,21(03):44-48.
    [96]刘娟,周志鸿,张韬.轮式挖掘机工作装置虚拟样机在ADAMS中的实现[J].建筑机械,2008,6:85-89
    [97]王桂新,杨彦龙.基于ADAMS的液压挖掘机工作装置的仿真分析[J].河北工业大学学报,2008,37(6):59-63.
    [98]周宏兵,胡雄伟,孙永刚.基于ADAMS仿真技术的挖掘机铰点受力分析[J].郑州大学学报(工学版)2009,30(6):71-73.
    [99]陈立平,张云清,任卫群.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社, 2005.
    [100]凌智勇.关于液压泵容积效率的修正[J].江苏工学院学报,1994,15(1):97-101
    [101]李小华,罗福强,汤东.多项式插值法绘制发动机万有特性曲线[J].农业工程学报,2004,20(5):138-141
    [102]王向东.万有特性曲线的计算机图形处理及其方法[J].内燃机工程,1987,8(2):59-65
    [103]关志伟,杨玲,施继红.基于MATLAB语言的发动机万有特性研究[J].吉林农业大学学报,2003,25(3):339-342.
    [104]杨守军,张付军,黄英.单缸停缸对内燃机运动机构动力学特性的影响[J].农业机械学报,2011,42(9):8-13.
    [105]张登攀,袁银南,崔勇.车用发动机停缸的转矩仿真[J].小型内燃机与摩托车,2011,40(2):43-45.
    [106]邸鹏远,史文辉.液压挖掘机能耗试验与评价方法[J].建设机械技术与管理,2009,12:110-112.
    [107]付百学,胡胜海.汽车油耗测试系统数学模型的建立于应用研究[J].测试技术学报,2008,01:38-43.
    [108]付百学,胡胜海.发动机失重法智能油耗测试技术[J].中国机械工程,2011,22(7):793-797.
    [109]贺新,王岐东,叶身斌.汽车油耗的测量与计算研究及其进展[J].北京工商大学学报(自然科学版),2007,1:32-37.
    [110]赵立军.汽车试验学[M].北京:北京大学出版社,2008.
    [111]朱建新,李赛白,刘吕盛.挖掘机回转动能回收系统仿真[J].机械设计与研究,2011,27(6):84-87.
    [112]高佩川,孙孟辉,李建启.液压挖掘机回转液压系统能量回转研究[J].机床与液压,2012,40(14):51-56
    [113]姜继海,于斌,于安才.基于能量回收再利用的液压挖掘机回转系统节能研究[J].液体传动与控制,2011,06:7-10.
    [114]李宏宝,陈正利,茅永林.GB/T7586-2008液压挖掘机试验方法.北京:中国国家标准化委员会,2009.
    [115]陈正利,戴晴华.GB/T9139-2008液压挖掘机技术条件.北京:中国国家标准化委员会,2009.
    [116]汪硕峰,纪常伟.停缸对混氢汽油机怠速燃烧过程的影响[J].内燃机学报,2011,29(2):139-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700