用户名: 密码: 验证码:
甲基对硫磷水解酶高活筛选及荧光纳米分子生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从E.coli DH5a/pET5a-mph出发,PCR扩增出甲基对硫磷水解酶MPH结构基因,将其克隆进宿主大肠杆菌系统E.coli BL21(DE3)中表达,获得E.coli BL21 (DE3)/pET20b(+)-mph重组系统,经金属螯合一步亲和纯化后,即得纯度在90%以上的目的蛋白,从而发展了一种方便、快速、高效生产和纯化甲基对硫磷水解酶的方法。通过采用易错PCR的方法,在大肠杆菌系统中,对MPH进行了酶活力筛选研究。经一轮易错PCR,产生了一个库容量约为10800的易错PCR突变体库,经酶活测定后,筛选得到2株具有高活力的突变株A7(R41H)和E6(R49P/G117D),其对底物甲基对硫磷MP催化活性分别是野生型的约2倍和3倍。
     本研究同时还以甲基对硫磷水解酶MPH为识别元件,对pH值敏感的E2GFP为换能元件构建了一个检测有机磷农药的荧光生物分子传感器E2GFP-MPH。为了进一步提高该生物传感器的检测灵敏度,将酵母淀粉样蛋白Sup351-61的基因与E2GFP-MPH融合,得到一种能自组装成蛋白纳米线的生物传感器Sup351-61-E2GFP-MPH。实验表明,此纳米线生物传感器的检测灵敏度在荧光生物分子传感器E2GFP-MPH的基础上提高了约10,000倍,对甲基对硫磷的检测下限为1pmol/mL。
A mature methyl parathion hydrolase gene from E.coli DH5a/pET5a-mph, an existing strain for methyl parathion hydrolase expression, was cloned into the plasmid pET20b (+) and transformed into E.coli BL21 (DE3).Thus an overexpression strain was obtained. The recombinantlipase was purified in a one-step procedure of His-tag affinity chromatography. Through one cycle of error-prone PCR coupled with a sensitive screening method, two mutants of MPH were obtained. The catalytic activity of one mutant, which named A7, was 2-fold higher than that of wild MPH, while the other, which named E6, with 3-fold higher catalytic activity than that of wild MPH.
     In this study, combining molecular recognition, MPH with a fluorophore, which acts as a signal transducer, enables a fluorescent molecular biosensor to be constructed based on a pH-sensitive fluorescence probe, E GFP. For a highly sensitive assay, E2GFP-MPH was further attached to a yeast prion protein Sup351-61 through gene fusion. The resultant nanowire fluorescent molecular biosensor could detect as low as 1 pmol/mL of methyl parathion (MP), which is about a 10,000-fold greater sensitivity than that of the free E2GFP-MPH molecular sensor.
引文
[1]张一宾,孙晶.国内外有机磷农药的概况及对我国有机磷农药发展的看法.农药.1999,38(7):1-3.
    [2]http://www.cae.org.cn/aemc/intro/sheng/tjhbz/nyzd.html
    [3]http://sdnyxh.com/Info.aspx?ModelId=1&Id=2312
    [4]张一宾,张怿.农药.中国物质出版社,1997:1-53.
    [5]Sogorb MA, Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett.2002,128(1-3):215-28.
    [6]李德津.有机磷农药中毒的诊治.中国实用乡村医生杂志.2009,1(16):4-5.
    [7]Bolognesi C. Genotoxicity of pesticides:a review of human biomonitoring studies. Mutation Re.2003,543:251-272.
    [8]Richter ED, Chlamtac N, Ames, Pesticides and cancer revisited. Inter J Occupa Environ Health.2002,8(1):63-72.
    [9]Au WW, Sierra-Torres CH, Cajas-Salazar, Shipp BK, Legator MS. Cytogenetic effects from exposure to mixed pesticides and the influence from genetic susceptibility. Environ Health Perspect.1999,107(6):501-505.
    [10]徐培渝,吴德生.有机磷农药毒性研究新进展.预防医学情报杂志.2004,20(4):389-392.
    [11]Recto N, Nell V, Tompson ML, Borja-Aburto V, Moran-Martinez J, Froines JR, Hernandez RM, Cebrian ME. Organosphorous pesticide exposure increases the frequency of sperm sex null aneuploidy. Environ Health Perspect.2001,109: 1237-1240.
