用户名: 密码: 验证码:
甘蓝花粉管钙感受蛋白编码基因CML49的克隆及功能鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花粉萌发(Pollen Germination, PG)及花粉管伸长(Pollen Tube Growth, PTG)是开花植物有性生殖的重要阶段。Ca2+信号系统与激素在植物的花发育(成花诱导、花芽分化和开花调控)、有性生殖(研究主要集中在花粉萌发和花粉管生长)、逆境生理等方面都起着非常重要的作用。目前对Ca2+相关的信号传递机制的研究中发现有Ca2+/CaM[包括类CaM蛋白(CMLs)]、 Ca2+/CDPK和Ca2+/CBL三类钙信号系统。他们都含有不同个数的EF-hands结构域,EF-hands具有高亲和力以结合Ca2+。植物体中除了保守的CaMs家族,还有CMLs家族,在钙信号传导中也可能具重要作用。对拟南芥基因组的研究发现,其基因组含有7个CaMs和50个CMLs,其中5个CaMs和19个CMLs是在PG和PTG试验中发现的,这些基因中有4个基因(CML39、CML49、CML3和CML16)在PG过程中上调表达,CML49也在PTG中转录水平增加。植物物种中每类钙信号系统均为家族蛋白,大部分钙结合蛋白生理作用还未清楚,因此对钙信号系统家族成员功能的研究可能成为研究植物生长发育过程的热点内容。
     本试验以自交不亲和材料E1和F1为材料,通过双向电泳筛选得到钙感受蛋白CML49,通过同源克隆及RACE技术从花粉中克隆了CML49基因,从柱头中克隆得到SRK7基因。构建了CML49及其及突变体、SRK7及其截短体的原核表达载体和酵母双杂交重组表达载体,并通过β-半乳糖苷酶活性检测相互作用强度,筛选与鉴定CML49与SRK7相互作用及其蛋白互作的结构域。从番茄中扩增得到花粉特异性启动子LAT52,构建了LAT52启动下的CML49反义表达载体,对甘蓝进行转化,从而验证CML49基因的生物学功能。本研究希望能为CML49基因在花粉萌发和花粉管伸长的研究,及研究钙调蛋白CML49在自交不亲和过程的作用提供参考。
     主要试验结果如下:
     1.双向电泳筛选、确定钙感应蛋白CML49
     以结球甘蓝E1、F1为材料,提取花粉萌发前和萌发后的混合花粉总蛋白,总蛋白双向电泳后通过MALDI-TOF-MS鉴定分析差异点,质谱分析得到花粉萌发中表达下调的蛋白点CML49。
     2.结球甘蓝CML49基因的克隆及分析
     通过同源扩增及RACE扩增得到了CML49基因的全长序列1343bp,开放阅读框954bp,编码317个氨基酸残基,预测分子量大小为33.51kD,p1为6.93。经Smart-embl预测其含2个重要的EF-hand结构域;与拟南芥AtCML49和AtCML50的亲缘关系较近;CML49基因的不同器官的表达分析表明该基因在不同器官均有表达,且在茎中的表达量最高,在花粉中也有较高的表达量;CML49基因的qPCR分析表明其表达量在花粉萌发前约为萌发后的2.73倍,表明CML49基因在花粉萌发后表达下调。
     3.甘蓝CML49与SRK7相互作用检测
     以F1材料柱头总RNA逆转录合成第一链cDNA为模板,扩增得到SRK基因2118bp,经NCBI比对所得到的SRK序列为S7单倍型。利用同源重组技术,分别构建了CML49与SRK7的原核表达载体pCold I-CML49和pGEX-SRK7。融合蛋白体外表达纯化,P μLl-down表明两融合蛋白在体外能够进行相互作用。
     同时分别构建CML49与SRK7(不含信号肽)的酵母表达载体pGBKT7-CML49和pGADT7-SRK7。利用醋酸锂转化法将重组酵母质粒转化到感受态酵母中,得到酵母转化子Y2HGold (pGBKT7-CML49)和Y187(pGADT7-SRK7),经过毒性及自激活检测,发现无自激活和毒性现象。融合的二倍体酵母Y2HGold (pGBKT7-CML49)和Y187(pGADT7-SRK7)能在选择型培养基SD/-Leu/-Trp/AbA (DDO/A)、SD/-Ade/-His/-Leu/-Trp (QDO)上正常生长、且在SD/-Ade/-His/-Leu/-Trp/X-a-Gal/AbA (QDO/X/A)变蓝色。β-半乳糖苷酶活性测定表明CML49与SRK7相互作用的酶活性18.44。综上说明,结球甘蓝CML49与SRK7蛋白能够相互作用。
     4.CML49与胞内激酶域(iSRK7)、胞外域(eSRK7)相互作用检测
