用户名: 密码: 验证码:
脐血造血干/祖细胞分离、纯化、生物学特性及B细胞分化发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     探讨密度分离脐血造血干/祖细胞体外扩增和体内重建造血的潜能;胎儿骨髓间质干细胞对CD34+细胞体外扩增的造血支持作用;体外诱导脐血造血干/祖细胞向B细胞分化发育的规律。
     研究内容:
     (1)利用造血干/祖细胞培养、体外扩增、移植动物模型等技术,研究不同比密Ficoll-泛影葡胺分离液分离脐血造血干/祖细胞的造血活性。
     (2)体外分离、纯化胎儿骨髓间质干细胞;Mini-MACS免疫磁珠分离脐血CD34+细胞;建立胎儿骨髓间质干细胞、细胞因子与CD34+细胞共培养体系,用液体培养方法扩增细胞;实时定量RT-PCR技术分析培养细胞的nucleostemin基因表达。
     (3)体外免疫磁珠分离纯化脐血造血干/祖细胞;在小鼠S-17基质细胞支持下,脐血造血干/祖细胞、T3、IL7共培养建立体外B细胞分化发育培养体系,诱导脐血造血干/祖细胞B细胞分化;用流式细胞仪、PCR、RT-PCR技术检测不同培养时间分化的B细胞。
     研究方法:
     (1)密度分离脐血细胞配制不同密度Ficoll-泛影葡胺细胞分离液,分别应用密度为1.054 g/ml、1.064g/ml、1.072g/ml、1.077g/ml、1.084g/mlFicoll-泛影葡胺不连续密度梯度离心分离脐血有核细胞成分。
     (2)造血祖细胞集落培养五种不同比密Ficoll-泛影葡胺分离液分离的脐血细胞,在甲基纤维素体系中培养测定其集落形成能力。CFU-GM体系含有细胞2×10~5/ml,20%FBS,20ng/ml GM-CSF,0.9%甲基纤维素。BFU-E体系含有细胞2×10~5/ml,10~(-5)M 2-巯基乙醇,3mM L-谷氨酰胺,马血清25%,白细胞条件培养液20%,EPO 2U/ml,0.9%甲基纤维素。充分混匀以每孔0.25ml加入24孔培养板中,重复2孔,置37℃,5%CO_2培养箱培养,CFU-GM培养7天,BFU-E培养14天,倒置显微镜下观察计数CFU-GM,BFU-E。鉴别标准:CFU-GM每个集落至少含有40个细胞;BFU-E集落呈多中心状,橘红色,至少含有100个细胞。
     (3)密度分离细胞的生物学特性分析BALB/c照射小鼠体内输注不同比密Ficoll-泛影葡胺分离液分离的脐血细胞,观察其造血潜能。Ficoll-泛影葡胺分离液分离的细胞,用无菌生理盐水洗涤二次后,计数并调整细胞浓度为2×10~6/ml,小鼠经致死剂量(8.5Gy)照射后随机分为3组,照射后2小时完成输注。Ⅰ组6只,输注无菌生理盐水0.2ml;Ⅱ组6只,输注经1.077g/ml Ficoll-泛影葡胺分离液分离洗涤后的脐血MNC(1.077细胞)0.2ml;Ⅲ组6只,输注经1.064g/ml Ficoll-泛影葡胺分离液分离洗涤后的脐血MNC(1.064细胞)0.2ml。所有小鼠均采用尾静脉输注。
     (4)脐血造血干/祖细胞体外扩增
     取经鉴定的MSCs接种于24孔板中,当细胞生长达80%汇合度时,接种MiniMACS分选的CD34+细胞(4000/孔),总体积为1ml,共分4组(每组3孔):①CD34+细胞组;②胎儿骨髓MSCs+CD34+细胞组;③细胞因子+CD34+细胞组,细胞因子浓度为50ng/ml SCF、50ng/ml IL-3、50ng/ml FL、50ng/ml TPO;④胎儿骨髓MSCs+细胞因子+CD34+细胞组。培养体系为含10%FBS的DMEM,置5%CO_2、饱和湿度37℃培养。每7天半量换液1次并补充新的细胞因子,浓度同前。
     (5)脐血造血干/祖细胞B细胞分化培养
     接种Dynal beads分选的CD34+CD19-细胞或细胞仪分选的CD34+CD19-CD38-细胞于预铺S-17基质细胞的96孔培养板中。培养体系为α-MEM培养液,含3%FBS,50μM2-巯基乙醇,1%L-谷氨酰胺、T3及细胞因子组合,每孔总体积100μl。置5%CO_2,饱和湿度,37℃培养。每7天半量换液1次并补充新的细胞因子,浓度同前。
     (6)流式细胞分析术分选或培养的1×10~6细胞标记前用含1%牛血清白蛋白(HAS)的PBS洗涤1次,用荧光标记小鼠抗人单克隆抗体标记,置4℃条件下30 min,用含1%HAS的PBS洗涤1次,加0.4 ml含0.1%叠氮钠的PBS,流式细胞仪检测。分析软件为Cellquest。
     (7) CD34+细胞nucleostemin基因表达的分析定量PCR反应用于nucleostemin基因分析。反应体系为25μl,包括:1μlcDNA模板和24μl反应混合液[其中含2.5mM MgCl_2,20pmol引物,0.1μl Syber greenⅠ(1:1000)]。PCR循环参数为:95℃预变性2min,(94℃30s;58℃30s,72℃30s),40个循环。以GAPDH为内参照,扩增长度为205 bp,GAPDH基因连于pMD-18T载体定量稀释,作为标准曲线的模板。每个DNA样品做2个平行管,重复3次实验,反应结束后使用定量PCR仪的分析软件对实验结果进行分析,计算各样本基因的原始拷贝数,单位为拷贝/μlcDNA。Nucleostemin PCR扩增产物与相应GAPDH的扩增产物原始拷贝数的比值能反映转录水平的差异。
     此外,采取上述方法(PCR或RT-PCR)分析T3Rα1、T3Rα2、hT3Rβ1、Iμ、Cμ、IgLL、DQ52(D7-27)、DXP1(D3-9)、DQ52/DXP1等基因的表达、重组情况。
     研究结果:
     (1) 1.064g/ml Ficoll-泛影葡胺分离液分离脐血细胞中,CFU-GM集落数为373±289/1×10~5MNC,BFU-E为121±70/1×10~5MNC;在细胞因子刺激下,1.064g/ml Ficoll-泛影葡胺分离液分离脐血MNC在体外扩增14天时CFU-GM的扩增倍数达52.2倍;1.064g/ml Ficoll-泛影葡胺分离液分离的造血干/祖细胞可在8.5Gy致死剂量照射小鼠体内植入,输注1.064g/ml Ficoll分离脐血MNC产生的脾结节数是输注1.077g/ml Ficoll-泛影葡胺分离液分离脐血MNC的2.2倍。
     (2)胎儿骨髓间质干细胞表达CD29、CD44;免疫磁珠分选CD34+细胞的平均纯度为97.4%;胎儿骨髓间质干细胞+CD34+细胞共培养28天,CD34+细胞仍占有核细胞的6.43%;CD34+细胞在胎儿骨髓间质干细胞、细胞因子作用下培养28天,有核细胞总数、CD34+细胞数分别被扩增1.65×10~5倍、788倍。
     (3) T3诱导脐血造血干/祖细胞B细胞分化,在我们选用的实验条件下,T3、IL-7与小鼠S-17基质细胞共培养是诱导CD34+CD19-造血干/祖细胞向B细胞分化的最佳条件,诱导的CD19+B部分细胞表达CD21,还表达CD10、CD20、CD24抗原,弱表达CD23抗原、HSL11、HSL96,不表达CD3、CD33、CD34、IgM抗原,B细胞向成熟方向发育;在小鼠S-17基质细胞支持下,单纯T3诱导的CD19+B细胞大多数体积较小,CD19+B细胞几乎不表达CD21,B细胞发育停留在较原始阶段;34+CD19-CD38-造血干/祖细胞B细胞分化的扩增倍数明显高于34+CD19-造血干/祖细胞,持续扩增的时间也延长;新鲜脐血与冻存脐血CD34+CD19-造血干/祖细胞B细胞分化的纯度、扩增倍数无明显差异;小鼠S-17基质细胞高表达T3Rα1,传代20代以上小鼠S-17基质细胞,失去支持脐血CD34+CD19-造血干/祖细胞B细胞分化的能力。
     (4)纯化的脐血CD34+CD19-造血干/祖细胞检测到胚系DQ52基因,未发生DH-JH基因重排;诱导分化的B细胞优先选择DQ52-JH4、DQ52-JH3、DQ52-JH5基因重排,未检测到DQ52-JH1、DQ52-JH2、DQ52-JH6基因重排;在整个B细胞分化发育过程中,我们检测到持续的Iμ、Cμ、IgLL转录。
     研究结论:
     (1) 1.064g/ml Ficoll-泛影葡胺分离的造血干/祖细胞在体外具有较高的增殖、持续造血的能力及较强的体内造血重建潜能。
     (2)胎儿骨髓间质干细胞可有效扩增脐血造血干/祖细胞。
     (3) T3、IL7与小鼠S-17基质细胞体外能诱导脐血造血干/祖细胞B细胞分化,免疫球蛋白重链基因优势选择DH-JH4、DH-JH3、DH-JH5重排。脐血冻存三年对造血干/祖细胞活性、B细胞分化能力无影响。
Objective
     The aim of this study is to investigate the expansion of hematopoietic stem /progenitor cell separated by Ficoll in vitro and the potential of hematopoietic reconstitution in vivo,the role of expansion of CD34+ cells supported by fetal mesenchymal stem cells(MSCs) in vitro and the B cell development of hematopoietic stem/progenitor cells from cord blood in vitro.
