用户名: 密码: 验证码:
基于高分辨质谱技术的β-受体激动剂在猪体内的代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了保障动物源食品安全,p-受体激动剂(β-AAs)类物质已经被大多数国家禁止在食品动物养殖中用作促生长剂。在我国,农业部176号公告和1519号公告等先后禁止了14种β-AAs类物质在饲料和动物饮用水中使用。然而,除克伦特罗和莱克多巴胺等几种物质外,大多数β-AAs类物质在畜禽体内的代谢和残留规律还不清楚,因此,建立相关的残留检测方法缺乏必要的科学依据。本研究将以克伦特罗、沙丁胺醇、氯丙那林和苯乙醇胺A等为代表,研究不同结构特点的β-AAs在猪体内的代谢规律,为选择残留检测标示物和建立残留分析方法提供必要参考,对有效监控养殖中β-AAs的非法使用有重要意义。
     本研究首先应用电喷雾-四级杆-飞行时间质谱(ESI-Q-TOF MS),分别采集了9种β-AAs的高分辨二级质谱(MS/MS)信息,并分析了碎片离子的元素组成、可能结构和碎裂途径。同时,还用同位素标记物质对相关的断裂位点、氢重排等进行了确证。结果表明,在β-AAs类化合物的质谱裂解过程中,p-羟基首先断裂失去一分子H20,生成碎片离子[M+H-H2O]+,然后,侧链仲胺上烷基取代基断裂后,生成稳定的苯乙烯胺正离子([M+H-H2O-Alkyl]+)。另外,苯环取代基或侧链胺基也可以继续发生裂解,生成不同的碎片离子。其中,[M+H-H2O-Alkyl]+为β-AAs的特异性碎片离子。以上结果,将为基于液相色谱-串联质谱联用技术(LC-MS/MS)对β-AAs的残留分析和代谢研究提供实验依据。
     按10mg/kg b.w的剂量给猪口服克伦特罗(CLE),应用UPLC-Q-TOF MS和MSE进行数据采集,综合运用MDF、PIF和EIC等数据处理技术,在给药后24h内的猪尿液中检测到了8种代谢产物,主要包括4-N-氧化代谢产物(4-N-OH-CLE和4-NO2-CLE)和葡萄糖醛酸结合产物(GLU-CLE和GLU-OH-CLE)。其中,CLE原形和4-N-OH-CLE的相对含量分别为69.9%和19.1%,GLU-CLE和GLU-OH-CLE的比例小于10%。结果表明,CLE在猪体内的主要代谢途径为苯胺的氧化,在尿液中主要以原形的形式存在。
     按10mg/kgb.w的剂量给猪口服沙丁胺醇(SAL),应用UPLC-Q-TOF MS和MSE进行数据采集,综合运用MDF和EIC等数据处理技术,在给药后24h内的猪尿液中检测到了10种代谢产物,主要包括苯环羟基化代谢产物(OH-SAL)、苄醇氧化代谢产物(COOH-SAL)、甲基化产物(CH3-OH-SAL)和葡萄糖醛酸结合产物(GLU-SAL和GLU-OH-SAL)。其中,COOH-SAL和CH3-OH-SAL为未报道SAL的新代谢产物。除未代谢的SAL原形(44.3%)外,葡萄糖醛酸结合物(GLU-SAL)是含量最高的代谢物(37.8%),其次为苄醇的氧化产物(COOH-SAL,16.6%)。结果表明,SAL在猪体内的主要代谢途径为葡萄糖醛酸结合和苄醇的氧化。
     按10mg/kgb.w的剂量给猪口服氯丙那林(CLO),应用UPLC-Q-TOF MS和MSE进行数据采集,综合运用MDF、PIF和EIC等数据处理技术,在给药后24h内的猪尿液中检测到了9种代谢产物,包括苯环的羟基化产物(OH-CLO)、葡萄糖醛酸结合物(GLU-CLO和GLU-OH-CLO)和硫酸结合物(SO3-CLO)。其中,CLO原形的相对含量为21.6%,GLU-OH-CLO是含量最高的代谢物(53%),明显高于GLU-CLO(17.6%)。以上结果表明,CLO在猪体内的主要代谢途径为苯环的羟基化及其随后的葡萄糖醛酸结合。
     按10mg/kg b.w的剂量给猪口服苯乙醇胺A (PEAA),应用UPLC-Q-TOF MS和MSE进行数据采集,综合运用MMDF和EIC等数据处理技术,在尿液、粪便、肌肉、肝脏、肾脏和肺脏中检测到了22种代谢产物。包括脱甲基代谢产物(DM-PEAA)、苯环羟基化产物(OH-PEAA)、硝基还原产物(NH2-PEAA和DM-NH2-PEAA)及其乙酰化代谢(Ac-DM-NH2-PEAA)、不同基团的葡萄糖醛酸结合物(GLU-PEAA、GLU-DM-PEAA和GLU-OH-PEAA)和硫酸结合物(SO3-DM-PEAA)等。在尿液中,PEAA原形得比例小于1%,以Ⅱ相结合代谢为主(95%),其中,GLU-DM-PEAA的相对含量最多(大于59%),其次是GLU-PEAA(约22%),是尿液中的主要代谢产物。而在粪便中,以DM-PEAA为主(50%),其次是GLU-PEAA。在肝脏和肾脏中,也是以Ⅱ相结合代谢为主(大于85%),主要代谢产物也是GLU-DM-PEAA。在肌肉和肺脏中,Ⅱ相代谢产物的含量较低,以DM-PEAA为主。以上结果表明,PEAA在猪体内的主要代谢途径是O-脱甲基及其葡萄糖醛酸结合代谢。
     在本研究中,应用UPLC-Q-TOF MS建立了猪尿液和不同组织中PEAA和DM-PEAA的定量分析方法,并从特异性、灵敏度、基质效应、线性范围和精密度等方面进行了方法学考察。利用以上UPLC-Q-TOF MS方法,分别在不酶解和酶解两种条件下,测定了停药24h后肌肉、肺脏、肝脏和肾脏组织中,以及停药后不同时间段内尿液中PEAA和DM-PEAA的浓度,同时还筛查样品中的GLU-PEAA和GLU-DM-PEAA。在不酶解和酶解的条件下,PEAA和DM-PEAA在不同组织中的浓度顺序都是:肺脏>肾脏>肝脏>肌肉,说明肺脏对PEAA和DM-PEAA有明显的蓄积作用。另外,在肌肉和肺脏中,游离态PEAA和DM-PEAA的比例大于80%,而在尿液、肝脏和肾脏中,游离态PEAA和DM-PEAA的比例小于20%。在尿液和所有组织中,DM-PEAA的浓度都大于PEAA。而且,DM-PEAA在尿液中的残留时间大于PEAA。因此,在监控PEAA非法使用时,DM-PEAA更适合作为尿液和组织中的残留检测的目标物。
β-Adrenergic agonists (P-AAs), used as bronchodilators in human and veterinary medicines, are also illegally used at high dose as growth promoters in food animal production. In view of the potential risk for consumers' health, the use of β-AAs for growth-promoting purposes has been banned in many countries. In China, fourteen β-AAs have been has been prohibited from being used in animal feed and drinking water by the Ministry of Agriculture of China. However, no information about the metabolism and residue kinetics of banned β-AAs in livestock was available, except for clebuterol and ractopamine. In this study, in vivo metabolism of clenbuterol, salbutamol, clorprenaline and phenylethanolamine A were sutudied in swine, which will provide valuable data for establishing analytical method β-AAs residues, and contribute to more effective surveillance of PEAA abuse in livestocks.
