用户名: 密码: 验证码:
铁路数字选线关键技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:铁路选线设计作为铁路建设的先行和基础,是一项总揽全局的核心工作。近年来,随着我国铁路的高速发展,铁路设计任务日益繁重,数字选线技术作为提高线路设计质量和效率的重要手段亟待深入研究。
     自上世纪六十年代,国内外许多学者对数字选线技术开展了大量研究,开发了一系列数字选线系统,但总体看来主要是针对铁路选线部分设计阶段的部分设计内容,目前还没有可面向各设计阶段,涵盖各项设计内容的完整解决方案。
     本文在系统分析铁路各阶段选线设计需求和国内外研究现状的基础上,总结出目前亟待解决的关键技术问题。在数字选线的前期规划阶段,重点开展了线路优化方法研究;在精细设计阶段,主要研究了面向铁路新线、既有线及枢纽区选线的铁路线形模型,关联约束选线及既有线重构与增改建等设计理论与方法;并对地理信息模型和网络三维交互式可视化等贯穿数字选线各设计阶段的基础核心技术开展了深入研究;力图较全面地解决从规划到精细设计阶段,铁路新线、既有线增改建及枢纽等数字选线设计问题,主要研究内容和成果如下:
     1.建立了面向铁路数字选线的涵盖地形、地质、环境的地理信息模型。在既有数字地形模型研究基础上,重点研究了数字地质模型的构建方法:对断层线进行三维空间拉伸构建了断层面模型;引入克里金插值算法在地层控制点较稀疏的区域补充虚拟控制点,以实测、虚拟控制点为顶点集,以地层边界为约束边集,基于约束Delaunay三角网理论构建了地层面模型;采用“保守”的最小包围长方体表示形态复杂的溶洞体模型,简化了建模过程。针对离散和连续分布的地理信息分别构建了格网-R树索引与格网-顶点-三角形索引,实现了空间地理信息的快速检索。
     2.建立了铁路线路优化模型,选择反映空间线位的特征参数向量作为自变量,构建了综合考虑工程费、运营费、环境影响代价及各种设计约束的目标函数;提出了基于分步编码的改进遗传算法:构建了由平面交点偏移距、平曲线半径、变坡点标高组成的基因序列;提出了先生成平面基因,再考虑平纵约束产生纵断面基因,最后调整形成整体基因的分步编码方法;遗传进化过程中,设计了4种交叉算子(简单交叉、两点交叉、算术交叉和非均匀启发式交叉)和3种变异算子(单点变异、多点变异、取直变异),可自动生成满足各类约束条件,且综合费用较省的线路方案群。
     3.建立了3类铁路线形设计模型,系统全面地解决了新建铁路单、双线、既有线增改建和枢纽的线形设计问题。针对基于绝对关系定线的新建单线铁路和双线中的基线,建立了边界约束线形模型,采用各线元两端几何参数和约束条件表示线路,可方便地完成各类复杂的线形设计;针对铁路Ⅱ线参照基线定线的特点,提出了Ⅱ线的参照线形模型,定义了8类交点参照关系和2类区段参照关系,基于交点和区段的参照关系矩阵进行线路几何参数和里程的计算,实现了Ⅱ线的全线贯通设计,避免传统方法中繁琐的分段处理;在此基础上,对参照线形模型进行扩展,在两参照关系矩阵中加入参照线路编号向量,建立了可处理多线路参照关系的复合参照线形模型,解决了既有线增改建、枢纽设计中分区段参照不同线路进行设计的问题。
     4.既有数字选线系统多专注于单个设计对象的设计,较少考虑各对象之间的复杂关联。本文通过对各类线路关联约束的系统分析,揭示了关联约束的耦合性和动态性特征;设计了关联图的数据结构将各关联对象及相互间的关联约束关系构建为一整体,即约束线路群;研制了约束线路群信息的动态更新算法,实现了设计过程中约束条件的自动检算和关联对象的自动更新;据此建立了关联约束选线设计方法,成功应用于线路方案群、线路与桥隧站的关联设计。
     5.提出了既有线线路自动恢复方法,首先设计了一个最长夹直线搜索算法确定既有线的直线段,然后基于方向加速法对曲线段的半径和缓长进行优化,实现对既有线平面线位的整体自动化重构;建立了既有线增改建设计的“Ⅱ线模式法”,将既有线增改建设计视为相对于既有线的Ⅱ线设计,以复合参照线形模型为理论基础,通过给定交点参照关系即可实现既有线的各类增改建设计,且避免了传统方法中繁琐的分段处理,可全线贯通式设计。
     6.深入研究了网络环境下铁路三维场景的交互式可视化理论与方法,包括铁路三维场景组织管理、模型简化、数据压缩、网络传输策略等关键问题。建立了铁路场景的有向无环图,深度方向从总体到细节逐步细分,广度方向按里程分段或模型类型进行划分,标准模型被多个结点共享,实现了铁路场景的高效组织与管理;提出了顾及约束的半边折叠误差度量方法,在服务器端采用半边折叠操作对初始铁路模型进行高效简化,并生成操作层次树;建立了远程视相关模型重构准则,在操作层次树上确定需传输至客户端的视相关结点数据;提出了一种预测编码方法对数据进行有效压缩;并综合应用约束边优先策略,多线程下载、缓存技术实现了铁路场景的远程交互式可视化。
     7.应用本研究的理论与方法,与课题组成员共同开发了“铁路三维空间线路优化系统”、“新建铁路数字选线系统”、“既有铁路改建与增建二线数字选线系统”、“铁路枢纽数字选线系统”、“地铁数字选线系统”等铁路数字选线系列软件产品,已在国内80%的铁路勘察设计单位推广使用,现已成为国内铁路行业数字选线推广应用最广、产品最丰富的软件系统。
Alignment design, as the premise and basis of railway construction, is a core work that controls the whole situation. In the recent years, with the rapid development of railway in our country, railway design tasks become increasingly onerous. As one of the important ways to improve the quality and efficiency, technology of digitalizing alignment design needs to be studied.