     Methods
     By using a series of techniques,i.e.,stem/progenitor cells culture,expansion in vitro and animal transplantation model,the hematopoietic activity of different Ficoll-Urografin gradient density separated cells was evaluated.
     Fetal MSCs were isolated and purified in vitro.Cord blood CD34+ cells were isolated by using Mini-MACS separation system.Co-culture of CD34+ cells with fetal MSCs and cytokines was established.CD34+ cells was expanded in liquid culture.Nucleostemin gene in cultured cells was analyzed by Real-Time RT-PCR.
     Hematopoietic stem/progenitor cells from cord blood were isolated and purified by using immunomagnetic beads separation system in vitro.Differentiation of B cells derived from cord blood hematopoietic stem/progenitor cells supported by murine S-17 stromal cells were stimulated in co-culture with T3 and IL-7.
     The differentiation and development culture system of B cells were established in vitro.Differentiated B cells were detected by using FACS,PCR and RT-PCR techniques at different culture time.
     Results
     After separation of 1.064g/ml Ficoll-Urografin gradient,the number of CFU-GM were 373±289/1×10~5 MNCs and BFU-E were 121±70/1×10~5 MNCs.Following treated with cytokines for 14 days,the number of CFU-GM expanded 52.2-fold in vitro.The number of CFU-S in BALB/c mice which were irradiated by a lethal dose of 8.5Gy and transfused subsequently with the hematopoietic stem/progenitor cells separated by 1.064g/ml Ficoll-Urografin gradient was 2.2-fold as many as that of separated by 1.077g/ml Ficoll-Urografin gradient.
     Fetal MSCs expressed CD29 and CD44.The average purity of CD34+ cells was 97.4%.After co-culture of CD34+ cells with fetal MSCs for 28 days,6.43%of CD34+ cells remained in the cultured cells,the amplification of the total cells and CD34+ cells reached 1.65×10~5-fold,788-fold increase in the co-culture of CD34+ cells with fetal MSCs and cytokines,respectively.
     T3 stimulated differentiation of B cells derived from cord blood hematopoietic stem/progenitor cells,most of the induced CD19+ B cells were smaller,CD19+ B cells scarcely expressed CD21,development of B cells remained in a primitive stage. In experimental conditions we had selected,co-culture with T3,IL-7 and murine S-17 stromal cells was optimum condition to stimulated CD34+CD19- hematopoietic stem/progenitor cells to differentiate to B cells.Cultured CD19+ B cells expressed CD21 as well as CD10,CD20,CD24,weakly expressed CD23,HSL11,HSL96 and did not expressed CD3,CD33,CD34,IgM,B cells developed to be mature.
     Fold increase of B cells derived from CD34+CD19-CD38- hematopoietic stem/progenitor cells was significantly higher than that of CD34+CD19-hematopoietic stem/progenitor cells,the time of lasting amplification also extended.
     There was no significant difference in differentiation purity and amplification folds of B cells derived from fresh or cryopreserved cord blood.
     Murine S-17 stromal cells passaged more than 20 generations lost the ability of supporting the differentiation of B cells derived from cord blood CD34+CD19-stem/progenitor cells.
     The germline configuration of the DQ52 gene segment could be detected as indicated by its expected size of 2216bp.We found preferential rearrangements with a predicted fragment size of DH-JH4,DH-JH3,and DH-JH5 joined segments,whereas rearrangements to JH1,JH2 or JH6 gene segments were not detectable.Our primer design showed continuous transcription of Iμ、Cμ、IgLL during B cell development throughout the course of our in vitro cell culture system.
     Conclusion
     The hematopoietic stem/progenitor cells after 1.064g/ml Ficoll-Urografin density separation acquired higher ability of expansion and sustaining hematopoiesis in vitro and the potential of hematopoietic reconstitution in vivo.
     Fetal MSCs could support efficiently proliferation of hematopoietic stem/progenitor cells derived from cord blood.