     In this study, high resolution MS/MS spectras of nine β-AAs were obtained using ESI-Q-TOF MS, and element compositions and possible strutures of fragment ions were studied. Besides, fragmentaton positions and rearrangements were confirmed using deuterated analogues. Loss of H2O from P-OH group and elimination of N-alkyl were proposed as two primary fragmentation pathways of various β-AAs, corresponding to characteristics fragment ions of [M-H2O+H]+and [M+H-H2O-Alkyl]+. Informations povided in this study will be of help for method development and metabolite identicatin based on LC-MS/MS methods.
     After a single dose of10mg/kg b.w clenbuterol (CLE), eight metabolites were screened and identificated in swine urine collected0-24h after administration using ultra performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS) with MDF, EIC and IPF processing methods. The detected metabolites included4-N-hydroxylamine-CLE(4-N-OH-CLE),4-nitro-CLE(4-NO2-CLE) and several glucuronide acid conjugates(GLU-CLE and GLU-OH-CLE). In urine collected0-24h after administration, relatieve percentages of parent CLE and4-N-OH-CLE were69.9%and19.1%, respectively, suggesting that4-N-oxidization was the major metabolic pathway of CLE in swine.
     After a single dose of10mg/kg b.w salbutamol (SAL), ten metabolites were screened and identificated in swine urine collected0-24h after administration using UPLC-Q-TOF MS with MDF and EIC processing methods. The detected SAL metabolites included hydroxylated-SAL(OH-SAL), benzoic acid-SAL(COOH-SAL), methylated-SAL (CH3-OH-SAL) and several glucuronide acid conjugates (GLU-SAL and GLU-OH-SAL). Among those detcted metabolites, COOH-SAL and CH3-OH-SAL were found for the first time in animals. In urine collected0-24h after administration, relatieve percentages of parent SAL, GLU-SAL and COOH-SAL were44.3%,37.8%and16.6%, respectively, suggesting that glucuronidation and oxidation of benzyl alcohol were two major metabolic pathways of CLE in swine.
     After a single dose of10mg/kg b.w clorprenaline (CLO), nine metabolites were screened and identificated in swine urine collected0-24h after administration using UPLC-Q-TOF MS with MDF, IPF and EIC processing methods. The detected SAL metabolites included hydroxylated-CLO(OH-CLO), glucuronide acid conjugates (GLU-CLO and GLU-OH-CLO) and sulphate conjugates (SO3-CLO). Among those detcted metabolites, COOH-SAL and CH3-OH-SAL were found for the first time in animals. In urine collected0-24h after administration,the relatieve percentages of GLU-OH-CLO and GLU-CLO were53%and17.6%, respectively, suggesting that hydroxylation and glucuronidation of CLO were major metabolic pathways of CLO in swine.