    [12]吴东雷,陈声明.农业生态环境保护.化学工业出版社.2005.
    [13]华小梅,单正军.我国农药的生产,使用状况以及其污染环境因子分析.环境科学进展.1996,4(2):33-45.
    [14]张春红,白艳红,陈杰珞,王刚.有机磷农药废水降解方法研究新进展.水处理技术.2010,36(1):1-5.
    [15]张友忠,赵星月.农药使用现状及发展无公害农产品生产对策.安徽农学通报.2003(5):64-64.
    [16]王玉霞,赵晓宇,张先成,张淑梅,李晶,孟利强.化学农药对环境的污染及生物整治措施.国土与自然资源研究.2008,4:69-70.
    [17]林玉锁,龚瑞忠,朱忠林编.农药与生态环境保护.北京:化学工业出版社.2000.
    [18]邱小燕.农药污染与生态环境保护.现代农业科学.2008,15(8):53-54.
    [19]龙惠珍,陆贻通.世界农药急性中毒概况.农药译丛.1997,19(3):54-56.
    [20]李国富,白卫东,李琰.3种常用农药残留快速检测仪的应用.农产品加工学刊.2010,2(199):95-102.
    [21]冯化成译.土壤细菌和农药分解[J].农药译丛.1994,16(4):47-50.
    [22]沈德中.污染环境的生物修复.化学工业出版社.北京:环境科学与工程出版中心.2002,1-67.
    [23]Sethunathan N, Yoshida TA. A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol.1973,19(7):873-875.
    [24]Munnecke DM, Hsieh DP. Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl Microbiol.1974,28(2):212-217.
    [25]Bhadbhade BJ, Sarnaik SS, Kanekar PP. Biomineralization of an organo-phosphorus pesticide, Monocrotophos, by soil bacteria. J Appl Microbiol.2002, 93(2):224-234.
    [26]Hill CM, Li WS, Cheng TC, DeFrank JJ, Raushel FM. Stereochemical specificity of organophosphorus acid anhydrolase toward p-nitrophenyl analogs of soman and sarin. Bioorg Chem.2001,29(1):27-35.
    [27]Home I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol.2002,68(7):3371-3376.
    [28]Mulbry WW, Karns JS. Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl Environ Microbiol.1989, 55(2):289-293.
    [29]简浩然、王志通、王孔星、赖林翰、王银善、罗清修.化学农药的微生物 参考文献解及其应用的研究.1985.
    [30]王银善,庞学军.黄杆菌P3-2的分离及降解有机磷农药的某些性质.环境科学学报.1985,5(3):315-321.
    [31]荚荣,洪祯瑞.降解甲胺磷细菌的分离及某些特性的研究.安徽大学学报(自然科学版).1997,21(1):98-101.
    [32]虞云龙,宋凤鸣.一株广谱性农药降解菌的分离和鉴定.浙江农业大学学报.1997,23(2):111-115.
    [33]王永杰,李顺鹏.有机磷农药广谱活性降解菌的分离及其生理特性研究.南京农业大学学报.1999,22(2):42-45.
    [34]刘玉焕,钟英长.真菌降解有机磷农药乐果的研究.环境科学学报.2000,20(1):95-99.
    [35]刘玉焕,钟英长.华丽曲霉Z58有机磷农药降解酶的纯化和性质.微生物学报.2000,40(4):430-434.
    [36]刘玉焕,钟英长.对硫磷真菌降解酶的分离纯化和性质.菌物系统.2000,19(3):377-382.
    [37]李淑彬,刘玉焕.曲霉M-2降解有机磷农药(甲胺磷)的研究.微生物学通报.1999,26(1):27-30.
    [38]Nyholm N, Lindgaard-Jorgensen P, Hansen N. Biodegradation of 4-nitrophenol in standardized aquatic degradation tests. Ecotoxicol Environ Saf.1984,8(5): 451-470.
    [39]Raymond DGM., Alexander M. Microbial metabolism and cometabolism of nitrophenols. Pest Biochem Biophysiol.1971, (1):123-130.
    [40]Yoon JH, Cho YG, Lee ST, Suzuki K, Nakase T, Park YH. Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium. Int J Syst Bacteriol.1999,49(2):675-680.