     In experimental conditions we had selected,supported by murine S-17 stromal cells,T3 and IL-7 could stimulate cord blood hematopoietic stem/progenitor cells to differentiate to B cells in vitro.There were preferential rearrangements of heavy chain immunoglobulin genes with DH-JH4,DH-JH3 and DH-JH5 joined segments.
     The activity of hematopoietic stem/progenitor cells and the ability of differentiation of B cells derived from hematopoietic stem/progenitor cells had no significant difference between fresh cord blood and cryopreserved cord blood.
引文
1.李斌,吴岩.造血干细胞研究进展.内蒙古医学院学报,2006,28(6):592-595.
    2.宋献民,王健民.造血干细胞自我更新调控的研究进展.中华血液学杂志,2006,27(2):138-140.
    3.Zubair AC,Silberstein L,Ritz J.Adult hematopoietic stem cell lasticity.Transfusion,2002,42(8):1096-1101.
    4.Sato J,Laver H,Ogawa M.Reversible expression of CD34 by murine hematopoietic stem cells.Blood,1999,94(8):2548-2554.
    5.Lee MS,Makkar RR.Stem-cell transplantation in myocardial infarction:a status report.Ann Intern Med,2004,140(9):729-737.
    6.Gehling UM,Ergun S,Schumacher U,et al.In vitro differentiation of endothelial cells from AC133 positive progenitor cells.Blood,2000,95(10):3106-3112.
    7.Broxmeyer HE,Douglas GW,Hangoc C,et al.Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells.Proc Natl Acad Sci USA,1989,86(10):3828-3832.
    8.Vormoor J,Klingebiel T,Jurgens H.Current state of cord blood transplantation in childhood.Klin Padiatr,2002,214(4):195-200.
    9.Brown J,Boussiotis VA.Umbilical Cord Blood Transplantation:Basic Biology and Clinical Challenges to Immune Reconstitution.Clin Immunol,2008,127(3):286-297.
    10.许文荣,胡嘉波,顾可梁,等.脐血造血干/祖细胞的密度分离实验研究.临床检验杂志,2001,19(2):73-76.
    11.Lu L,Xiao M,Shen RN,et al.Enrichment,characterization,and responsiveness of single primitive CD34 human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential.Blood,1993,81(1):41-8.
    12.Clap DW,Balry JE,John W,et al.Gestational age-dependent changes in circulating hematopoietic stem cells in newborn infants.J Lab Clin Med,1989,113(4):422-427.
    13.De Bruyn C,Delforge A,Lagneaux L,et al.Characterization of CD34+subsets derived from bone marrow,umbilical cord blood and mobilized peripheral blood after stem cell factor and interleukin 3 stimulation.Bone Marrow Transplant,2000,25(4):377-383.
    14.de Pauw ES,Verwoerd NP,Duinkerken N,et al.Assessment of telomere length in hematopoietic interphase cells using in situ hybridization and digital fluorescence microscopy.Cytometry,1998,32(~):163-169.
    15.刘婧,尚曦莹,黄涛生.脐血干细胞移植的过去、现状和未来.中国优生优育,2008,14(1):13-16.
    16.黄晓军.造血干细胞移植的现状与进展.见:第47届美国血液学年会介绍.中华血液学杂志,2006,27:429.
    17.Inada H.Cryopreservation and engraftment potential of peripheral blood stem cells:pediatric experience.Kurume Med J,2001,48(2):151-157.
    18.李罡灿,宋艳萍,杜明珠,等.不同冻存条件对造血干细胞保存效果的影响.第四军医大学学报,2006,27(15):1438-1440.
    19.唐佩弦.干细胞基础研究进展.医学研究杂志,2007,36(6):4-8.
    20.Wagner W,Saffrich R,Wirkner R,et al.Interaction of stem cells and their niche:behavior and gene expression profiles of CD34+/CD38cells upon co-cultivation with AFT024.Blood,2004,104(ASH Annual Meeting Abstracts):1281-1285.
    21.孙晓春,许文荣,许化溪,等.不同来源的人间质干细胞分离与基本生物学特性研究.江苏大学学报(医学版),2005,15(5):369-372.
    22.Osmond DG.B cell development in the bone marrow.Semin Immunol,1990,2(3):173-180.
    23.Acosta-Rodriguez EV,Merino MC,Montes CL,et al.Cytokines and chemokines shaping the B-cell compartment.Cytokine Growth Factor Rev,2007,18(1-2):73-83.
    24.Kim DR,Park SJ,Oettinger MA.V(D)J recombination:site-specific cleavage and repair.Mol Cells,2000,10(4):367-374.
    25.Pelanda R,Torres RM.Receptor editing for better or for worse.Curr Opin Immunol,2006,18(2):184-190.
    26.Shimizu T,Mundt C,Licence S,et al.VpreB1/VpreB2/lambda 5triple-deficient mice show impaired B cell development but functional allelic exclusion of the IgH locus.J Immunol,2002,168(12):6286-6293.
    27.Wei C,Zeff R,Goldschneider I,et al.Murine pro-B cells require IL-7and its receptor complex to up-regulate IL-7R alpha,terminal deoxynucleotidytransferase,and c mu expession.J Immunol,2000,164(4):1961-1970.
    28.Roshi Afshar R,Pierce S,Bolland DJ,et al.Regulation of IgH Gene Assembly:Role of the Intronic Enhancer and 5' DQ52 Region in Targeting DHJH Recombination. J Immunol, 2006, 176(4):2439-2447.
    