     After a single dose of10mg/kg b.w phenylethanolamine A (PEAA), twenty-two metabolites were screened and identificated in swine urine, feces, muscle, liver, kindey and lung using UPLC-Q-TOF MS with MMDF and EIC processing methods. The primary metabolites of PEAA included demethylated-PEAA (DM-PEAA), hydroxylated-CLO (OH-PEAA), nitro reduction-PEAA (NH2-PEAA) and glucuronide acid conjugates (GLU-PEAA). Besides, glucuronide acid conjugates, sulphate conjugates and acetylatied products of its primary metabolites were also found in urine and various tissues. In urine, liver and kindey, phase II metabolites were more abundant, and GLU-DM-PEAA was the major metabolite PEAA. In feces, muscle and lung, DM-PEAA was the dominant metabolites. The result suggested that O-demethylation and glucuronidation were major metabolic pathways of PEAA in swine.
     In this study, quantitative analysis method for PEAA and DM-PEAA was developed using UPLC-Q-TOF MS in urine and various tissues, which were carefully validated in terms of specificity, sensitivity, linear ranges, accuracy and precision. With the validated UPLC-Q-TOF MS method, concentrations of PEAA and DM-PEAA in urine and various tissues after administration were determined without and with enzyme hydrolysis. The result showed that lung had the highest concentrations of PEAA and DM-PEAA of all tissues, indicating the potential accumutation effect on PEAA. In muscle and lung, the free PEAA and DM-PEAA were dominant forms. On the contrary, the conjugates were the primary forms of PEAA and DM-PEAA. Besides, DM-PEAA and its conjugates showed higher residual concentrations in swine, and were eliminated more slowly than than those of parent PEAA in urine. According to the results, DM-PEAA might be more appropriate potential marker in swine urine and tissues for monitoring the illicit use of PEAA.
引文
[1]Williams P E, Pagliani L, Innes G M, et al. Effects of a Beta-Agonist (Clenbuterol) on Growth, Carcass Composition, Protein and Energy Metabolism of Veal Calves. Br J Nutr.1987,57 (3):417-428
    [2]Bergen W G, Johnson S E, Skjaerlund D M, et al. Muscle Protein Metabolism in Finishing Pigs Fed Ractopamine. J Anim Sci.1989,67 (9):2255-2262
    [3]Byrem T M, Beermann D H, Robinson T F. The Beta-Agonist Cimaterol Directly Enhances Chronic Protein Accretion in Skeletal Muscle. J Anim Sci.1998,76 (4):988-998
    [4]Martinez-Navarro J F. Food Poisoning Related to Consumption of Illicit Beta-Agonist in Liver. Lancet. 1990,336(8726):1311
    [5]Salleras L, Dominguez A, Mata E, et al. Epidemiologic Study of an Outbreak of Clenbuterol Poisoning in Catalonia, Spain. Public Health Rep.1995,110 (3):338-342
    [6]Pulce C, Lamaison D, Keck G, et al. Collective Human Food Poisonings by Clenbuterol Residues in Veal Liver. Vet Hum Toxicol.1991,33 (5):480-481
    [7]Brambilla G, Loizzo A, Fontana L, et al. Food Poisoning Following Consumption of Clenbuterol-Treated Veal in Italy. JAMA.1997,278 (8):635
    [8]Mitchell G A, Dunnavan G. Illegal Use of Beta-Adrenergic Agonists in the United States. J Anim Sci. 1998,76(1):208-211
    [9]Prezelj A, Obreza A, Pecar S. Abuse of Clenbuterol and Its Detection. Curr Med Chem.2003,10 (4): 281-290
    [10]Kuiper H A, Noordam M Y, van Dooren-Flipsen M M, et al. Illegal Use of Beta-Adrenergic Agonists: European Community. J Anim Sci.1998,76 (1):195-207
    [11]Courtheyn D, Le Bizec B, Brambilla G, et al. Recent Developments in the Use and Abuse of Growth Promoters. Analytica Chimica Acta.2002,473 (1-2):71-82
    [12]曹莹,黄士新,李丹妮.利用液质联用仪发现新的“瘦肉精”替代品——氯丙那林.中国兽药杂志.2007,41(12):30-32
    [13]Zhang M-X, Li C, Wu Y-L. Determination of Phenylethanolamine a in Animal Hair, Tissues and Feeds by Reversed Phase Liquid Chromatography Tandem Mass Spectrometry with Quechers. Journal of Chromatography B.2012,900 (0):94-99
    [14]Nielen M, Lasaroms J, Essers M, et al. Multiresidue Analysis of Beta-Agonists in Bovine and Porcine Urine, Feed and Hair Using Liquid Chromatography Electrospray Ionisation Tandem Mass Spectrometry. Analytical and Bioanalytical Chemistry.2008,391 (1):199-210