    [41]Sudhakar-Barik, Siddaramappa R, Wahid PA, Sethunathan N. Conversion of p-nitrophenol to 4-nitrocatechol by a Pseudomonas sp. Antonie Van Leeuwenhoek.1978,44(2):171-176.
    [42]Ou LT, Sharma A. Degradation of methyl parathion by a mixed bacterial culture and a Bacillus sp. isolated from different soils. J Agric Food Chem.1989,37: 1514-1518.
    [43]Spain JC, Gibson DT. Pathway for biodegradation of p-nitrophenol in Moraxella sp. Appl Environ. Microbiol.1991,57:812-819.
    [44]刘智等.甲基对硫磷降解菌DLL-E4降解对-硝基苯酚特性.中国环境学.2003,23(4):435-439.
    [45]崔中利,张瑞福,何健,李顺鹏.对硝基苯酚降解菌P3的分离、降解特性及基因工程菌的构建.微生物学报.2002,42(1):19-26.
    [46]Serdar CM, Gibson DT, Munnecke DM, Lancaster JH. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Envir Microbiol.1982, 44(1):246-249.
    [47]Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR. Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol.1986,51(5):926-930.
    [48]Mulbry WW, Karns JS. Parathion hydrolase specified by the Flavobacterium opd gene:relationship between the gene and protein. J Bacteriol.1989,171(12): 6740-6.
    [49]Serdar CM, Gibon DT. Enzymatic hydrolysis of organophosphates:cloning and expression of a parathion hydrolase from pseudomonas diminuta. Biol Tech.1985, 3:567-571.
    [50]Harper LL, McDaniel CS, Miller CE, Wild JR. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl Environ Microbiol.1988,54(10):2586-2589.
    [51]McDaniel CS, Harper LL, Wild JR. Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol.1988,170(5):2306-11.
    [52]Serdar CM, Murdock DC, Rhode MF. Parathion hydrolase gene from Pseudomonas diminuta MG:Subcloning, complete nucleotide sequence, and expression of the mature portion of the enzyme in Escherichia coli. Bio-Tech. 1989,7:1151-1155
    [53]Dumas DP, Caldwell SR, Wild JR, Raushel FM. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem.1989,264(33): 19659-19665.
    [54]Omburo GA, Kuo JM, Mullins LS, Raushel FM. Characterization of the zinc binding site of bacterial phosphotriesterase. J Biol Chem.1992,267(19): 13278-13283.
    [55]Omburo GA, Mullins LS, Raushel FM. Structural characterization of the divalent cation sites of bacterial phosphotriesterase by 113Cd NMR spectroscopy. Biochem. 1993,32(35):9148-55
    [56]Chae MY, Omburo GA, Lindahl PA, and Raushel FM. Antiferromagnetic coupling in the binuclear metal cluster of manganese-substituted phosphotriesterase. J Am Chem Soc.1993,115:12173-12174.
    [57]Munnecke DM. Hydrolysis of organophosphate insecticides by an immobilized-enzyme system.Biotechnol Bioeng.1979,21(12):2247-2261.
    [58]Dumas DP, Wild JR, Raushel FM. Diisopropylfluorophosphate hydrolysis by a phosphotriesterase from Pseudomonas diminuta. Biotechol Appl Biochem.1989, 11:235-243.
    [59]Hong SB, Raushel FM. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Biochem.1996,35(33):10904-10912.
    [60]Kolakowski JE, DeFrank JJ, Harvey SP, Szafraniec LA, Beaudry WT, Lai K, Wild JR. Enzymatic hydrolysis of the chemical warfare agent VX and its neurotoxic analogues by organophosphorous hydrolase. Biocatal Biotransform.1997,15: 297-312.
    [61]Lai K, Stolowich NJ, Wild JR. Characterization of P-S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase.Arch Biochem Biophys.1995,318(1):59-64.
    [62]Landis WG, DeFrank JJ. Enzymatic hydrolysis of toxic organofluorophosphate compounds.In:Kameley D, Chakrabarty A, Omenn GS, editors. Biotechnology and biodegradation:methods and applications in biodegradation. Houston:Gulf Publishing.1991:183-201.
    [63]Rastogi VK, DeFrank JJ, Cheng TC, Wild JR. Enzymatic hydrolysis of Russian-VX by organophosphorus hydrolase. Biochem Biophys Res Commun. 1997,241(2):294-296.