     Since1960s, scholars have been working on the technology of digitalizing railway alignment design, and a series of railway alignment design systems have been developed. However, the existing researches just aim at some parts of railway alignment design stages and content. Actually, at present, the complete solution of the overall railway alignment design process has not been found.
     Firstly, the thesis analyzes the requirements and research status quo of railway alignment design in different stages, and then summarizes the key technical problems which need to be solved at present. In the planning stage, the thesis focuses on the alignment optimization technology; in the detailed design stage, it mainly studies on the alignment model in new-built railway, existing railway and railway hub, theory and method of associated constraints alignment design, existing railway routes recovery and reconstruction. The geographic information model and web three-dimensional interactive visualization as the core technology in all stages are studied. It try to solve the digitalizing alignment design problem from planning to the detailed design stage, including new-built railway, existing railway and railway hub. The main research contents and achievements are as follows:
     1. Comprehensive geographic information model for railway alignment design including terrain, geology and environment is established. Based on the existing digital geology model, the construction of digital terrain model is studied. Firstly, fault plane model is built by stretching the fault line in3D spaces. Secondly, Kriging interpolation algorithm is introduced to supplement virtual control points in areas where control points are sparse. Thirdly, taking the control points of actual measurement and virtual control points as vertex assembles, and the stratum boundaries as constraint assemble, based on constraint Delaunay triangulation network theory, the stratum is set up. By adopting conservative minimum encompass cuboid to represent the complicate shaped karst caves, the modelling process is simplified. In allusion to the dispersed and continuous distribution of geographic information, Grid-R tree index, Grid-Triangle-Pont index are built and fast retrieve of geographic information is achieved.
     2. Railway alignment optimization model is established. The parameter vector that reflects the characteristics of alignment is the independent variable. Considering the construction cost, operating costs, environmental impacts, and various design constraints, objective function is built. A genetic algorithm based stepwise encoding is proposed. A genetic series that consists of offsets of intersection point, radii of circular curve and elevations of grade change points is designed. A stepwise encoding method is presented. The horizontal genes generated firstly, then vertical genes are created considering horizontal constraints; the whole genes are formed by adjusting lastly. In the process of generating chromosomes, the thesis designs4cross operators (simple crossover, two-point crossover, arithmetic crossover and non-uniform heuristic crossover) and3mutation operators (single point mutations, multipoint mutation, straightening). Based on this method, a group of alignments conforming to railway constraints with low comprehensive costs can be generated.
     3. Three kinds of alignments models are built to exhaustively solve alignment design problem in new-built railway, existing railway and railway hub. Boundary constraint alignment is modeled to alignment design for single track and the based route of double track new-built railways, which never refer to other alignments. The alignment is indicated by geometric parameters and constraints of alignment-units. Based on this alignment model, all kinds of complex geometric design can be worked out. Reference alignment is modeled for the alignment design of Ⅱ route in new-built railway, whose alignment only refers to the based route.8intersection point reference relationships and2section reference relationships are defined. The alignment geometric parameters and mileages of the Ⅱ route are figured out by intersection point and section reference relationships matrix. The Ⅱ route alignment can be designed integrally instead of tedious segmentation processing based on this alignment model. Part-reference alignment model is extended from the reference alignment model, by adding reference route index vector to above2matrixes. This alignment model solves the alignment design problem of existing railway reconstruction and railway hub, which refer to different alignments in different sections.
     4. Existing digitalizing railway alignment systems mainly focus on single object design, ignoring the complex relationships between the objects. Firstly, the coupling and dynamic characteristics of the associated constraints are revealed after system analysis, Secondly, associated graph data structure is designed, to construct the associated objects and the mutual constraint relationships as a whole entity (constraint route group). Then, dynamic update algorithm for constraint route group is developed. Based on that, the constraints can be automatically checked and the associated objects can be automatically updated in the design. Lastly, the associated constraints alignment design method has been established and applied to routes group location, alignment design that associate with bridges, tunnels and stations.
     5. The method for the recovery of existing railway alignment is proposed. Firstly, a longest linear search algorithm is designed to automatically identify straight and curve segments. Then radius and transition curve length are optimized based on direction acceleration method. Lastly, the recovery of the horizontal alignment of existing railway is realized. The " Ⅱ route modeling" method for the addition and reconstruction of existing railway is presented. The additional and reconstruct alignments is considered as the Ⅱ route of the existing alignment. Based on part-reference alignment model, all kinds of addition and reconstruction can be designed by using the reference relationships of intersection points. Besides, the alignment can be designed integrally, avoid the traditional and tedious segmentation processing.
     6. Railway web3D interactive visualization theory and methodology are developed. Key problems such as the management of railway3D scene, model simplification, data compression and network transmission strategy are studied. Based on the directed acyclic graph, railway scene is efficiently organized and managed. Railway scene is subdivided from general to detail in depth, brother nodes were divided by mileage-section or sense type in breadth, standard model nodes are shared by related father nodes. A half-edge collapse error metric considering a large number of road constrained edges is proposed. Based on it, original road model is simplified by half-edge collapse and operating hierarchical tree is built on the server. Remote view-dependent reconstruction criterions are established. According to these criterions, minimum nodes data that need to be transferred to client is quickly selected in the operating hierarchical tree. A predictive coding method is proposed to effectively compress data. Combined with constrained edges priority strategy, integrating multithreading and caching technology, railway scene remote interactive visualization is finally realized.
     7. Based on the theory and method presented in this thesis and existing research achievements, the author as a key member of the research group has developed a series of railway digital alignment designing systems, including railway intelligent alignment design system, new-built railway digital alignment design system, existing railway reconstruction and addition digital alignment design system, railway hubs digital alignment design system, metro digital alignment design system, etc. These software systems have been widely applied in80%railway survey and design institutions in China, and have become the most popular digital railway alignment design system with the most abundant function.