     从全长SRK7上亚克隆了胞内激酶域(不含跨膜域,iSRK7)750bp和胞外域(不含信号肽,eSRK7)1245bp2个SRK7亚结构域。构建原核表达载体pGEX-iSRK7和pGEX-eSRK7,进行原核表达,纯化融合蛋白,并进行体外相互作用检测,结果表明CML49能与eSRK7发生相互作用且相互作用强度很强,而与iSRK7没有检测到发生相互作用。为进一步验证上述结果,分别构建酵母重组表达质粒pGBKT7-CML49、pGADT7-iSRK、pGADT7-eSRK7及互换载体pGADT7-CML49、pGBKT7-iSRK7、pGBKT7-eSRK7,并转化对应的酵母菌株。结果显示二倍体酵母Y2HGold (pGBKT7-CML49)×Y187(pGADT7-eSRK7)和Y187(pGADT7-CML49)×Y2HGold (PGBKT7-eSRK7),在QDO/X/A培养基上长出蓝色菌落且生长速度很快,反应较为强烈,同时激活了酵母的报告基因AURl-C、HJS3、ADE2、MEL1。而Y2HGold (pGBKT7-CML49)×Y187(pGADT7-iSRK7)和Y187(pGADT7-CML49)×Y2HGold (pGBKT7-iSRK7),生长速度缓慢,几乎观察不到蓝色菌斑产生。通过β—半乳糖苷酶活性测定表明:CML49与eSRK7能够相互作用且强度较强,而CML49与iSRK7相互作用较弱。表明CML49与SRK7的相互作用的核心区域为胞外域,而不是胞内激酶域iSRK7。
     5. CML49EF-hand突变体与SRK7、eSRK7及iSRK7相互作用检测
     将CML49蛋白两个EF-hand结构域中重要的氨基酸突变,使EF1的谷氦酸Glu-170(E)突变为谷氨酰胺Gln-170(Q),然后突变CML49使EF2的谷氨酸Glu-236(E)突变为谷氨酰胺Gln-236(Q),最后突变两者,构建3种突变体,分别命名为CML49-1-、CML49-2-和CML49-12-三种突变体。构建原核表达载体pCold I-CML49-1-、pCold I-CML49-2-、pCold I-CML49-12-及pGEX-iSRK7、pGEX-eSRK7。进行原核表达,纯化融合蛋白,并进行体外相互作用检测,表明CML49突变体均不能与SRK7、iSRK7和eSRK7发生相互作用。同时构建酵母表达载体pGBKT7-CML49-1-、pGBKT7-CML49-2-、pGBKT7-CML49-12-及pGADT7-SRK7、pGADT7-iSRK7、pGADT7-eSRK7。结果进一步支持了原核表达体外相互作用检测结果。
     6.番茄花粉特异性启动子LAT52的克隆及功能分析
     根据番茄(S. lycopersicum)花粉特异性启动子LAT52序列(GenBank:X15855)设计引物,从番茄基因组DNA中扩增得到花粉特异性启动子核心序列608bp。序列分析表明其中含有多个花粉特异性元件。将LAT52启动子替换35S启动子连接到双元表达载体pBI121,命名为pBI-LAT52,转化农杆菌GV3101感受态细胞。蘸花法侵染拟南芥花序,获得T0代种子,抗性筛选后获得T1代拟南芥转基因植株。同时侵染甘蓝幼苗下胚轴。以pBI121载体作为阳性对照,在适当的MS培养基上经预培养、侵染、共培养、脱菌、筛选培养基、分化培养基、成苗、移栽等,获得转化甘蓝植株。对甘蓝植株花蕾、花药及花粉进行GUS染色,与阳性对照和阴性对照相比,仅在花药和花粉中检测到蓝色,说明花粉特异性启动子LAT52仅能够在花粉中特异性表达,且该启动子可以在甘蓝花粉中特异性表达。
     7.甘蓝CML49反义基因表达载体构建对甘蓝反义转化
     根据CML49基因全长序列,克隆得到反义CML49基因,并结合植物双元载体pCAMBIA1302的多克隆位点,设计引物并添加适当酶切位点。构建反义表达载P1302-LAT-aCML49、反义p1302-35S-aCML49,空载体作为阳性对照,转化甘蓝幼苗下胚轴,在适当的MS培养基上经预培养、侵染、共培养、脱菌、筛选培养基、分化培养基、成苗、移栽等,获得转基因甘蓝反义植株。
     8.甘蓝CML49反义基因转化植株的分子检测及形态学观察
     提取转基因甘蓝植株基因组DNA,设计引物分别检钡T-DNA区域内的CaMV35S启动子、Hyg(Ⅱ)潮霉素抗性基因、LAT52启动子及反义目的基因片段。经PCR检测,均检测到正确的目的片段,初步说明T-DNA区域片段成功转化甘蓝。设计探针引物,经Southern blot分析进一步确定对甘蓝的转化,且以双拷贝整合到甘蓝植株基因组中。转基因植株甘蓝花粉原位萌发显示p1302-35S-aCML49和p1302-LAT-aCML49转基因植株柱头上萌发的花粉数量较少,且花粉管大部分不能正常生长或生长速度较慢,仅可以观察到少量的花粉管穿过柱头;而对照株花粉大量萌发,且花粉管数量多且花粉管能正常伸长向胚囊。这表明反义CML49能使花粉萌发率降低,花粉管伸长不能正常进行。花粉体外萌发试验显示反义p1302-35S-aCML49和p1302-LAT-aCML49转基因植株的花粉萌发率明显低于对照,且花粉管的长度也明显缩短。花粉萌发前后的定量表达分析表明转基因植株中该基因的表达量明显降低,说明CML49基因在花粉萌发和花粉管伸长过程中起重要作用。