    [15]Shao B, Jia X, Zhang J, et al. Multi-Residual Analysis of 16 B-Agonists in Pig Liver, Kidney and Muscle by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry. Food Chemistry.2009, 114(3):1115-1121
    [16]禁止在饲料和动物饮水中使用的物质农业部公告[2010]第1519号,2010年12月27日
    [17]禁止在饲料和动物饮用水中使用的药物品种目录农业部公告[2002]第176号,2002
    [18]李俊锁,邱月明,王超.兽药残留分析.上海:上海科学技术出版社,2002
    [19]Smith D J. The Pharmacokinetics, Metabolism, and Tissue Residues of Beta-Adrenergic Agonists in Livestock. J Anim Sci.1998,76 (1):173-194
    [20]Hizawa N. Pharmacogenetics of Beta2-Agonists. Allergol Int.2011,60 (3):239-246
    [21]Hagedorn H W, Zuck S, Schulz R. Detection of Clenbuterol (Ventipulmin) in the Horse. Zentralbl Veterinarmed A.1995,42 (3):209-219
    [22]Putnam M R, Rice L E, Wettemann R P, et al. Clenbuterol (Planipart(Trade Mark)) for the Postponement of Parturition in Cattle. Theriogenology.1985,24 (4):385-393
    [23]Mersmann H J. Overview of the Effects of Beta-Adrenergic Receptor Agonists on Animal Growth Including Mechanisms of Action. J Anim Sci.1998,76 (1):160-172
    [24]Spitzer W O, Suissa S, Ernst P, et al. The Use of Beta-Agonists and the Risk of Death and near Death from Asthma. N Engl J Med.1992,326 (8):501-506
    [25]Sears M R. Adverse Effects of Beta-Agonists. J Allergy Clin Immunol.2002,110 (6 Suppl):S322-328
    [26]Council Directive 96/22/Ec. Official Journal of the European Communities.1996, L125:3-9
    [27]FAO. Ractopamine Hydrochloride. Food and Nutrition Paper.2004,41/16
    [28]Delmore R J, Hodgen J M, Johnson B J. Perspectives on the Application of Zilpaterol Hydrochloride in the United States Beef Industry. Journal of Animal Science.2010,88 (8):2825-2828
    [29]Scramlin S M, Platter W J, Gomez R A, et al. Comparative Effects of Ractopamine Hydrochloride and Zilpaterol Hydrochloride on Growth Performance, Carcass Traits, and Longissimus Tenderness of Finishing Steers. J Anim Sci.2010,88 (5):1823-1829
    [30]Edrington T S, Farrow R L, Loneragan G H, et al. Influence of Beta-Agonists (Ractopamine Hcl and Zilpaterol Hcl) on Fecal Shedding of Escherichia Coli O157:H7 in Feedlot Cattle. J Food Prot.2009,72 (12): 2587-2591
    [31]Fiems L O, Boucqu6 C V, de Brabander D L, et al. The Effect of the B-Adrenergic Agonist Cimaterol on Performance and Carcass and Meat Quality in Culled Dairy Cows. Animal Science.1995,61 (01):19-23
    [32]Walker W R, Johnson D D, Brendemuhl J H, et al. Evaluation of Cimaterol for Finishing Swine Including a Drug Withdrawal Period. J Anim Sci.1989,67 (1):168-176
    [33]Chikhou F H, Moloney A P, Allen P, et al. Long-Term Effects of Cimaterol in Friesian Steers:I. Growth, Feed Efficiency, and Selected Carcass Traits. J Anim Sci.1993,71 (4):906-913
    [34]Chikhou F H, Moloney A P, Allen P, et al. Long-Term Effects of Cimaterol in Friesian Steers:Ii. Carcass Composition and Meat Quality. J Anim Sci.1993,71 (4):914-922
    [35]Bryan J. Ventolin Remains a Breath of Fresh Air for Asthma Sufferers, after 40 Years. Pharmacutical Journal
    [36]Carter W J, Lynch M E. Comparison of the Effects of Salbutamol and Clenbuterol on Skeletal Muscle Mass and Carcass Composition in Senescent Rats. Metabolism.1994,43 (9):1119-1125
    [37]Marchant-Forde J N, Lay D C, Jr., Marchant-Forde R M, et al. The Effects of R-Salbutamol on Behavior and Physiology of Finishing Pigs. J Anim Sci.2008,86 (11):3110-3124
    [38]Marchant-Forde J N, Lay D C, Jr., Marchant-Forde R M, et al. The Effects of R-Salbutamol on Growth, Carcass Measures, and Health of Finishing Pigs. J Anim Sci.2012,90 (11):4081-4089
    [39]Nielen M W F, Elliott C T, Boyd S A, et al. Identification of an Unknown B-Agonist in Feed by Liquid Chromatography/Bioassay/Quadrupole Time-of-Flight Tandem Mass Spectrometry with Accurate Mass Measurement. Rapid Communications in Mass Spectrometry.2003,17 (14):1633-1641