    [64]Omburo GA, Mullins LS, Raushel FM. Structural characterization of the divalent cation sites of bacterial phosphotriesterase by 113Cd NMR spectroscopy.Biochemistry.1993,32(35):9148-9155.
    [65]Benning MM, Kuo JM, Raushel FM, Holden HM. Three-dimensional structure of phosphotriesterase:an enzyme capable of detoxifying organophosphate nerve agents. Biochem.1994,33(50):15001-15007.
    [66]Benning MM, Kuo JM, Raushel FM, Holden HM. Three-dimensional structure of the binuclear metal center of phosphotriesterase.Biochemistry.1995,34(25): 7973-7978.
    [67]Vanhooke JL, Benning MM, Raushel FM, Holden HM. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate.Biochemistry.1996,35(19): 6020-6025.
    [68]Jabri E, Carr MB, Hausinger RP, Karplus PA. The crystal structure of urease from Klebsiella aerogenes. Science.1995,268(5213):998-1004.
    [69]Miyamoto J, Kitagawa K, Sato Y. Metabolism of organophosphorus insecticides by Bacillus subtilis, with special emphasis on Sumithion. Jpn J Exp Med.1966, 36(2):211-225.
    [70]Lewis DL, Hodson RE, Freeman LF. Multiple kinetics for transformation of methyl parathion by Flavobacterium species. Appl Environ Microbiol.1985,50: 553-557.
    [71]Chapalamadugu S, Chaudhry GR. Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit Rev Biotechnol.1992, 12(5-6):357-389.
    [72]Chaudhry, G R. et al. Isolation of methyl parathion-degradation Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flacobaxterium sp. Appl Environ Microb.1988,54(2):288-293.
    [73]Rani NL, Lalithakumari D. Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol.1994,40(12):1000-1006.
    [74]仪美芹,王开运,姜兴印,王悦军.降解甲基对硫磷真菌的分离及降解特性.农药学学报.2000,2(4):40-43.
    [75]Zhongli C, Shunpeng L, Guoping F. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol.2001,67(10):4922-4925.
    [76]刘智,孙建春,李顺鹏.甲基对硫磷降解菌DLL-1的分离鉴定及降解特性研究.应用与环境生物学报.1999,6:147-150.
    [77]石利利.DLL-1菌在土壤中对甲基对硫磷农药的降解性能与影响因素研究.环境科学学报.2001,21(5):597-600.
    [78]周军英,林玉锁,徐亦钢,石利利,陈良燕.邻单胞菌DLL-1对土壤中甲基对硫磷的降解.中国环境科学.2002,22(3):231-234.
    [79]刘智.利用甲基对硫磷降解菌DLL-E4消除农产品表面农药污染的研究.应用生态学报.2003,14(10):1770-1774.
    [80]程国锋,李顺鹏.微生物降解蔬菜残留农药研究.应用与环境生物学报.1998,4(1): 81-84.
    [81]李顺鹏,丁宪根.甲基对硫磷降解菌的生态效应及应用.土壤学报.1996,33(4):380-384.
    [82]石利利,林玉锁,徐亦钢,周军英,陈良燕.DLL-1菌对甲基对硫磷农药的降解作用及其降解机理.农村生态环境.2002,18(3):26-29.
    [83]崔中利,李顺鹏,何健.甲基一六O五降解菌J5的分离及其降解性状研究.农村生态环境.2001,17(3):21-25.
    [84]刘智,李顺鹏.甲基对硫磷降解菌DLL-1的诱变育种土壤学报.2003,4(2):293-300.
    [85]刘智,洪青,徐剑宏,武俊,张晓舟,张小华,马爱芝,朱军,李顺鹏.甲基对硫磷水解酶基因的克隆与融合表达.遗传学报.2003,30(11):1020-026.
    [86]陈雅丽,张先恩,刘虹,王银善,夏祥明.甲基对硫磷降解假单胞菌WBC-3的筛选及其降解性能的研究.微生物学报.2002,42(4):490-497.
    [87]Liu H, Zhang JJ, Wang SJ, Zhang X-E, Zhou NY. Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun.2005,334(4):1107-1114.
    [88]楚晓娜,张先恩,陈亚丽,刘虹,宋冬林.假单胞菌WBC-3甲基对硫磷水解酶性质的初步研究.微生物学报.2003,43(4):453-459.