Pollen germination, along with pollen tube growth, are essential processes for the reproduction of flowering plants. Ca2+signal system and hormone play very important roles in plant flower development (include floral induction、 flower bud differentiation and flowering regulation), generative propagation (researches mainly focus on pollen germination and pollen tube growth) and adversity physiology. The three largest categories of proteins of Ca2+signaling systems in plants are the CaMs (calmodulins) and CMLs (CaM-like proteins), the CDPKs (Ca2+-dependent protein kinases), and the CBLs (calcineurin B-like proteins). They all contain the different amount of EF-hands structure to combine Ca2+with high affinity. In addition to conserved CaMs, plants possess an extended family of CMLs.They may also have important roles in calcium signaling. The Arabidopsis genome contains7CaM genes and50additional CML genes.Among these genes, four CML genes (CML39, CML49,CML3, and CML16) were up-regulated during PG,12genes (CaM7, CML49, CML3, CML16, et al.) increased their transcription during PTG. In spite of the potential importance in mediating plant calcium signaling, the physiological functions of the CaMs and CMLs remain largely unknown. So, the studies of the functions of family members in calcium signal systems may become the hot spots in the process of plant growth and development.
     In this study,we took Self-incompatible (SI) El and Fl as material, obtained calcium sensor protein CML49by two-dimensional electrophoresis, and gained CML49gene from pollen by homologous cloning and RACE, then obtained SRK7gene from stigma. We constructed prokaryotic expression vectors and yeast two hybrid recombinant expression vectors of CML49and its mutants、 SRK7and its truncations, and then detected their interaction strengthes by P-Galactosidase Assay.We cloned pollen-specific promoter LAT52from tomoto, and constructed antisense CML49expression voctors under LAT52promoter, transformed into cabbage. Finally, we verified the biology function CML49gene. We hope to provide references for CML49gene research in pollen germination and pollen tube elongation, and the roles of CML49in Self-incompatible process.