    [40]Gallo P, Brambilla G, Neri B, et al. Purification of Clenbuterol-Like Beta2-Agonist Drugs of New Generation from Bovine Urine and Hair by Alphal-Acid Glycoprotein Affinity Chromatography and Determination by Gas Chromatography-Mass Spectrometry. Anal Chim Acta.2007,587 (1):67-74
    [41]Schmid J, Prox A, Zimmer A, et al. Biotransformation of Clenbuterol. Fresenius' J. Anal. Chem.1990, 337:121
    [42]Zalko D, Debrauwer L, Bories G, et al. Evidence for a New and Major Metabolic Pathway Clenbuterol Involving in Vivo Formation of an N-Hydroxyarylamine. Chem Res Toxicol.1997,10 (2):197-204
    [43]Zalko D, Debrauwer L, Bories G, et al. Metabolism of Clenbuterol in Rats. Drug Metab Dispos.1998, 26 (9):891-899
    [44]Zalko D, Perdu-Durand E, Debrauwer L, et al. Comparative Metabolism of Clenbuterol by Rat and Bovine Liver Microsomes and Slices. Drug Metab Dispos.1998,26 (1):28-35
    [45]Zalko D, Bories G, Tulliez J. Metabolic Fate of Clenbuterol in Calves. Journal of Agricultural and Food Chemistry.1998,46(5):1935-1943
    [46]Smith D J, Paulson G D. Distribution, Elimination, and Residues of [14c]Clenbuterol Hcl in Holstein Calves. J Anim Sci.1997,75 (2):454-461
    [47]Montesissa C, Anfossi P, Biancotto G, et al. In Vitro Metabolism of Clenbuterol and Bromobuterol by Pig Liver Microsomes. Xenobiotica.1998,28 (11):1049-1060
    [48]Dalidowicz J E, Thomson T D, Babbitt G E. Ractopamine Hydrochloride, a Phenethanolamine Repartitioning Agent. In:Xenobiotics and Food-Producing Animals:American Chemical Society,1992: 234-243
    [49]Smith D J, Feil V J, Paulson G D. Identification of Turkey Biliary Metabolites of Ractopamine Hydrochloride and the Metabolism and Distribution of Synthetic [14c]Ractopamine Glucuronides in the Turkey. Xenobiotica.2000,30 (4):427-440
    [50]Smith D J, Feil V J, Huwe J K, et al. Metabolism and Disposition of Ractopamine Hydrochloride by Turkey Poults. Drug Metab Dispos.1993,21 (4):624-633
    [51]Lehner A F, Hughes C G, Harkins J D, et al. Detection and Confirmation of Ractopamine and Its Metabolites in Horse Urine after Paylean Administration. J Anal Toxicol.2004,28 (4):226-238
    [52]Smith D J, Giddings J M, Feil V J, et al. Identification of Ractopamine Hydrochloride Metabolites Excreted in Rat Bile. Xenobiotica.1995,25 (5):511-520
    [53]Smith D J, Shelver W L. Tissue Residues of Ractopamine and Urinary Excretion of Ractopamine and Metabolites in Animals Treated for 7 Days with Dietary Ractopamine. J Anim Sci.2002,80 (5):1240-1249
    [54]Hutchings M J, Paull J D, Wilson-Evered E, et al. Pharmacokinetics and Metabolism of Salbutamol in Premature Labour. Br J Clin Pharmacol.1987,24 (1):69-75
    [55]Morgan D J, Paull J D, Richmond B H, et al. Pharmacokinetics of Intravenous and Oral Salbutamol and Its Sulphate Conjugate. Br J Clin Pharmacol.1986,22 (5):587-593
    [56]Eaton E A, Walle U K, Wilson H M, et al. Stereoselective Sulphate Conjugation of Salbutamol by Human Lung and Bronchial Epithelial Cells. Br J Clin Pharmacol.1996,41 (3):201-206
    [57]Montrade M P, Se Bizec B, Monteau F, et al. Analysis of Beta-Agonists in Urine and Tissues by Capillary Gas Chromatography-Mass Spectrometry:In Vivo Study of Salbutamol Disposition in Calves. Food Addit Contam.1995,12 (5):625-636
    [58]Dominguez-Romero J C, Garcia-Reyes J F, Martinez-Romero R, et al. Detection of Main Urinary Metabolites of Beta2-Agonists Clenbuterol, Salbutamol and Terbutaline by Liquid Chromatography High Resolution Mass Spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci.2013,923-924:128-135
    [59]Hoof N V, Schilt R, Vlis E v d, et al. Detection of Zilpaterol (Zilmax(?)) in Calf Urine and Faeces with Liquid Chromatography-Tandem Mass Spectrometry. Analytica Chimica Acta.2005,529(1-2):189-197
    [60]Marshall A G, Hendrickson C L. High-Resolution Mass Spectrometers. Annu Rev Anal Chem (Palo Alto Calif).2008,1:579-599
    [61]Amster I J. Fourier Transform Mass Spectrometry. Journal of Mass Spectrometry.1996,31 (12): 1325-1337
    [62]Scigelova M, Hornshaw M, Giannakopulos A, et al. Fourier Transform Mass Spectrometry. Mol Cell Proteomics.2011,10 (7):M111 009431