    [89]刘璐璐,周亚凤,张治平,刘虹,张先恩.甲基对硫磷水解酶基因的高效表达及酶活性分析.微生物学报.2004,31(6):77-82.
    [90]Dong YJ, Bartlam M, Sun L, Zhou YF, Zhang ZP, Zhang CG, Rao Z, Zhang XE. Crystal Structure of Methyl Parathion Hydrolase from Pseudomonas sp. WBC-3. J Mol Biol.2005,353:655-663.
    [91]Yan W, Zhou YF, Dai HP, Bi LJ, Zhang ZP, Zhang XH, Leng Y, Zhang XE. Application of mythyl parathion hydrolase (MPH) as a labeling enzyme. Anal Bioanal Chem.2008,390:2133-2140.
    [91]Men D, Guo YC, Zhang ZP, Wei HP, Zhou YF, Cui ZQ, Liang XS, Li K, Leng Y, You XY, Zhang XE. Seeding-induced self-assembling protein nanowires dramatically increase the sensitivty of immunassays. Nano Lett.2009,9: 2246-2250.
    [93]Anastasia EH, Markela EA, Despina FT. Determination of Organophosphorus Pesticide Residues in Greek Virgin Olive Oil by Capillary Gas Chromatography. J Agric Food Chem.1998,46 (2):570-574.
    [94]陈明,任仁,王子健等.北京市工业废水和城市污水中有机氮有机磷类农药残留分析.安全与环境工程.2005,12(2):45-48.
    [95]潘守奇,孙军,董静,刘永强,任芳.气相色谱法同时测定蔬菜中24种有机磷农药残留.分析试验室.2010,29(1):115-118.
    [96]Pavia, Donald L, Gary ML, George SK, Randall G. Introduction to Organic Laboratory Techniques.2006, Thomson Books/Coles.
    [97]Rial-Otero R, Gaspar EM, Moura I, Capelo JL, Chromatographic-based methods for pesticide determination in honey:An overview. Talanta 2007,71:503-514.
    [98]Fernandez M, Pico Y, Manes J, Rapid screening of organophosphorus pesticides in honey and bees by liquid chromatography-Mass spectrometry. Chromatogr 2002,56:577-583.
    [99]Blasco C, Fernandez M, Pena A, Lino C, Silveira MI, Font G, Pico Y, Assessment of Pesticide Residues in Honey Samples from Portugal and Spain. J Agric Food Chem.2003,51 (27):8132-8138.
    [100]Tsipi D, Triantafyllou M, Hiskia A. Determination of organochlorine pesticide residues in honey, applying solid phase extraction with RP-C18 material. Analyst 999,124(4):473-475
    [101]Jansson C. Multiresidue method for the gas chromatographic determination of pesticides in honey after solid-phase extraction cleanup. J AOAC Int.2000,83 (3):714-719.
    [102]Herrera A, Perez-Arquillue C, Conchello P, Bayarri S, Lazaro R, Yague C, Arino A. Determination of pesticides and PCBs in honey by solid-phase extraction cleanup followed by gas chromatography with electron-capture and nitrogen-phosphorus detection. Anal Bioanal Chem.2005,381:695-701.
    [103]Bogdanov S, Kilchenmann V, Imdorf A. Acaricide residues in some bee products. J Apicult Res.1998,37:57-67.
    [104]Tsigouri AD, Menkissoglu-Spiroudi U, Thrasyvoulou A., Study of tau-fluvalinate persistence in honey. Pest Manag Sci.2001,57 (5):467-471.
    [105]Jimenez JJ, Bernal JL, del Nozal J, Toribio L, Martin T. Gas chromatography with electron-capture and nitrogen-phosphorus detection in the analysis of pesticides in honey after elution from a Florisil column:Influence of the honey matrix on the quantitative results. J Chromatogr A.1998,823:381-387.
    [106]Korta E, Bakkali A, Berrueta LA, Gallo B, Vicente F. Study of semi-automated solid-phase extraction for the determination of acaricide residues in honey by liquid chromatography. J Chromatogr A.2001,930:21-29.
    [107]Sanchez-Ortega A, Sampedro MC, Unceta N, Goicolea MA, Barrio RJ. Solid-phase microextraction coupled with high performance liquid chromatography using on-line diode-array and electrochemical detection for the determination of fenitrothion and its main metabolites in environmental water samples.2005,1094: 70-76.