引文
[1]铁道部.中长期铁路网规划[R].北京:2005.
    [2]铁道部.中长期铁路网规划(2008年调整)[R].北京:2008.
    [3]铁道部.铁路”十二五“发展规划[R].北京:2012.
    [4]Miles R E. Solution to Problem 67-15 (Probability Distribution of a Network of Triangles)[J]. SIAM,1969(11):399-402.
    [5]Lingas A. The Greedy and Delaunay Triangulations are not Bad in the average case[J]. Information Processing Letters,1986(22):25-31.
    [6]Sibson R. Locally Equiangular Triangulations[J]. Computer Journal, 1978,21(3):243-245.
    [7]Tsai V J D. Delaunay Triangulations in TIN Creation:an Overview and Linear-time Algorithm[J]. Int.J.of GIS,1993,7(6):501-524.
    [8]Lewis B A, Robinson J S. Triangulation of Planar Regions with Applications[J]. The Computer Journal,1978,21(4):324-332.
    [9]Lawson C. Mathematical Software[M]. New York:Academic Press,1977.
    [10]Green P J, Sibson R. Computing Dirichlet Tesselations in the Plane[J]. The Computer Journal,1978,21 (2):168-173.
    [11]刘学军,符锌砂,赵建三.三角网数字地面模型快速构建算法研究[J].中国公路学报,2000,13(2):31-36.
    [12]刘学军,赵吉先,符锌砂.三角网数字地面模型的动态修改与编辑[J].中国公路学报,2000,1 3(4):16-20.
    [13]谢祥根,符锌砂.考虑地形特征的三角网数模建立方法[J].中国公路学报,2000,13(1):10-13.
    [14]蒋红斐,蒲浩,詹振炎.铁路线路三维设计模型建立方法的研究[J].铁道学报,2000,22(4):73-76.
    [15]宋占峰,蒲浩,詹振炎.快速构建Delaunay三角网算法研究[J].铁道学报,2001,23(5):85-91.
    [16]蒲浩,宋占峰,詹振炎.基于Delaunay三角网数字地面模型的路线三维建模方法[J].铁道学报,2001(4):81-87.
    [17]蒋红斐,詹振炎.铁路线路三维可视化设计实现方法研究[J].中国铁道科学,2002,23(3):72-76.
    [18]宋占峰,詹振炎,蒲浩.约束'Delaunay三角剖分动态算法研究[J].中国公路学报,2002,15(3):18-22.
    [19]宋占峰,詹振炎,蒲浩.Delaunay三角网剖分中嵌入约束边的局部调整算法[J].西南交通大学学报,2002,37(4):398-403.
    [20]宋占峰,蒲浩,詹振炎.基于三角网数字地面模型快速定位算法的研究[J].中国铁道科学,2002,23(1):63-66.
    [21]蒲浩,詹振炎,宋占峰.约束Delaunay三角化在路线设计中的应用及其生成算法研究[J].中国公路学报,2002,15(2):22-27.
    [22]Frank T, Tertois A L, Mallet J L.3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data[J]. Computers & Geosciences,2007,33(7):932-943.
    [23]王雪娇.基于OpenGL的铁路隧道三维地质建模系统的研究与实现[D].石家庄:石家庄铁道大学,2013.
    [24]Bonomi T, Cavallin A, Stelluti G.3-D aquifer characteristics analysis using a well database and GOCAD[J]. IAHS-AISH Publication,2001(269):89-94.
    [25]Schneider A, Gerke H H, Maurer T.3D initial sediment distribution and quantification of mass balances of an artificially-created hydrological catchment based on DEMs from aerial photographs using GOCAD[J]. Physics and Chemistry of the Earth,2011,36(1-4):87-100.
    [26]向中林,顾雪祥,董树义,等.三维地质建模及可视化在危机矿山找矿中的应用研究——以沂南金矿为例[J].地球与环境,2009,39(02):136-141.
    [27]向中林,王妍,王润怀,等.基于钻孔数据的矿山三维地质建模及可视化过程研究[J].地质与勘探,2009,45(1):75-81.
    [28]李明超,胡兴娥,安娜,等.滑坡体三维地质建模与可视化分析[J].岩土力学,2008,29(5):1355-1360.
    [29]钟登华,刚王,李明超,等.三维地质模型信息可视化与工程应用[J].天津大学学报,2005,38(1):36-40.
    [30]吴观茂,黄明,李刚,等.三维地质模型与可视化研究的现状分析[J].测绘工程,2008,17(02):1-5.
    [31]吕希奎.基于遥感信息的选线系统地理环境建模方法及应用研究[D].成都:西南交通大学,2008.
    [32]高山,冯光胜.三维遥感铁路工程地质勘察技术应用研究[J].铁道勘察,2009,35(1):36-39.
    [33]高山.铁路工程地质遥感图像解译质量分析[J].铁道工程学报,2010(8):25-28,37.
    [34]高山.铁路工程地质选线三维可视化技术与评价方法研究[J].铁道工程学报,2011(2):27-31,36.
    [35]刘铮,吴小萍,牟瀚林.基于组件式G1S的铁路绿色选线决策支持系统研究[J].中国铁道科学,2009,30(2):1-6.
    [36]吴小萍,杨晓宇,冉茂平.基于图形叠置法的铁路选线环境影响综合评价研究[J].中国铁道科学,2004,25(04):126-129.
    [37]吴小萍.可持续发展战略指导下的轨道交通规划与评价方法研究[D].长沙:中南大学,2003.
    [38]Howard B E, Brmmick Z, Shaw J F. Optimum curvature principle in highway routing[C]. ASCE94(HWI),1968:61-82.
    [39]Shaw J F B, Howard B E. Expressway route optimization by OCP[J]. Journal of Transportation Engineering,1982,108(3):227-243.
    [40]OECD. Optimization of Road Alignment by the Use of Computers[M]. Paris: Organization of Economic Cooperation and Development,1973.