    [63]Marshall A G, Hendrickson C L, Jackson G S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry:A Primer. Mass Spectrom Rev.1998,17 (1):1-35
    [64]Bogdanov B, Smith R D. Proteomics by Fticr Mass Spectrometry:Top Down and Bottom Up. Mass Spectrom Rev.2005,24 (2):168-200
    [65]Hu Q, Noll R J, Li H, et al. The Orbitrap:A New Mass Spectrometer. J Mass Spectrom.2005,40 (4): 430-443
    [66]Perry R H, Cooks R G, Noll R J. Orbitrap Mass Spectrometry:Instrumentation, Ion Motion and Applications. Mass Spectrom Rev.2008,27 (6):661-699
    [67]Mamyrin B A. Time-of-Flight Mass Spectrometry (Concepts, Achievements, and Prospects). International Journal of Mass Spectrometry.2001,206 (3):251-266
    [68]Guilhaus M, Selby D, Mlynski V. Orthogonal Acceleration Time-of-Flight Mass Spectrometry. Mass Spectrom Rev.2000,19 (2):65-107
    [69]Chernushevich I V, Loboda A V, Thomson B A. An Introduction to Quadrupole-Time-of-Flight Mass Spectrometry. J Mass Spectrom.2001,36 (8):849-865
    [70]Han X, Aslanian A, Yates J R,3rd. Mass Spectrometry for Proteomics. Curr Opin Chem Biol.2008,12 (5):483-490
    [71]Jiwan J L, Wallemacq P, Herent M F. Hplc-High Resolution Mass Spectrometry in Clinical Laboratory? Clin Biochem.2011,44 (1):136-147
    [72]Meyer M R, Maurer H H. Current Applications of High-Resolution Mass Spectrometry in Drug Metabolism Studies. Anal Bioanal Chem.2012,403 (5):1221-1231
    [73]Kaufmann A. The Current Role of High-Resolution Mass Spectrometry in Food Analysis. Anal Bioanal Chem.2012,403 (5):1233-1249
    [74]de Villiers A, Lestremau F, Szucs R, et al. Evaluation of Ultra Performance Liquid Chromatography: Part I. Possibilities and Limitations. Journal of Chromatography A.2006,1127 (1-2):60-69
    [75]Wren S A C, Tchelitcheff P. Use of Ultra-Performance Liquid Chromatography in Pharmaceutical Development. Journal of Chromatography A.2006,1119 (1-2):140-146
    [76]Ma S, Chowdhury S K, Alton K B. Application of Mass Spectrometry for Metabolite Identification. Curr Drug Metab.2006,7 (5):503-523
    [77]Prasad B, Garg A, Takwani H, et al. Metabolite Identification by Liquid Chromatography-Mass Spectrometry. TrAC Trends in Analytical Chemistry.2011,30 (2):360-387
    [78]Want E J, Cravatt B F, Siuzdak G. The Expanding Role of Mass Spectrometry in Metabolite Profiling and Characterization. Chembiochem.2005,6 (11):1941-1951
    [79]Holcapek M, Kolafova L, Nobilis M. High-Performance Liquid Chromatography-Tandem Mass Spectrometry in the Identification and Determination of Phase I and Phase Ii Drug Metabolites. Analytical and Bioanalytical Chemistry.2008,391 (1):59-78
    [80]Zhu M, Zhang H, Humphreys W G. Drug Metabolite Profiling and Identification by High-Resolution Mass Spectrometry. The Journal of biological chemistry.2011,286 (29):25419-25425
    [81]Plumb R S, Johnson K A, Rainville P, et al. Uplc/Mse; a New Approach for Generating Molecular Fragment Information for Biomarker Structure Elucidation. Rapid Communications in Mass Spectrometry. 2006,20(13):1989-1994
    [82]Barbara J E, Castro-Perez J M. High-Resolution Chromatography/Time-of-Flight Mse with in Silico Data Mining Is an Information-Rich Approach to Reactive Metabolite Screening. Rapid Commun Mass Spectrom.2011,25 (20):3029-3040
    [83]Bateman K P, Castro-Perez J, Wrona M, et al. Mse with Mass Defect Filtering for in Vitro and in Vivo Metabolite Identification. Rapid Commun Mass Spectrom.2007,21 (9):1485-1496
    [84]Zhang H, Zhang D, Ray K. A Software Filter to Remove Interference Ions from Drug Metabolites in Accurate Mass Liquid Chromatography/Mass Spectrometric Analyses. Journal of Mass Spectrometry.2003, 38 (10):1110-1112
    [85]Zhang H, Zhang D, Ray K, et al. Mass Defect Filter Technique and Its Applications to Drug Metabolite Identification by High-Resolution Mass Spectrometry. J Mass Spectrom.2009,44 (7):999-1016
    [86]Zhu M, Ma L, Zhang D, et al. Detection and Characterization of Metabolites in Biological Matrices Using Mass Defect Filtering of Liquid Chromatography/High Resolution Mass Spectrometry Data. Drug Metab Dispos.2006,34 (10):1722-1733