     The main res μLts were showed as follows:
     1. The2-D electrophoresis to screen and determine calcium protein CML49gene
     Extracted total protein before and after the pollen germination, Calmodnlin-like49(CML49) protein of cabbage (Brassica oleracea L. var. capitata) was identified in the process of pollen germination in cabbage line Fl by two-dimensional electrophosis of the pollen total protein.
     2. Cloning and analysis of CML49gene in cabbage
     We got f μLl length of CML49gene sequence with1343bp by homologous amplification and RACE amplification, open reading frame (ORF) was954bp, encoded317amino acid residues, predicted the molec μLar weight33.51kD, pl was6.93.It contains two EF-hand structure, and has close genetic relationship with AtCML49and AtCML50; Relative expression analysis showed that CML49gene were expressed in various organs of cabbage, and has the highest amount of expression in stem, also has higher expression level in pollen; qPCR analysis of CML49showed that the expression level of before pollen germination was about2.73times than after germination, and show that it is down-reg μLated after the pollen germination.
     3. Interaction between CML49and SRK7in cabbage
     Take first chain cDNA of stigma total RNA as template from Fl material, we got SRK gene of2118bp, the SRK sequence we got was S7haploid type by BLAST in NCBI database. And then we constructed CML49and SRK7prokaryotic expression vector pColdI-CML49and pGEX-SRK7using homologous recombination technology, respectively. After expression and purification in vitro, the two fusion proteins could do interaction in vitro. Meanwhile, constructed pGBKT7-CML49and pGADT7-SRK7(excluding signal peptide) yeast expression vector, respectively. Transformed recombinant yeast plasmid into competent cell by lithium acetate method, we got Y2HGold (pGBKT7-CML49)and Y187(pGADT7-SRK7), it has no activation and toxicity after toxicity and the activation detection. Diploid yeast of Y2HGold (pGBKT7-CML49) and Y187(pGADT7-SRK7) can grow on SD/-Leu/-Trp/AbA (DDO/A), SD/-Ade/-His-Leu/-Trp (QDO),and change blue on SD/-Ade/-His/-Leu/-Trp/X-a-Gal/AbA (QDO/X/A). β-galactose glucoside assay showed that enzymatic activity of interaction between CML49and SRK7was18.44. In a word, CML49protein can interact with SRK7protein in cabbage.
     4. Interactions between CML49and intracell μLar kinase domain (iSRK7), extracell μLar domain (eSRK7)
     We subcloned two SRK7domain structures [iSRK、eSRK7(excluding signal peptide)] from SRK7with750bp and1245bp, respectively. Constructed prokaryotic expression vector pGEX-iSRK7and pGEX-eSRK7, prokaryotic expression and purification of fusion protein, and tested their interactions in vitro, the res μLts showed that the CML49can interact with eSRK7, but we did not detect the interaction with iSRK7. In order to verify the res μLts above furtherly, we constructed yeast recombinant expression plasmids pGBKT7-CML49, pGADT7-iSRK7, pGADT7-eSRK7and exchange vectors pGADT7-CML49, pGBKT7-iSRK7, pGBKT7-eSRK7, respectively, and transformed into corresponding yeast strains. The res μLts show that the diploid yeast Y2HGold (pGBKT7-CML49)×Y187(pGADT7-eSRK7) and Y187(pGADT7-CML49)×Y2HGold (pGBKT7-eSRK7) grew fast on the QDO/X/A medium and change blue, reaction is relatively strong, and activate AURl-c, HIS3, ADE2, MELI the yeast's report genes at the same time. while Y2HGold (pGBKT7-CML49)×Y187(pGADT7-iSRK7) and Y187(pGADT7-CML49)×Y2HGold (pGBKT7-iSRK7) the grew slow, and almost hardly see blue plaque.β-galactose glucoside assay showed that CML49can strongly interact with eSRK7, but CML49weakly interact with iSRK7. These above show that the interaction core region of SRK7with CML49was the extracell μLar domain(eSRK7), rather than intracellular kinase domain (iSRK7).