    [41]Athanassoulis G, Calogero V. Optimal location of a new highway from A to B-A computer technique for route planning[C]. PTRC Seminar Proceedings on Cost Models and Optimization in Highways, London,1973:18-29.
    [42]Easa S M. Selection of roadway grades that minimize earthwork cost using linear programming [J]. Transportation Research Part A,1988,22(2):121-136.
    [43]Goh C J, Chew E P, Fwa T F. Discrete and continuous model for computation of optimal vertical highway alignment[J]. Transportation Research PartB, 1988,22(9):399-409.
    [44]CHEW E P, GOH C J, FWA T F. Simultaneous optimization of horizontal and vertical alignments for highways[J]. Transportation Research Part B, 1989,23(5):315-329.
    [45]Trietsch. A family of methods for preliminary highway alignment[J]. Transportation Science,1987,21(1):17-25.
    [46]HoganJ D. Experience with OPTLOC-Optimum location of highways by computer(SessionL10)[R]. London:1973.
    [47]LI W, PU H, ZHAO H F, et al. Approach for Optimizing 3D Highway Alignments Based on Two-stage Dynamic Programming[J]. Journal of Software,2013,8(11):2967-2973.
    [48]蒲浩,赵海峰,李伟.基于动态规划的铁路三维空间智能选线方法[J].铁道科学与工程学报,2012,09(2):55-61.
    [49]赵海峰.铁路三维空间智能选线理论与方法研究[D].长沙:中南大学,2012.
    [50]DE-SMITH M J. Determination of gradient and curvature constrained optimal paths[J]. Computer-Aided Civil and Infrastructure Engineering, 2006,21(1):24-38.
    [5.1]CHENG J F, LEE Y. Model for three-dimensional highway alignment[J]. Journal of Transportation Engineering,2006,132(12):913-920.
    [52]常新生,詹振炎.铁路线路平纵面整体优化设计的研究[J].长沙铁道学院学报,1990,8(3):11-16.
    [53]常新生,詹振炎.铁路线路平纵面整体优化设计的理论与方法[J].铁道学报,1995,17(4):75-81.
    [54]詹振炎,常新生.人机交互系统铁路线路平纵面整体优化设计[J].铁道工程学报,1990(1):87-91.
    [55]韩春华.基于GIS的铁路选线系统智能环境建模方法研究[D].成都:西南交通大学,2008.
    [56]韩春华,易思蓉,高华.基于GIS的铁路选线系统智能环境建模方法[C].高速铁路、线路工程设计理论、施工及养护技术国际学术会议,成都,2009:253-260.
    [57]韩春华,易思蓉,吕希奎.基于GIS的铁路选线智能环境及领域本体建模方法[J].中国铁道科学,2006,27(6):84-90.
    [58]韩春华,易思蓉,吕希奎.人工智能在选线领域的研究现状分析[J].计算机工程与应用,2005,41(29):229-232.
    [59]韩春华,易思蓉,杨扬.基于最优路径分析的线路初始平面自动生成方法[J].西南交通大学学报,2011,46(2):252-258.
    [60]易思蓉.虚拟环境选线系统中的知识表达模式[J].铁道学报,2004,26(1):88-92.
    [61]易思蓉.虚拟环境铁路选线设计系统的理论与方法研究[D].成都:西南交通大学,2000.
    [62]易思蓉.铁路数字化选线设计系统的理论与方法[M].成都:西南交通大学出版社,2011.
    [63]易思蓉,韩春华,段晓峰.虚拟环境选线系统的地理超图模型[J].中国铁道科学,2006,27(1):133-137.
    [64]易思蓉,张家玲.基于智能CAD系统的铁路选线方案多目标综合评价方法[J].铁道学报,2000,22(z1):95-101.
    [65]GIPPS P G, GU K Q, HELD A. New technologies for transport route selection[J]. Transportation Research Part C,2001,9(2):135-154.
    [66]冯晓,谢远光.线形工程计算机辅助选线设计理论与方法[M].成都:西南交通大学出版社,2008.
    [67]缪鸥.公(铁)工程三维选线的群智能算法研究[D].长沙:中南大学,2011.
    [68]Miao K, Li L. An ACO Approach for the Corridor Alignment[J]. Information-An International Interdisciplinary Journal,2011,14(3):1057-1066.
    [69]Miao K, Li L. A 3D Grid Model for the Corridor Alignment[J]. Communications in Computer and Information Science,2011,135(2):440-444.
    [70]Shafahi Y, Bagherian M. A Customized Particle Swarm Method to Solve Highway Alignment Optimization Problem[J]. Computer-Aided Civil and Infrastructure Engineering,2013,28(1):52-67.
    [71]JONG J C. Optimizing highway alignments with genetic algorithms[D]. College Park:University of Maryland,1998.
    [72]Samanta S, Jha M K. Modeling a rail transit alignment considering different objectives[J]. Transportation Research,2011,45(1):31-45.
    [73]Samanta S, Jha M K. Applicability of genetic and ant algorithms in highway alignment and rail transit station location optimization[J]. International Journal of Operations Research and Information Systems,2012,3(1):13-36.
    [74]Samanta S. Identifying feasible locations for rail transit stations:two-stage analytical model[J]. Transportation Research Record,2008,2063:81-88.
    [75]Maji A, Jha M K. Multi-objective highway alignment optimization using a genetic algorithm[J]. Journal of Advanced Transportation,2009,43(4):481-504.
    [76]Lai X L. Optimization of station locations and track alignments for rail transit lines[D]. College Park, Maryland:University of Maryland,2012.
    [77]KIM E, JHA M K, SON B. Improving the computational efficiency of highway alignment optimization models through a stepwise genetic algorithms approach[J]. Transportation Research Part B,2005,35(4):339-360.
    [78]KIM E, JHA M K, SCHONFELD P. Highway alignment optimization incorporating bridges and tunnels[J]. Journal of Transportation Engineering, 2007,133(2):71-81.