    29. Dekoter RP, Walsh JC, Singh H. PU. 1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J, 1998, 17 (15) : 4456-4468.
    
    30. Dekoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU. 1. Science, 2000,288(5470): 1439-1441.
    
    31. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and Ikaros. Nat Rev Immunol, 2002, 2(3):162-174.
    
    32. Yoshida T, Ng SY, Zuniga-Pflucker JC, et al. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol, 2006,7(4): 382-391.
    
    33. Medina KL, Pongubala JM, Reddy KL, et al. Assembling a gene regulatory network for specification of the B cell fate. Dev Cell,2004 ,7(4): 607-617.
    
    34. Hagman J, Lukin K. Transcription factors drive B cell development.Curr Opin Immunol, 2006 ,18(2):127-134.
    
    35. Lin H, Grosschedl R. Failure of B-cell differentiation in mice lacking thetranscription factor EBF. Nature, 1995, 376(6537):263-267.
    
    36. Maier H, Ostraat R, Gao H, et al. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat Immunol, 2004,5(10):1069 - 1077.
    
    37. Liu P, Hagman JR, Ortiz M, et al. Bcllla is essential for normal lymphoid development. Nat Immunol, 2003, 4 (6) ,512-514.
    
    38. Melchers F. The pre-B-cell receptor: Selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat Rev Immunol, 2005, 5(7): 578-584.
    
    39. Rolink AG, Winkler T, Melchers F, et al. Precursor B cell receptor-dependent B cell proliferation and differentiation does not require the bone marrow or fetal liver environment. J Exp Med, 2000,191(1):23-32.
    
    40. Delogu A, Schebesta A, Sun Q, et al. Gene Repression by Pax5 in B Cells Is Essential for Blood Cell Homeostasis and Is Reversed in Plasma Cells.Immunity, 2006, 24(3):269-281.
    
    41. Rolink AG, Nutt SL, Melchers F, et al. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature,1999, 401(6753): 603-606.
    
    42. Souabni A,Cobaleda C, Schebesta M, et al. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing notchl. Immunity,2002,17(6): 781-793.
    
    43. Cotta CV, Zhang Z, Kim HG, et al. Pax5 determines B versus T cell fate and does not block early myeloid-lineage development. Blood,2003,101(11): 4342-4346.
    
    44. Mikkola I, Heavey B, Horcher M, et al. Reversion of B cell commitment upon loss of Pax5 expression. Science, 2002, 297(5578):110-113.
    
    45. Horcher M, Souabni A, Busslinger M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity, 2001, 14(6):779-790.
    
    46. Hesslein DG, Pflugh DL, Chowdhury D, et al.Pax5 is required for recombination of transcribed, acetylated, 5' IgH V gene segments.Genes Dev, 2003,17(1):37-42.
    
    47. Danbara M, Kameyama K, Higashihara M, et al. DNA methylation dominates transcriptional silencing of Pax5 in terminally differentiated B cell lines. Mol Immunol,2002,38(15):1161-1166
    
    48. Raghunandan R, Ruiz-Hidalgo M, JiaY. D1k1 influences differentiation and function of B lymphocytes. Stem Cells Dev, 2008,17(3):495-508.
    
    49. McKeller MR, Martinez-Valdez H. The κ -like pre-B receptor: Surplus biology or a missing link? Semin Immunol, 2006,18(1): 40-43.
    
    50. Benschop RJ, Cambier JC. B cell development: signal transduction by antigen receptors and their surrogates. Curr Opin Immunol,1999 ,11(2): 143-151.
    
    51. Craig DM, Heather EF, Christopher JP. IL-7 does not prevent pro-B/pre-B cell maturation to the immature/sIgM stage. Eur J Immunol. 2004, 34(10):2647-2655.
    
    52. Monroe JG, Allman D. Keeping track of pro-B cell: a new model for the effects of IL-7 during B cell development. Eur J Immunol, 2004, 34(10):2642-2646.
    
    53. Marchbank KJ, Kulik L, Gipson MG, et al. Expression of human complement receptor type 2(CD21) in mice during early B cell development results in a reduction in mature B cells and hypogammaglobulinemia. The journal of Immunology, 2002,169(7):3526-3535.
    
    54. Jin ZX, Kishi H, Wei XC, et al. Lymphoid enhancer-binding factor-1 binds and activates the recombination-activating gene-2 promoter together with c-Myb and Pax-5 in immature B cells. J Immunol,2002,169(7): 3783-3792.
    
    55. Horwitz BH, Scott ML, Cherry SR, et al.Failure of lymphopoiesis after adoptive transfer of NK-kappaB-deficient fetal liver cells. Immunity,1997, 6(6):765-772.
    
    56. Sai jo K, Schmedt C, Su IH, et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B Cell development. Nat Immunol, 2003, 4 (3): 274-279.
    
    57. Owyang AM,Tumang JR, Schram BR, et al. c-Rel is required for the protection of B cells from antigen receptor-mediates, but not Fas-mediated, apoptosis. J Immonol, 2001,167(9):4948-4956.
    