    [108]Hogendoorn E, Zoonen P. Recent and future developments of liquid chromatography in pesticidetrace analysis. J Chromatogr A.2000,892:435-453.
    [109]唐勤学,陶小林,黎司.有机磷农药残留检测技术的研究进展.化工时刊.2008,22(9):68-72.
    [110]Pico Y, Rodriguez R, Manes J. Capillary electrophoresis for the determination of pesticide residues. Trends Anal Chem.2003,22 (3):133-151.
    [111]Eash DT, Bushway RJ. Determination of thiabendazole in fruits and vegetables by capillary electrophoresis. J Liq Chromatogr Relat Technol.2000,23 (2):261-272.
    [112]费新平,王立世,张水锋,杨晓云.毛细管电泳-安培检测法对甲基对硫磷、对硫磷、西维因和速灭威农药残留的测定研究.分析测试学报.2004,23(5):70-73.
    [113]李文秀,徐可欣.蔬菜农药残留检测的红外光谱法研究.光谱学与光谱分析.2004,24(10):1202-1204.
    [114]周向阳,林纯忠,胡祥娜,金同铭,王瑞,林润昌.近红外光谱法(NIR)快速诊断蔬菜中有机磷农药残留.食品科学.2004,25(5):151-154.
    [115]李亮亮,于维军,刘文娥.荧光法快速测定有机磷农药.辽宁农业科学.2001,5:44-45.
    [116]孙武勇,林琳,屈凌波,李建军,王云龙.钙黄绿素-Pd2+荧光光度法测定甲基对硫磷.光谱实验室.2003,20(6):913-915.
    [117]郭辉,何成勇,陈靖,田苗苗,宋文娟,张亚兰.分光光度计在蔬菜农药残留快速检测上的应用.新疆农业科技.2005,1:40.
    [118]Nunes GS, Barcelo D. Electrochemical biosensors for pesticide determination in food samples. Pestic Anal.1998,26 (6):156-159.
    [119]Skladal P. Biosensors based on cholinesterase for detection of pesticides. Food Technol Biotechnol.1996,34 (1):43-49.
    [120]Nicole J R. New Trends in Biosensors for Organophosphorus Pesticides. Sensors 2001,1(2):60-74.
    [121]Mulchandani P, Mulchandani A, Kaneva I, Chen W. Biosensor for direct determination of organophosphate nerve agents.1. Potentiometric enzyme electrode. Biosens Bioelectron.1999,14:77-85.
    [122]Mulchandani A, Chen W, Mulchandani P, Wang J, Rogers KR. Biosenors for direct determination of organophosphate pesticides. Biosens Bioelectron.2001,16: 225-230.
    [123]Mulchandani A, Mulchandani P, Chen W. Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase. Anal Chem.1999,71:2246-2249.
    [124]李颖娇,张荣全,叶非.传感器在农药残留分析中的应用.农药科学与管理.2003,24(8):11-13.
    [125]Mulchandani P, Chen W, Mulchandani A, Wang J, Chen L. Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens Bioelectron.2001,16:433-437.
    [126]汤琳,曾光明,黄国和,牛承岗.免疫传感器用于环境中痕量有害物质检测的研究进展.环境科学.2004,25(4):170-176.
    [127]Salmain M, Fischer-Durand N, Pradier CM. Infrared optical immunosensor: application to the measurement of the herbicide atrazine. Anal Biochem.2008, 373(1):61-70.
    [128]Long F, Shi HC, He M, Zhu AN. Sensitive and rapid detection of 2, 4-dicholorophenoxyacetic acid in water samples by using evanescent wave all-fiber immunosensor. Biosens Bioelectron.2008,23(9):1361-1366.
    [129]Singh AK, Flouders AW, Volponi JV. Development of sensors for direct detection of organophosphates. Part I:immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosensors 1999,14:703-713.
    [130]缪煜清,刘仲明,官建国.纳米技术在生物传感器中的应用.传感器技术.2002,21(11):61-64.
    [131]Gong J, Wang L, Zhang L. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite. Biosens Bioelectron.2009,24: 2285-2288.
    [132]Kelly JW. Mechanisms of amyloidogenesis. Nat Struct Biol.2000,7:824-826.
    [133]Osherovich LZ, Cox BS, Tuite MF, Weissman JS. Dissection and design of yeast prions. PLoS Biol.2004,2:442-451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700