    [79]KANG M W, SCHONFELD P, YANG N. Prescreening and Repairing in a Genetic Algorithm for Highway Alignment Optimization[J]. 2009,24(2):109-119.
    [80]KANG M W, JHA M K, SCHONFELD P. Applicability of highway alignment optimization models[J]. Transportation Research Part C,2012,21(1):257-286.
    [81]JONG J C, SCHONFELD P. An evolutionary model for simultaneously optimizing three-dimensional highway alignments [J]. Transportation Research Part B,2003,37(2):107-128.
    [82]JHA M K, Schonfeld P, Jong J C, et al. Intelligent Road Design[M]. Billerica, MA, USA:WIT Press,2006.
    [83]JHA M K, SCHONFELD P. Integrating genetic algorithms and GIS to optimize highway alignments[J]. Transportation Research Record,2000,1719:233-240.
    [84]JHA M K, SCHONFELD P. highway alignment optimization model using geographic information systems[J]. Transportation Research Part A, 2004,38(6):455-481.
    [85]Davis C, Jha M K. A dynamic modeling approach to investigate impacts to protected and low-income populations in highway planning[J]. Transportation Research Part A,2011,45(7):598-610.
    [86]许金良,王海君,杨少伟.基于遗传算法的公路纵断面优化[J].交通运输工程学报,2003,3(2):48-52.
    [87]陈秀玲.基于遗传算法的公路纵断面优化方法设计方法[J].公路,2004(6):36-38.
    [88]冯晓,杨佳,李敏,等.基于遗传算法的公路纵断面优化应用分析[J].重庆大学学报(自然科学版),2007,30(7):83-87.
    [89]马庆雷.基于遗传算法的公路平面优化[J].中国公路学报,2006,19(1):42-46.
    [90]叶亚丽.公路智能选线与决策支持系统研究及开发[D].西安:长安大学,2010.
    [91]叶亚丽,庄传仪.公路智能选线多目标决策模型的研究[J].路基工程,2009(4):90-91.
    [92]杨忠振,王璐,贾鹏.引入网络影响分析的道路选线优化模型[J].中国公路学报,2007,20(5):30-35.
    [93]Walton D. J., S Meek. D. Compter—aided design for horizontal alignment[J]. JournalofTransportationEngineering,1989,115(4):256-262.
    [94]Roy B K. Geometric design of compound horizontal curves[J]. Journal of Transportation Engineering,1994,120(4):674-683.
    [95]郭腾峰,王蒙.公路路线的交点曲线计算法[J].国外公路,1999,19(6):25-27.
    [96]李方.高等级公路平面线形设计若干问题[J].中国公路学报,1993(02):21-26.
    [97]李方.公路平面线形的一种新设计方法[J].中国公路学报,1992(02):44-51.
    [98]凌九忠.立交平面交互式图形设计中模式法的应用研究[J].中国公路学报,1994,7(3):10-14.
    [99]吴国雄,陈欣斗.道路立交平面线形圆心连线闭合导线设计法[J].重庆交通学院学报,2003,22(4):20-24.
    [100]缪鸥.基于图形屏幕的道路平面设计及其数据管理[J].计算机工程,2003,29(11):163-165,
    [101]缪鸥,詹振炎.基于线元的公路平面线形交互设计方法研究[J].中国公路学报,2001,14(3):25-29.
    [102]缪鸱,詹振炎.基于直线约束的道路线形设计通用方法[J].中国公路学报,2002,15(3):15-17.
    [103]杜勤.道路平面的计算机屏幕定线及其数据存储方法[J].中国市政工程,2004(6):1-4.
    [104]王劲松,李志伟.道路中桩统一线路坐标计算模型研究[J].测绘通报,2009(1):57-59.
    [105]杨发祥.通用模型法测设公路中桩坐标[J].测绘,2009,32(3):140-141,125.
    [106]王中伟.道路与匝道中线自动绘制的算法与实现[J].工程图学学报,2007,28(1):144-147.
    [107]刘连旺,覃辉.6种曲线元上的道路中桩坐标解算[J].中南公路工程,2006,31(4):72-76.
    [108]兰超,张斌.公路弯道边线线形设计方法探讨[J].重庆交通学院学报,2005,24(2):62-65.
    [109]李伟,蒲浩.一种求解2条任意类型缓和曲线交点的通用算法[J].铁道科学与工程学报,2007,4(1):77-81.
    [110]蒋红斐,涂鹏,李国忠.复线铁路线路三维模型建立方法[J].交通运输工程学报,2004,4(1):21-24.
    [111]詹振炎,蒋红斐,蒲浩.复线铁路的线型设计与整体优化[J].铁道学报,1998,20(6):81-85.
    [112]铁道部.铁路“十一五”规划[J].中国铁路,2006(11):1-6.
    [113]曲建军,高亮,彭华.基于电算应用的既有曲线整正计算的研究[J].华北科技学院学报,2006,3(2):80-83.
    [114]刘鑫,曾学贵.快速铁路既有曲线约束非线性最优化整正研究[J].铁道学报,2003,25(3):101-103.
    [115]王磊,蒲浩.既有铁路拨量计算模块的开发和应用[J].铁道标准设计,2007(11):15-18,29.
    [116]丁克良,刘成,卜庆颢,等.GPS RTK技术在铁路既有线勘测中的应用[J].中国铁道科学,2005,26(2):49-53.
    [117]王斌,魏庆朝,彭华.利用GPS-RTK技术进行既有线曲线整正测量研究[J].中国安全科学学报,2005,15(7):55-57.
    [118]刘永孝,张咏军.铁路既有曲线整正计算方法研究[J].铁道建筑,2010(11):116-119.
    [119]刘永孝,刘学毅,张咏军,等.铁路既有曲线整正计算中基于坐标法的渐伸线误差分析研究[J].铁道学报,2012,34(4):82-87.