    58. Marshall AJ, Fleming HE, Wu GE, et al. Modulation of the IL-7 dose-response threshold during pro-B cell differentiation is dependent on pre-B cell receptor expression. J Immunol,1998,161(11): 6038-6045.
    59.Monroe JG.ITAM-mediated tonic signalling through pre-BCR and BCR complexes.Nat Rev Immunol,2006,6(4):283-294.
    60.Allman DM,Ferguson SE,hentz VM,et al.Peripheral B cell maturation.J Immunol;1993,151(9):4431-4444.
    61.Summers YJ,Heyworth CM,de-Wynter EA,et al.AC133+ G_0 cells from cord blood show a high incidence of long-term culture-initiating cells and a capacity for more than 100 million-fold amplification of colony-forming cells in vitro.Stem Cells,2004,22(5):704-715.
    62.Suuronen EJ,Wong S,Kapila V,et al.Generation of CD133+cells from CD133- peripheral blood mononuclear cells and their properties.Cardiovasc Res,2006,70(1):126-135.
    63.毛飞,许文荣,朱伟,等.胚胎骨髓间质干细胞抑制淋巴细胞增殖反应的初步研究.江苏大学学报(医学版),2004,14(2):103-105.
    64.Angelopoulou M,Novelli E,Grove JE,et al.Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice.Exp Hematol,2003,31(5):413-420.
    65.Janczewska S,Ziolkowska A,Durlik M,et al.Requirement of stromal cells in the bone marrow transplant for rapidly m-phoidreplanshiment.Transplant Proc,1999,31(1-2):696-699.
    1.Vormoor J,Klingebiel T,Jurgens H.Current state of cord blood transplantation in childhood.Klin Padiatr,2002,214(4):195-200.
    2.Broxmeyer HE,Douglas GW,Hangoc C,et al.Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells.Proc Natl Acad Sci USA,1989,86(10):3828-3832.
    3.Brown J,Boussiotis VA.Umbilical Cord Blood Transplantation:Basic Biology and Clinical Challenges to Immune Reconstitution.Clin Immunol,2008,127(3):286-297.
    4.许文荣,胡嘉波,顾可梁,等.脐血造血干/祖细胞的密度分离实验研究.临床检验杂志,2001,19(2):73-76.
    5.许利民,王劲,洪淋,等.脐血造血干细胞不同温度长期冻存效果的实验研究.中国现代医学杂,2007,17(24):3034-3039.
    6.Yurasov SV,Flasshove M,Rafii S,et al.Density enrichment and characterization of hematopoietic progenitors and stem cells from umbilical cord blood.Bone Marrow Transplant,1996,17(4):517-525.
    7.许文荣,张锡然,顾可梁,等.脐血造血干/祖细胞冷藏效果的比较研究.临床检验杂志,2002,20(6):266-269.
    8.Summers YJ,Heyworth CM,de-Wynter EA,et al.AC133+ G_0 cells from cord blood show a high incidence of long-term culture-initiating cells and a capacity for more than 100 million-fold amplification of colony-forming cells in vitro.Stem Cells,2004,22(5):704-715.
    9.Suuronen EJ,Wong S,Kapila V,et al.Generation of CD133+cells from CD133- peripheral blood mononuclear cells and their properties.Cardiovasc Res,2006,70(1):126-135.
    10.Gluckman E.Current status of umbilical cord blood hematopoietic stem cell transplantation.Exp Hematol,2000,28(11):1197-1205.
    11.Almici C,Carlo-stella C,Wagner JE,et al.Umbilical cord blood as a source of hematopoietic stem cell:from research to clinical application.Haematologica,1995,80(5):473-479.
    12.Koller MR,Palasson MA,Manchel I,et al.Long-term culture-initiating cell expansion is dependent on frequent medium exchange combined with stromal and other accessory cell effects.Blood,1995,86(5):1784-1793.
    13.Peled T,Landau E,Mandel J,et al.Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice.Exp Hematol,2004,32(6):547-555.
    14.王斌,康自珍,迟占有,等.体外培养脐血单个核细胞与CD34~+富集细胞.生物工程学报,2002,18(3):343-347.
    15.Bock TA,Orhic D,Dunbar CE,et al.Improved engraftment of human hematopoietic cells in severe combined immunodeficient(SCID) mice carrying human cytokine transgenes.J Exp Med,1995,182(2):2037-2043.
    16.Fietz T,Berdel WE,Rieder H,et al.Culturing human umbilical cord blood:a comparison of mononuclear vs CD34~+ selected cells.Bone Marrow Transplant,1999,23(11):1109-1115.
    1.Rauscher FM,Goldschmidt-Clermont PJ,Davis BH,et al.Aging,progenitor cell exhaustion,and atherosclerosis.Circulation,2003,108(4):457-463.
    2.Czyz J,Wiese C,Rolletschek A,et al.Potential of embryonic and adult stem cells in vitro.Bio Chem,2003,384(10-11):1391-1409.
    3.Stauer BE,Brehm M,Zeus T,et al.Repair of infareted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.Circulation,2002,106(15):1913-1918.
    4.Marchenko S,Flanagan L.Transfecting human neural stem cells with the amaxa nucleofector.J Vis Exp,2007,(6):240.
    5.Gertz MA,Kumar SK,Lacy MQ,et al.Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma.Bone Marrow Transplant.2008 Nov 10.[Epub ahead of print]