    [87]Lim H K, Chen J, Cook K, et al. A Generic Method to Detect Electrophilic Intermediates Using Isotopic Pattern Triggered Data-Dependent High-Resolution Accurate Mass Spectrometry. Rapid Commun Mass Spectrom.2008,22 (8):1295-1311
    [88]Cuyckens F, Balcaen L I, De Wolf K, et al. Use of the Bromine Isotope Ratio in Hplc-Icp-Ms and Hplc-Esi-Ms Analysis of a New Drug in Development. Anal Bioanal Chem.2008,390 (7):1717-1729
    [89]Leblanc A, Shiao T C, Roy R, et al. Improved Detection of Reactive Metabolites with a Bromine-Containing Glutathione Analog Using Mass Defect and Isotope Pattern Matching. Rapid Commun Mass Spectrom.2010,24 (9):1241-1250
    [90]Jemal M, Xia Y Q, Whigan D B. The Use of High-Flow High Performance Liquid Chromatography Coupled with Positive and Negative Ion Electrospray Tandem Mass Spectrometry for Quantitative Bioanalysis Via Direct Injection of the Plasma/Serum Samples. Rapid Commun Mass Spectrom.1998,12 (19):1389-1399
    [91]Korfmacher W A, Cox K A, Bryant M S, et al. Hplc-Api/Ms/Ms:A Powerful Tool for Integrating Drug Metabolism into the Drug Discovery Process. Drug Discovery Today.1997,2 (12):532-537
    [92]Jemal M, Xia Y Q. Lc-Ms Development Strategies for Quantitative Bioanalysis. Curr Drug Metab.2006, 7 (5):491-502
    [93]Bateman K P, Kellmann M, Muenster H, et al. Quantitative-Qualitative Data Acquisition Using a Benchtop Orbitrap Mass Spectrometer. Journal of the American Society for Mass Spectrometry.2009,20 (8): 1441-1450
    [94]Mortishire-Smith R J, Zhang H, Bateman K P. High-Resolution Mass Spectrometry and Drug Metabolite Identification. In:Mass Spectrometry in Drug Metabolism and Disposition:John Wiley & Sons, Inc.,2011: 407-448
    [95]Pico Y, Barcelo D. The Expanding Role of Lc-Ms in Analyzing Metabolites and Degradation Products of Food Contaminants. TrAC Trends in Analytical Chemistry.2008,27 (10):821-835
    [96]Kaufmann A, Dvorak V, Cruzer C, et al. Study of High-Resolution Mass Spectrometry Technology as a Replacement for Tandem Mass Spectrometry in the Field of Quantitative Pesticide Residue Analysis. J AOAC Int.2012,95 (2):528-548
    [97]Fung E N, Xia Y Q, Aubry A F, et al. Full-Scan High Resolution Accurate Mass Spectrometry (Hrms) in Regulated Bioanalysis:Lc-Hrms for the Quantitation of Prednisone and Prednisolone in Human Plasma. J Chromatogr B Analyt Technol Biomed Life Sci.2011,879 (27):2919-2927
    [98]Xie C, Zhong D, Yu K, et al. Recent Advances in Metabolite Identification and Quantitative Bioanalysis by Lc-Q-Tof Ms. Bioanalysis.2012,4 (8):937-959
    [99]Ramanathan R, Jemal M, Ramagiri S, et al. It Is Time for a Paradigm Shift in Drug Discovery Bioanalysis:From Srm to Hrms. J Mass Spectrom.2011,46 (6):595-601
    [100]Castiglioni S, Zuccato E, Chiabrando C, et al. Mass Spectrometric Analysis of Illicit Drugs in Wastewater and Surface Water. Mass Spectrom Rev.2008,27 (4):378-394
    [101]Bijlsma L, Sancho J V, Hernandez F, et al. Fragmentation Pathways of Drugs of Abuse and Their Metabolites Based on Qtof Ms/Ms and Ms(E) Accurate-Mass Spectra. J Mass Spectrom.2011,46 (9): 865-875
    [102]Klagkou K, Pullen F, Harrison M, et al. Fragmentation Pathways of Sulphonamides under Electrospray Tandem Mass Spectrometric Conditions. Rapid Commun Mass Spectrom.2003,17 (21):2373-2379
    [103]Thevis M, Opfermann G, Schanzer W. Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometric Screening and Confirmation Methods for Beta2-Agonists in Human or Equine Urine. J Mass Spectrom.2003,38 (11):1197-1206
    [104]Commision Decision 2002/657/Ec of 12 August 2002. Off. J. Eur. Communities.2002,221:8-36
    [105]李丹,孙雷,毕言锋等.超高效液相色谱-串联质谱法检测猪尿中20种β-受体激动剂残留.中国 兽药杂志.2013,47(12):50-56
    [106]Pozo O J, Sancho J V, Ibanez M, et al. Confirmation of Organic Micropollutants Detected in Environmental Samples by Liquid Chromatography Tandem Mass Spectrometry:Achievements and Pitfalls. TrAC Trends in Analytical Chemistry.2006,25 (10):1030-1042