    [120]刘永孝,刘学毅,李斌,等.既有铁路曲线整正计算中的计划正矢计算方法的研究[J].铁道标准设计,2012(12):14-18.
    [121]丁克良,刘大杰,周全基.既有铁路曲线整正平差算法[J].测绘学报,2004,33(3):195-199.
    [122]李伟,蒲浩,彭先宝.基于方向加速法的铁路既有线平面重构优化算法[J].铁道科学与工程学报,2009,6(3):47-51.
    [123]王肃报.既有铁路改建线路CAD研究与开发[D].长沙:中南大学,2011.
    [124]孙晓丽,蒋红斐,石星.基于遗传算法的既有铁路曲线整正优化设计[J].铁道建筑,2011(3):111-113.
    [125]王保成,韩峰.基于坐标测量的既有曲线整正计算优化方法研究[J].兰州交通大学学报,2008,27(1):11-13.
    [126]秦方方,易思蓉,杨长根.基于三次样条曲线的铁路既有曲线整正方法[J].中国铁道科学,2010,31(2):18-23.
    [127]钟晶,蒲浩,彭先宝.既有线改建CAD系统纵断面开发与研究[J].铁道勘 察,2007,33(6):67-70.
    [128]武伟刚.既有铁路纵断面改建设计及辅助CAD系统研究[D].兰州交通大学,2012.
    [129]陈鹏.铁路既有线及增建二线平面计算方法的研究及软件研制[D].成都:西南交通大学,2005.
    [130]胡建平.既有线改建拢口计算机辅助设计方法研究[J].铁道工程学报,2011(10):106-110.
    [131]McCormick B H, DeFanti T A, Brown M D. Visualization in Scientific Computing[J]. Computer Graphics,1987,21(6):153.
    [132]唐泽圣.三维数据场可视化[M].北京:清华大学出版社,1999.
    [133]国务院发布实施《国家中长期科学和技术发展规划纲要(2006-2020年)》的若干配套政策[J].中国科技信息,2006(6):7-12.
    [134]阮秋琦.”数字铁路"—21世纪我国铁路现代化建设的战略目标[J].铁道学报,2000,22(3):96-101.
    [135]朱照宏.国外优秀道路CAD软件简介[J].计算机辅助工程,2000,7(5):176-181.
    [136]朱照宏.国外道路CAD应用软件的剖析及其在国内推广应用的可能性[J].公路工程计算机应用,1995,6(1):35-37.
    [137]王福建,曾学贵,李方.三维表面模型在公路线形设计中的应用研究[J].中国公路学报,1998,11(3):17-24.
    [138]宋占峰,詹振炎,蒲浩.道路整体三维模型构建方法的研究[J].中国铁道科学,2003,24(4):107-110.
    [139]蒲浩,宋占峰,詹振炎.道路路线三维整体建模方法研究[J].湖南科技大学学报(自然科学版),2005,20(1):33-36,74.
    [140]宋占峰,蒲浩.基于CDT理论构建道路三维模型方法研究[J].计算机应用,2006,26(5):1211-1213.
    [141]符锌砂.公路实时三维可视化系统构架[J].中国公路学报,2007,20(6):31-35,42.
    [142]符锌砂,王彦军.道路三维可视化设计系统的系统分析[J].中外公路,2006,26(1):1-4.
    [143]符锌砂,赵赛先.基于CDT理论的道路与地形整体模型构建方法研究[J].公路工程,2008,33(1):106-109,121.
    [144]吕希奎,易思蓉.基于分形技术的铁路选线虚拟环境三维动态建模方法[J].中国铁道科学,2005,26(2):44-48.
    [145]吕希奎,易思蓉,何丽.OpenGL环境下的模型数据库管理与复杂三维建模[J].工程图学学报,2007,28(2):12-16.
    [146]吕希奎,周小平,张学军,等.基于参数化技术的隧道三维建模方法[J].工程图学学报,2011,32(2):26-30.
    [147]周小平,吕希奎,刘博航.线路构造物三维景观仿真方法研究[J].工程图学学报,2010,31(3):84-87.
    [148]Lindstrom P, Pascucci V. Visualization of large terrains made easy[C]. Proc IEEE Visualization' 2001, SanDiego,CA,USA,2001:363-370.
    [149]Cignoni P, Ganovelli F, Gobbetti E, et al. Planet-sized batched dynamic adaptive meshes[C]. Proceedings IEEE Visualization 2003, Seattle,WA,USA, 2003IEEE Computer Society Press:147-154.
    [150]Losasso F, Hoppe H. Geometry Clipmaps:Terrain Rendering Using Nested Regular Grids[C]. Proceedings of the ACM SIGGRAPH'04, USA, 2004:769-776.
    [151]何正伟,吴华意,陈静.基于Internet的大规模城市建筑三维场景可视化研究[J].系统仿真学报,2009,21(10):2965-2970,2976.
    [152]蒲浩,宋占峰,詹振炎.铁路线路设计中三维实时交互式仿真研究[J].中国铁道科学,2003,24(5):56-60.
    [153]蒲浩,朱江,李伟.基于J2EE和JOGL的道路网络三维可视化研究[J].铁道科学与工程学报,2009,6(2):22-27.
    [154]左小清,李清泉,唐炉亮.公路三维模型建立与数据组织[J].武汉大学学报(信息科学版),2004,29(2):179-183.
    [155]许金良,杨宏志.公路视景仿真模型[J].长安大学学报(自然科学版),2004,24(2):37-40.
    [156]李军,郭腾峰.公路动态全景透视图的微机制作技术[J].公路,1997(12):43-46.
    [157]张伯根,陈国,陈园.三维动画在模拟公路行车中的实现与应用[J].公路,2000(6):57-59.
    [158]Clark J. Hierarchical geometric models for visible surface algorithms[J]. Communications of the ACM,1976,19(10):547-554.
    [159]Schroederetal W J. Decimation of triangle meshes[J]. Compute Graphics, 1992,26(2):65-70.