    6.许文荣,胡嘉波,顾可梁,等.脐血造血干/祖细胞的密度分离实验研究.临床检验杂志,2001,19(2):73-76.
    7.胡嘉波,许文荣,朱伟,等.脐血细胞成分及造血干/祖细胞定量研究.镇江医学院学报,1998,8(4):437-438.
    8.孙晓春,许文荣,许化溪,等.不同来源的人间质干细胞分离与基本生物学特性研究.江苏大学学报(医学版),2005,15(5):369-372.
    9.Tsai RY,Mckay RD.A nucleolarmechanism controlling cell p roliferation in stem cells and cancer cells.Genes Dev,2002,16(23):2991-3003.
    10.KafienahW,Mistry S,Williams C,et al.Nucleostemin is a marker of poliferating stromal stem cells in adult human bone marrow.Stem cells,2006,24(4):1113-1120.
    11.Baddoo M,Hill K,Wilkinson R,et al.Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection.J Cell Biochem,2003,89(6):1235-1249.
    12.Xu WR,Zhang XR,Qian H,et al.Mesenchymal Stem Cells from Adult Human Bone Marrow Differentiate into a Cardiomyocyte Phenotype In Vitro.Exp Biol Med,2004,229(7):623-631.
    13.胡嘉波,许文荣,张锡然,等.脐血造血干/祖细胞体外扩增及移植动物模型分析.临床检验杂志,2004,22(1):6-8.
    14.许文荣,张锡然,钱晖,等.人骨髓间质干细胞分离纯化及基本生物学特性研究.临床检验杂志,2003,21(4):193-195.
    15.钱晖,许文荣,王文兵,等.骨髓间充质干细胞和部分肿瘤细胞中Nucleostemin基因的表达.中国生物化学与分子生物学报,2005,21(1):8-13.
    16.Han C,Zhang X,Xu W,et al.Cloning of the nucleostemin gene and its function in transforming human embryonic bone marrow mesenchymal stem cells into F6 tumor cells.Int J Mol Med.2005,16(2):205-213.
    17.姜润秋,许文荣,朱伟,等.实时定量PCR检测骨髓间质干细胞及肿瘤细胞BMI-1基因.临床检验杂志,2005,23(2):114-116.
    18.Kooler T,Pletting R,Wetzstein W,et al.Defining optimum conditions for the ex vivo expansion of human umbilical cord blood cells.Influence of progenitor enrichment,interference with feeder layers,early acting cytokines and agitation of culture vessel.Stem cells,1999,17(1):19-24.
    19.王金福,王立娟,Jenny Harrintong,等.骨髓间充质干细胞与造血干细胞共培养对脐血造血干细胞扩增的作用.浙江大学学报(理工版),2003,30(1):93-98.
    20.Morayma Reyes,Troy Lund,Todd Lenvik,et al.Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.Blood,2001,98(9):2615-2625.
    21.Fibbe WE,Noort WA.Mesenchymal stem cells and hematopoietic stem cell transplantation.Ann N Y Acad Sci,2003,996(5):235-244.
    22.Devine SM,Hoffman R.Role of mesenchymal stem cells in hematopoietic stem cell transplantation.Curr Opin Hematol,2000,7(6):358-363.
    23.Angelopoulou M,Novelli E,Grove JE,et al.Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice.Exp Hematol,2003,31(5):413-420.
    24.Janczewska S,Ziolkowska A,Durlik M,et al.Requirement of stromal cells in the bone marrow transplant for rapidly Imphoid replanshiment.Transplant Proc,1999,31(1-2):696-699.
    25.Vormoor J,Klingebiel T,Jurgens H.Current state of cord blood transplantation in childhood.Klin Padiatr,2002,214(4):195-200.
    26.孙晓春,许文荣,许化溪,等.不同来源的人间质干细胞分离与基本生物学特性研究.江苏大学学报(医学版),2005,15(5):369-372.
    27.毛飞,许文荣,朱伟,等.胚胎骨髓间质干细胞抑制淋巴细胞增殖反应的初步研究.江苏大学学报(医学版),2004,14(2):103-105.
    28.吴英理,张翼军,张林生.MIP-1β,TGF-β抗体对人基质细胞支持的脐血CD34+细胞扩增的作用.第二军医大学学报,2001,22(3):352-355.
    29.Sitnicka E,Lin N,Priestley GV,et al.The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells.Blood,1996,87(12):4998-5005.
    30.苏力,田丁,万岁桂,等.脐血CD34+细胞体外短期培养扩增研究.首都医科大学学报,2002,23(3):218-223.
    31.毛平,曾进龙,王彩霞,等.骨髓基质细胞联合细胞因子对脐血CD133+细胞体外扩增作用的研究.中国实验血液学杂志,2007,15(2):319-323.
    32.Rossmanith T,Schr(o|¨)der B,Bug G,et al.Interleukin 3 improves the ex vivo expansion of primitive human cord blood progenitor cells and maintains the engraftment potential of scid repopulating cells.Stem Cells,2001,19(4):313-320.
    33.姜尔烈,杨栋林,黄勇,等.成人骨髓间充质干细胞对造血干细胞体外增殖的影响.生物医学工程与临床,2008,12(3):193-197.
    34.孙晓春,许文荣,姚堃,等.胎儿骨髓间质干细胞体外诱导为神经细胞的初步实验研究.中国生物医学工程学报,2004,23(1):40-43.
    35.Conget PA,Mirguell JJ.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells.J cell physiol,1999,181(1):67-73.
    36.Normile D.Cell proliferation:Common control for cancer stem cells.Science,2002,298(5600):1869-1870.
    37.Beekman C,Nichane M,De Clercq S,et al.Evolutionarily Conserved Role of Nucleostemin:Controlling Proliferation of Stem/Progenitor Cells during Early Vertebrate Development.Mol Cell Biol,2006,26(24):9291-9301.
    38.岳保红,孙玲,赵小强,等.核干细胞因子基因在急性白血病细胞表达的检测和意义.中华检验医学杂志,2006,4(29):324-327.
    39.岳保红,朱晓燕,张功员,等.核干细胞因子特异性短发夹状RNA对HL260细胞分化抗原和生物学性质的影响.第三军医大学学报,2006,28(11):1191-1194.
    40. Tsai RY, Mckay RD. A nucleolarmechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev, 2002,16(23): 2991-3003.
    