    [107]Alonen A, Gartman M, Aitio O, et al. Synthesis, Structure Characterization, and Enzyme Screening of Clenbuterol Glucuronides. Eur J Pharm Sci.2009,37 (5):581-587
    [108]Uetrecht J P. The Role of Leukocyte-Generated Reactive Metabolites in the Pathogenesis of Idiosyncratic Drug Reactions. Drug Metab Rev.1992,24 (3):299-366
    [109]Sabbioni G Hemoglobin Binding of Arylamines and Nitroarenes:Molecular Dosimetry and Quantitative Structure-Activity Relationships. Environ Health Perspect.1994,102 Suppl 6:61-67
    [110]Mareck U, Guddat S, Schwenke A, et al. Determination of Salbutamol and Salbutamol Glucuronide in Human Urine by Means of Liquid Chromatography-Tandem Mass Spectrometry. Drug Test Anal.2011,3 (11-12):820-827
    [111]徐素彬,赵立军,柏林等.高效液相色谱-串联质谱法对家畜尿液中苯乙醇胺a残留检测研究.分析化学.2013,41(5):776-780
    [112]王瑞国,苏晓鸥,王培龙等.超高效液相色谱法测定饲料中苯乙醇胺a.分析化学.2013,41(3):389-393
    [113]孙武勇,赵冰琳,张守杰等超高效液相色谱-串联质谱法测定饲料中苯乙醇胺a的残留量.色谱.2012,30(10):1008-1011
    [114]Suzuki J, Meguro S, Morita O, et al. Comparison of in Vivo Binding of Aromatic Nitro and Amino Compounds to Rat Hemoglobin. Biochem Pharmacol.1989,38 (20):3511-3519
    [115]Holder J W. Nitrobenzene Potential Human Cancer Risk Based on Animal Studies. Toxicol Ind Health. 1999,15 (5):458-463
    [116]Maples K R, Eyer P, Mason R P. Aniline-, Phenylhydroxylamine-, Nitrosobenzene-, and Nitrobenzene-Induced Hemoglobin Thiyl Free Radical Formation in Vivo and in Vitro. Mol Pharmacol.1990, 37 (2):311-318
    [117]Yunis A A. Chloramphenicol Toxicity:25 Years of Research. Am J Med.1989,87 (3):44-48
    [118]Yunis A A. Chloramphenicol:Relation of Structure to Activity and Toxicity. Annual Review of Pharmacology and Toxicology.1988,28 (1):83-100
    [119]Courtheyn D, Moermans R, Schilt R, et al. Beta-Agonists in Animal Feed. Ii:Optimization of the Extraction. Food Addit Contain.1996,13 (5):493-509
    [120]孙雷,张骊,朱永林等.超高效液相色谱-串联质谱法检测动物源性食品中残留的9种β-受体激动剂.色谱.2008,26(6):709-713
    [121]Boyd D, O'Keeffe M, Smyth M R. Methods for the Determination of [Small Beta]-Agonists in Biological Matrices. A Review. Analyst.1996,121 (1):1R-10R
    [122]Spisso B F, Lopes C C, Marques M A, et al. Determination of Beta2-Agonists in Bovine Urine: Comparison of Two Extraction/Clean-up Procedures for High-Resolution Gas Chromatography-Mass Spectrometry Analysis. J Anal Toxicol.2000,24 (2):146-152
    [123]Antignac J P, Marchand P, Le Bizec B, et al. Identification of Ractopamine Residues in Tissue and Urine Samples at Ultra-Trace Level Using Liquid Chromatography-Positive Electrospray Tandem Mass Spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci.2002,774 (1):59-66
    [124]Liu X, He X, Moore C, et al. Highly Sensitive and Specific Liquid Chromatography-Tandem Mass Spectrometry Method for Testing Ractopamine in Cow and Sheep Urine. J Anal Toxicol.2009,33 (6): 289-293
    [125]Burnett T J, Rodewald J M, Brunelle S L, et al. Determination and Confirmation of Parent and Total Ractopamine in Bovine, Swine, and Turkey Tissues by Liquid Chromatography with Tandem Mass Spectrometry:First Action 2011.23. J AOAC Int.2012,95 (5):1235-1255
    [126]Matuszewski B K, Constanzer M L, Chavez-Eng C M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on Hplc-Ms/Ms. Anal Chem.2003,75 (13):3019-3030
    [127]Vanhaecke L, Gowlk P, Le Bizec B, et al. European Analytical Criteria:Past, Present, and Future. J AOAC Int.2011,94 (2):360-372
    [128]Dong Y, Xia X, Wang X, et al. Validation of an Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Determination of Ractopamine:Application to Residue Depletion Study in Swine. Food Chemistry.2011,127 (1):327-332
    [129]Silkstone V L, Corlett S A, Chrystyn H. Determination of the Relative Bioavailability of Salbutamol to the Lungs and Systemic Circulation Following Nebulization. Br J Clin Pharmacol.2002,54 (2):115-119
    [130]Abdelrahim M E, Assi K H, Chrystyn H. Relative Bioavailability of Terbutaline to the Lung Following Inhalation, Using Urinary Excretion. Br J Clin Pharmacol.2011,71 (4):608-610

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700