    [160]Hoppe H. Progressive Meshes[C]. Proceedings of the SIGGRAPH'96, New Orleans, LA, USA,1996:99-108.
    [161]Hoppe H. View-dependent refinement of progressive meshes [J]. Computer Graphics,1997,31(3):189-198.
    [162]Hoppe H, Derose T. Mesh optimization[C]. Proceedings of the SIGGRAPH'03, American,2003:19-25.
    [163]Garland M. Multi resolution modeling:survey & future opportunities[C]. Proceedings of the Euro graphics, Granada,1999:49-65.
    [164]付鑫,陈睿,唐雁.基于频度中心理论的三维模型简化方法[J].计算机科学,2008,35(7):216-218.
    [165]刘湘云,邹北骥.一种依概率值简化三角网格模型的新算法[J].中南大学学报(自然科学版),2005,36(1):123-127.
    [166]冯翔,周明全.带纹理的三维模型简化算法[J].计算机辅助设计与图形学学报,2009,21(6):842-846,852.
    [167]胡于进,蔡建荣,凌玲,等.基于物理属性与三角形正则度的网格简化算法[J].华中科技大学学报(自然科学版),2011,39(06):96-100.
    [168]Andersson M, Gudmundsson J, Levcopoulos C. Restricted mesh simplification using edge contractions[J]. International Journal of Computational Geometry and Application,2009,19(3):247-265.
    [169]Atlan S, Garland M. Interactive multiresolution editing and display of large terrains[J]. Computer Graphics Forum,2006,25(2):211-223.
    [170]Kaick Y M, Pedrini H. A comparative evaluation of metrics for fast mesh simplification[J]. Computer Graphics Forum,2006,25(2):197-210.
    [171]陈伟海,徐鲤鸿,刘敬猛,等.网格简化中基于特征矩阵的二次误差测度算法[J].北京航空航天大学学报,2009,35(5):572-575,595.
    [172]杜晓晖,尹宝才,孔德慧.一种边折叠三角网格简化算法[J].计算机工程,2007,33(12):12-15.
    [173]李凤霞,赵邓,李仲君.基于外观保持的多分辨率模型生成算法[J].系统仿真学报,2012,24(1):62-66.
    [174]卢威,曾定浩,潘金贵.支持外观属性保持的三维网格模型简化[J].软件学报,2009,20(3):713-723.
    [175]蒲浩,宋占峰,郑顺义,等.道路三维场景的实时动态显示技术[J].交通运输工程学报,2003,3(1):52-56.
    [176]宋占峰,詹振炎,蒲浩.道路整体模型视相关简化方法研究[J].中国公路学报,2004,17(2):6-10.
    [177]宋占峰,詹振炎,蒲浩.基于不规则三角网的视相关细节层次网格化方法研究[J].铁道学报,2003,25(1):99-103.
    [178]Karni Z, Gotsman C. Spectral compression of mesh geometry[C]. Proceedings of ACM SIGGRAPH'2000,2000:279-286.
    [179]Sorkine O, Cohen-Or D, Toledo S. High-Pass Quantization for Mesh Encoding[C]. Proceedings of the Eurographics/ACM SIGGRAPH 2003, 2003:42-51.
    [180]Chow M. Optimized geometry compression for real-time rendering[C]. Proceedings of IEEE Visualization' 97,1997:347-354.
    [181]Deering M. Geometry compression[C]. Proceedings of SIGGRAPH'95, 1995:13-20.
    [182]Taubin G, Rossignac J. Geometric compression through topological surgery[J]. ACM Trans. Graphics,1998,17(2):84-115.
    [183]Isenburg M, Alliez P. Compressing polygon mesh geometry with parallelogram prediction[C]. Proceedings of IEEE Visualization 2002, Boston, Massachusetts, 2002:141-146.
    [184]Touma C, Gotsman C. Triangle mesh compression[C]. Proceedings of Graphics Interface 1998,1998:26-34.
    [185]Kronrod B, Gotsman C. Optimized Compression of Triangle Mesh Geometry Using Prediction Trees. [C].1st International Symposium on 3D Data Processing, Visualization and Transmission,2002:602-608.
    [186]Teler E, Lischinski D. Streaming of complex 3D scenes for remote walkthroughs[J]. EUROGRAPHICS,2001,20(3):125-132.
    [187]David K, Peter L, R W, et al. Virtual GIS A Real-Time System[J]. EUROGRAPHICS,2001,20(3):125-132.
    [188]庆朱,李霞飞,张叶挺.基于Web的CCGIS浏览器插件的设计与实现[J].测绘学报,2001,2(1):22-27.
    [189]张立强,张燕,杨崇俊,等.网络环境下三维可视化信息系统的方法研究[J].中国科学D辑,2005,35(6):511-518.
    [190]Wahlers R, Leitzke C. Modern on-line track measurement[J]. Eisenbahningenieur,2005,56(9):8-11.
    [191]Wendler E, Dickenbrok B. Computer-assisted railway track routing during engineering studies[J]. Eisenbahningenieur,2008,60(7):6-10.
    [192]桂岚,符锌砂.国外道路施工辅助系统的研究与开发[J].中外公路,2002(01):43-45.
    [193]Demir M, Ozturk T. A research on forest road planning and projecting by inroads software in Bolu region of Turkey[J]. American Journal of Applied Sciences,2004,1(4):295-301.
    [194]Cummings J. Route optimisation technology for Kuranda Range Road[J]. Civil Engineers Australia,2003,75(11):30.
    [195]Overstree S B. Engineering design software implementation:Howone engineering firm successfully implemented AutoCAD(?) Civil 3D(?)C].119th ASEE Annual Conference and Exposition, San Antonio, TX, United states, 2012:25-34.
    [196]Roe A. Autodesk Civil 3D:Model-based civil design improves efficiency[J]. Cadalyst,2005,22(3):36-39.