    41. Ma H, Pederson T. Depletion of the nucleolar protein nucleostemin causes G1 cell cycle arrest via the p53 pathway. Mol Biol Cell, 2007,18(7):2630-2635.
    
    42. Rossmanith T, Schroder B, Bug G, et al. Interleukin 3 improves the ex vivo expansion of primitive human cord blood progenitor cells and maintains the engrafthent potential of SCID repopulating cells. Stem Cells, 2001,19(4):313-3201.
    
    43. Bernnardi R , Pandolefi PP. The nucleolus : at the stem of immortality ,Nat Med , 2003, 9(1) :24~25.
    
    44. Guerriero A, Worford L, Holland HK, et al.Thrombopoietin is synthesized by bone marrow stromal cells. Blood, 1997, 90(9):3444-3455.
    
    45. Tsai RY, Mckay RD. A nucleolarmechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev, 2002, 16(23):2991-3003.
    
    46. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve,1995, 18(12) :1417-1426.
    1.Osmond DG.B cell development in the bone marrow.Semin Immunol,1990,2(3):173-180.
    2.Majumdar MK,Keane-Moore M,Buyaner D,et al.Characterization and functionality of cell surface molecules on human mesenchymal stem cells.J Bio Sci,2003;10(2):228-241.
    3.Kim DR.Proteomic changes during the B cell development.J Chromatogr B Analyt Technol Biomed Life Sci,2005,815(1-2):295-303.
    4.Ryan DH,Nuccie BL,Ritterman I,et al.Expression of interleukin-7receptor by lineage-negative human bone marrow progenitors with enhanced lymphoid proliferative potential and B-lineage differentiation capacity.Blood,1997,89(3):929-940.
    5.Rawlings DJ,Quan S,Hao QL,et al.Differentiation of human CD34+CD38cord blood stem cells into B cell progenitors in vitro.Exp Hematol,1997,25(1):66-72.
    6.Berardi AC,Meffre E,Pflumio F,et al.Individual CD34+CD38lowCD19-CD10-progenitor cells from human cord blood generate B lymphocytes and granulocytes.Blood,1997,89(10):3554-3564.
    7.Acosta-Rodriguez EV,Merino MC,Montes CL,et al.Cytokines and chemokines shaping the B-cell compartment.Cytokine Growth Factor Rev,2007,18(1-2):73-83.
    8.Opstelten D,Osmond DG.Pre-B cells in mouse bone marrow:Immunofluorescence stathemokinetic studies of cytoplasmic μ-chain-bearing cells in normal mice.J Immunol,1983,131(6):2635-2640.
    9.Collins LS,Dorshkind K.A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis.J Immunol,1987,138(4):1082-1087.
    10.Nifontova I,Svinareva D,Petrova T,et al.Drize N.Sensitivity of Mesenchymal Stem Cells and Their Progeny to Medicines Used for the Treatment of Hematoproliferative Diseases.Acta Haematol,2008,119(2):98-103.
    11.胡嘉波,许文荣,毛飞,等.胎儿骨髓间质充质干细胞对CD34+细胞扩增作用的实验研究.临床检验杂志,2004,22(5):344-347.
    12.Xu WR,Zhang XR,Qian H,et al.Mesenchymal Stem Cells from Adult Human Bone Marrow Differentiate into a Cardiomyocyte Phenotype in Vitro.Exp Biol Med,2004,229(7):623-631.
    13.孙晓春,姚堃,许文荣,等.大鼠骨髓间质干细胞体外分离培养及生物学特性研究.江苏大学学报(医学版),2003,13(4):289-291.
    14.钱晖,许文荣,张锡然,等.胚胎骨髓间质干细胞分离纯化及基本生物学特性.解剖学报,2004,35(4):440-442.
    15.朱伟,许文荣,连锋,等.猪骨髓间质干细胞生物学特性及分化为成骨细胞和心肌细胞的能力.中国临床康复,2003,27(7):3680-3681.
    16.Schink(o|¨)the T,Bloch W,Schmidt A.In vitro secreting profile of human mesenchymal stem cells.Stem Cells Dev,2008,17(1):199-206.
    17.Yossi C,Arnon N.Umbilical cord blood transplantation:how,when and for whom.Blood Reviews,2004,18(3):167-179.
    18.Locatellif F,Rocha V,Reed W,et al.Related umbilical cord blood transplantation in patients with thalassemia and sickle cell disease.Blood,2003,101(6):2137-2143.
    19.Deneys V,Mazzon AM,Marques JL,et al Reference values for peripheral blood B-lymphocyte subpopulations:a basis for multiparametric immunophenotyping of abnormal lymphocytes.J Immunol Methods,2001,253(1-2):23-36.
    20.Montecino-Rodriguez E,Clark R,Johnson A,et al.Defective B cell development in Snell dwarf(dw/dw) mice can be corrected by thyroxine treatment.J Immunol,1996,157(8):3334-3340.
    21.Foster MP,Montecino-Rodriguez E,Dorshkind K.Proliferation of bone marrow pro-B cells is dependent on stimulation by the pituitary/thyroid axis.J Immunol,1999,163(11):5883-5890.
    22.Montecino-Rodriguez E,Clark RG,Powell-Braxton L,et al.Primary B cell development is impaired in mice with defects of the pituitary/thyroid axis.J Immunol,1997,159(6):2712-2719.
    23.Ishida H,Bellows CG,Aubin JE,et al.Tri-iodothyronine(T3) and Dexamethasone Interact to Modulate Osteoprogenitor Cell Differentiation in Fetal Rat Calvaria Cell Cultures.Bone,1995,16(5):545-549:
    24.Lei JX,Wendt CH,Fan DS,et al.Developmental acquisition of T3-sensitive Na-K-ATPase stimulation by rat alveolar epithelial cells.Am J Physiol Lung Cell Mol Physiol,2007,292(1):L6-L14.
    25.Mitelman F,Manolov G,Manolova Y,et al.High resolution chromosome analysis of constitutional and acquiredt(15;17) maps c-erbA to subband 17q11.2.Cancer Genet Cytogenet,1986,22(2):95-98.
    26.Plateroti M,Gauthier K,Domon-Dell C,et al.Functional interference between thyroid hormone receptor(TR) and natural truncated TR (isoforms) in the control of intestine development.Mol Cell Biol,2001,21(14):4761-4772.
    27.Drabkin H,Kao FT,Hartz J,et al Localization of human ERBA2to the 3 p 2 22-3 p 24.1 region of chromosome 3 and variable deletion in small cell lung cancer.Proc Natl Acad Sci USA,1988,85(23):9258-9262.
    28.Vacanti V,Kong E,Suzuki G,et al.Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture.J Cell Physiol,2005,205(2):194-201.
    29.Namen AE,Lupton S,Hjerrild K,et al.Stimulation of B-cell progenitors by cloned murine interleukin-7.Nature,1988,333(6173):571-573.
    30.Morrissey PJ,Conlon P,Charrier K,et al.Administration of IL-7 to normal mice stimulates B-lymphopoiesis and peripheral lymphadenopathy.J Immunol,1991,147(2):561-568.
    31.Sudo T,Nishikawa S,Ohno N,et al.Expression and function of the interleukin 7 receptor in murine lymphocytes.Proc Natl Acad Sci USA,1993,90(19):9125-9129.
    32.Grabstein KH,Waldschmidt TJ,Finkelman FD,et al.Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7monoclonal antibody.J Exp Med,1993;178(1):257-264.