    [197]张诗波,暴秀超,李慧,等.基于纬地软件的公路线形安全性评价方法研究[J].公路,2013(7):5-8.
    [198]孟存喜.铁路勘测设计一体化和智能化的研究与关键技术[J].铁路计算机应用,2005(05):34-36.
    [199]蒲浩.现代路线CAD系统关键技术研究与应用[D].长沙:中南大学,2002.
    [200]钟晶,蒲浩,谢春玲.基于运行车速法的交互式道路安全选线CAD系统研究与应用[J].交通与计算机,2008,26(3):101-104.
    [201]蒲浩,詹振炎,宋占峰.基于多视窗的路线集成交互设计系统的开发[J].长沙铁道学院学报,2001,19(4):81-85.
    [202]蒲浩,宋占峰,詹振炎.公路路线设计的一体化与可视化[J].中南大学学报(自然科学版),2004,35(5):830-835.
    [203]蒲浩,詹振炎.现代路线CAD系统关键技术研究[J].中国铁道科学,2005,26(4):136-138.
    [204]胡光常.铁路屏幕选线三维联动技术研究[J].铁道建筑,2005(10):67-69.
    [205]葛根荣.铁路选线三维联动可视化CAD系统的开发与应用[J].铁道勘察,2005,31(4):1-3.
    [206]彭利辉,蒲浩.道路平面线形交互式设计方法研究[J].铁路计算机应用,2006,15(8):7-9.
    [207]宋占峰,蒲浩.基于约束的线路设计方案重组算法[J].中国公路学报,2007,20(4):36-40.
    [208]王玉泽.新建铁路线路计算机辅助设计研究与开发[J].铁道工程学报,2008(7):14-17.
    [209]李晓军,王长虹,朱合华.Kriging岙值方法在地层模型生成中的应用[J].岩土力学,2009,30(1):157-162.
    [210]Chang K. T.地理信息系统导论[M].北京:科学出版社,2003.
    [211]王靖波,潘懋,张绪定.基于Kriging方法的空间散乱点插值[J].计算机辅助设计与图形学学报,1999,11(6):525-529.
    [212]Barequet G, Har-Peled S. Efficiently Approximating the Minimum-Volume Bounding Box of a Point Set in Three Dimensions[J]. Journal of Algorithms, 2001,38(1):91-109.
    [213]Chen Y H. Determining parting direction based on minimum bounding box and fuzzy logics[J]. International Journal of Machine Tools and Manufacture, 1997,37(9):1189-1199.
    [214]Chan C K. Determination of the minimum bounding box of an arbitrary solid: An iterative approach[J]. Computers and Structures,2001,79(15):1433-1449.
    [215]胡久乡,何松,钟瑜.空间数据库网格索引机制的最优划分[J].计算机学报,2002,25(11):1227-1230.
    [216]田李,邹鹏,李爱平,等.基于网格索引的连续Skyline计算方法[J].计算机学报,2008,31(6):998-1012.
    [217]Guttman A. R-trees:A dynamic index structure for spatial searching[C]. Proceedings of ACM SIGMOD, Boston,1984:47-57.
    [218]Calle J, Castano L, Castro E, et al. Statistical user model supported by R-Tree structure[J]. Applied Intelligence,2013,39(3):545-563.
    [219]Dekihara H, Nakamura Y. An extended technique for R-tree to manage multiple type objects[J]. Journal of Computational Methods in Sciences and Engineering, 2012,12(3):53-61.
    [220]Gaede V, Gunther O. Multidimensional access methods[J]. ACM Computing Surveys,1998,30(2):170-231.
    [221]张明波,陆锋,申排伟,等.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300.
    [222]余艳,林伟华,谈晓军.一种基于R-tree的空间索引方法[J].计算机工程,2010,36(12):30-32.
    [223]杨宏志,韩跃杰,李芬.基于GIS和遗传算法的公路智能选线[J].长安大学学报(自然科学版),2009,29(3):48-53.
    [224]后宗彪.费用现值目标函数铁路主要技术标准综合优化[D].成都:西南交通大学,2006.
    [225]蒲浩,李伟,龙喜安.高速铁路牵引计算与三维运行仿真研究[J].铁道科学与工程学报,2011,08(5):1-5.
    [226]铁道科学研究院,西南交通大学.高速铁路运营支出定额的研究[]q.北京:2002.
    [227]蒲浩,宋占峰.道路路线CAD原理与方法[M].长春:吉林科技出版社,2005.
    [228]铁道部.中长期铁路网规划(2008年调整)[J].铁道知识,2008(06):4-7.
    [229]匡华云.铁路既有曲线整正测量方法[J].测绘工程,2003,12(3):55-56.
    [230]李家稳,陈峰,张海燕,等.坐标法优化拨距计算方法的研究[J].北方交通大学学报,2004,28(4):34-36.
    [231]吴清华.基于绝对坐标的轨道线路拟合整正方法研究[D].长沙:中南大学,2012.
    [232]Gao W, Liu S Y, Huang L L. A novel artificial bee colony algorithm with Powell's method[J]. Applied Soft Computing Journal,2013,13(9):3763-3775.
    [233]Spaek T, Pietrzyk P, Sojka Z. Application of the genetic algorithm joint with the Powell method to nonlinear least-squares fitting of powder EPR spectra[J]. ournal of Chemical Information and Modeling,2005,45(1):18-29.
    [234]Powell M. An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives[J]. Computer, 1964,1(7):155-162.
    [235]何光渝.Visual C++常用数值算法集[M].北京:科学出版社,2002.
    [236]姚连璧.车载GPS道路数据采集与线形参数的计算[J].测绘学报,2002,31(z1):45-49.
    [237]刘元朋,张定华,桂元坤,等.用带约束的最小二乘法拟合平面圆曲线[J].计算机辅助设计与图形学学报,2004,16(10):1382-1385.
    [238]郑晓曦.基于DAG场景图的产品虚拟样机系统及其关键技术的研究[D].武汉:武汉理工大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700