    33.Johnson SE,Shah N,Panoskaltsis-Mortari A,et al.Murine and human IL-7 activate STATS and induce proliferation of normal human pro-B cells.J Immunol,2005,175(11):7325-7331.
    34.田虹,郑金娥,龚非力,等.人脐血CD34+CD38-细胞免疫表型和染色体核型特征分析.中华血液学杂志,2005,26(5):257-260.
    35.Ziegler BL,Valtieri M,Almeida Porada G,et al.KDR receptor:a key marker defining hematopoietic stem cells.Science,1999,285(5433):1553-1558.
    36.黄晓军.造血干细胞移植的现状与进展.见:第47届美国血液学年会介绍.中华血液学杂志,2006,27:429.
    37.李罡灿,宋艳萍,杜明珠,等.不同冻存条件对造血干细胞保存效果的影响.第四军医大学学报,2006,27(15):1438-1440.
    38.Inada H.Cryopreservation and engraftment potential of peripheral blood stem cells:pediatric experience.Kurume Med J,2001,48(2):151-157.
    39.Osmond DG.B cell development in the bone marrow.Semin Immunol,1990,2(3):173-180.
    40.Loken MR,Shah VO,Hollander Z,et al.Flow cytometric analysis of normal B lymphoid development.Pathol Immunopathol Res,1988,7(5):357-370.
    41.Monroe JG,Allman D.Keepingtrack of pro-B cells:a new model for the effects of IL-7 during B cell development.Eur J Immunol,2004,34(10):2642-2646.
    42.Melamed D,Kench JA,Grabstein K,et al.A functional B cell receptor transgene allows efficient IL-7-independent maturation of B cell precursors.J Immunol,1997,159(3):1233-1239.
    43.Kim DR,Park SJ,Oettinger MA.V(D)J recombination:site-specific cleavage and repair.Mol Cells,2000,10(4):367-374.
    44.Pelanda R,Torres RM.Receptor editing for better or for worse.Curr Opin Immunol,2006,18(2):184-190.
    45.Shimizu T,Mundt C,Licence S,et al.VpreB1/VpreB2/lambda 5triple-deficient mice show impaired B cell development but functional allelic exclusion of the IgH locus.J Immunol,2002,168(12):6286-6293.
    46.Wei C,Zeff R,Goldschneider I,et al.Murine pro-B cells require IL-7and its receptor complex to up-regulate IL-7R α,terminal deoxynucleotidytransferase,and c mu expession.J Immunol,2000,164(4):1961-1970.
    47.Melchers F.The pre-B-cell receptor:Selector of fitting immunoglobulin heavy chains for the B-cell repertoire.Nat Rev Immunol,2005,5(7):578-584.
    48.Rolink AG,Winkler T,Melchers F,et al.Precursor B cell receptor-dependent B cell proliferation and differentiation does not require the bone marrow or fetal liver environment.J Exp Med,2000,191(1):23-32.
    49.Cuisinier AM,Guigou V,Boubil L,et al.Preferential expression of VH5 and VH6 immunobulin genes in early human B-cell ontogeny.Scand J Immunol,1989,30(4):493-497.
    50.Mortari J,Newton A,Wang JY,et al.The human cord blood antibody repertoire.Frequent usage of the VH7 gene family.Eur J Immunol,1992,22(1):241-245.
    51.Cuisinier AM,Boubli L.Mechanisms that generate human immuonbulin diversity operate from the 8-week of gestation in fetal liver.Eur J Immunol,1993,23(1):110-118.
    52.肖昕,熊爱华,周晓光.早产儿与足月儿免疫球蛋白重链可变区基因异型性.中国优生与遗传杂志,2000,8(2):13-15.
    53.肖昕,周晓光,熊爱华.新生儿有限的免疫球蛋白重链可变区基因多样性.中国当代儿科杂志,2000,2(3):129-131.
    54.肖昕,周晓光,熊爱华.不同胎龄新生儿免疫球蛋白重链基因CDR3序列特征.中华微生物与免疫学杂志,2001,21(3):267-271.
    55.Ridings J,Nicholson IC,Goldsworthy W.Age-related impaired affinity maturazion and differential D-JH gene usage in human VH6-expressing B lymphaocytes from healthy indivials.Clin Exp Immunol,1997,108(2):366-374.
    56.Schroeder HW Jr,Wang JY.Preferential utilization of conserved immunoglobulin heavy chain variable gene segments during human fetal life.Proc Natl Acad Sci USA,1990,87(16):6146-6150.
    57.Ghia P,ten Boekel E,Sanz E,et al.Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement status of the immunoglobulin H and L chain gene loci.J Exp Med,1996,184(6):2217-29.
    58.Alt FW,Rosenberg N,Enea V,et al.Multiple immunoglobulin heavy-chain gene transcripts in Abelson murine leukemia virus-transformed lymphoid cell lines.Mol Cell Biol.1982,2(4):386-400.
    59.Delogu A,Schebesta A,Sun Q,et al.Gene Repression by Pax5 in B Cells Is Essential for Blood Cell Homeostasis and Is Reversed in Plasma Cells.Immunity,2006,24(3):269-81.
    60.Nera KP,Kohonen P,Narvi E,et al.Loss of Pax5 Promotes Plasma Cell Differentiation.Immunity,2006,24(3):283-293.
    61.Zhang Z,Espinoza CR,Yu Z,et al.Transcription factor Pax5(BSAP)transactivates the RAG-mediated VH-to-DJH rearrangement of immunoglobulin genes.Nature Immunology,2006,7(6):616-624.
    62.Karasuyama H,Kudo A,Melchers F.The proteins encoded by the VpreB and lambda 5 pre-B cell-specific genes can associate with each other and with mu heavy chain.J Exp Med,1990,172(3):969-972.
    63.Bossy D,Milili M,Zucman J,et al.Organization and expression of the lambda-like genes that contribute to the mu-psi light chain complex in human pre-B cells.Int Immunol,1991,3(11):1081-1090.
    64.Gauthier L,Rossi B,Roux F,et al.Galectin-1 is a stromal cell ligand of the pre-B cell receptor(BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering.Proc Natl Acad Sci USA,2002,99(20):13014-13019.
    65.Minguell JJ,Erices A,Conget P,et al.Mesenchymal stem cells.Exp Bio Med.2001;226(6):507-520.
    66.Afshar R,Pierce S,Bolland DJ.et al.Regulation of IgH Gene Assembly:Role of the Intronic Enhancer and 5' DQ52 Region in Targeting D_HJ_H Recombination.J Immunol,2006,176(4):2439-2447.
    67.Johnson K,Calam K.Transcription factors controlling the beginning and end of B-cell differentiation.Curr Opin Genet Dev,2003,13(5):522-528.
    68.Busslinger M.Transcriptional control of early B cell development.Annu Rev Immunol,2004,22(1):55-79.
    69.Rossi B,Espeli M,Schiff C,et al.Clustering of pre-B cell integrins induces galectin-l-dependent pre-B cell receptor relocalization and activation.J Immunol,2006,177(2):796-803.
    70.Huang GP,Pan ZJ,Jia BB,et al.Ex vivo expansion and transplantation of hematopoietic stem/progenitor cells supported by mesenchymal stem cells from human umbilical cord blood.Cell Transplant,2007,16(6):579-585.
    71.Lu L,Osmond DG.Apoptosis during B lymphopoiesis in mouse bone marrow.J Immunol,1997,158(11):5136-5145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700