     5. Interactions between CML49EF-hand mutants and SRK7, eSRK7、iSRK7
     We made mutations of important amino acid in two EF-hand structure domain of CML49protein, changed glutamate Glu-170(E) to glutamine Gln-170(Q) in EF1, and then changed glutamate Glu-236(E) to glutamine Gln-236(Q) in EF2, and finally changed both, named CML49-1-, CML49-2-and CML49-12-, respectively. We constructed prokaryotic expression vector pCold I-CML49-1-, pCold I-CML49-2-, pCold I-CML49-12-and pGEX-iSRK7, pGEX-eSRK7. After expression and purification, and detected their interactions in vitro. The res μLts showed that CML49mutants can not do interactions with SRK7, iSRK7and eSRK7. Meanwhile,we constructed yeast expression vectors pGBKT7-CML49-1-、pGBKT7-CML49-2-、pGBKT7-CML49-12-and pGADT7-SRK7、pGADT7-iSRK7、pGADT7-eSRK7. The res μLts supported the interaction between prokaryotic expression in vitro furtherly.
     6. Cloning and functional analysis of pollen cell-specific promoter LAT52from tomato
     According to the tomato (S. lycopersicum) pollen specific promoter LAT52sequences (GenBank:X15855), we cloned core pollen specific promoter sequences with608bp from tomato genome DNA. Sequence analysis showed that it contains many pollen specific components. Connect LAT52promoter to binary expression vector pBI121replaced35S promoter, named pBI-LAT52, and then transformed into Agrobacterium GV3101competent cell, infection Arabidopsis inflorescence, gained TO generation seeds, resistance screening after T1generation of Arabidopsis transgenic plants.Meanwhile infected cabbage seedlings, gained cabbage plants. GUS staining, compared with the positive control and negative control, we only detected blue in anther and pollen of cabbage, it showed that LAT52only can specific expression in pollen, and the LAT52promoter can specific expression in cabbage pollen.
     7. Expression vector construction of antisense CML49gene and transformation into cabbage
     According to CML49gene sequence, cloned sense and antisense CML49gens, and combined with the m μLtiple cloning site of plant binary vector pCAMBIA1302, designed primers with proper digested sites. We constructed p1302-35S-aCML49and p1302-LAT-CML49, and took pCAMBIA1302null vector as positive control. Infected cabbage seedling hypocotyl, on the proper MS culture medium, infection, trained, take off bacterium, filter medium and differentiation medium, into seedlings and transplanting, obtain transgenic cabbage plants.
     8. Molec μLar detection and morphological observation of antisense CML49gene in transgene cabbage
     Extracted genome DNA of transgenic cabbage, design primers of CaMV35S promoter,Hyg hygromycin resistance gene, LAT52promoter and antisense gene fragment in T-DNA area.We detected correct fragments of all after PCR, all above showed that T-DNA fragment transformed cabbage successf μLly. Design probes, the Southern blot analysis to further determine the conversion of cabbage, and integrated into the cabbage plant genome with double copies.Pollen germination of transgenic cabbage in situ showed that p1302-35S-aCML49and p1302-LAT-aCML49transgenic plants has less quantity of pollen germination on stigma, and the speed of most pollen tube can't normal growth or grow slowly, only a small amount of pollen tube can be observed through the stigma; while compared to postive, pollen tube number and pollen tube elongation properly to blastophore.It showed that antisense CML49can reduce pollen germination rate, and pollen tube elongation unable to proceed normally. Pollen germination experiments in vitro showed that pollen germination rates of antisense pl302-35S-aCML49and p1302-LAT-aCML49transgenic plants are significantly lower than control, and the length of the pollen tube also reduced significantly. The expression analysises of pollen germination showed that the gene expressions in transgenic plants were lower significantly, suggest CML49gene plays important roles in the process of pollen germination and pollen tube growth.
引文
[1]White P J, Broadley M R. Calcium in plants. Ann Bot (Lond).2003,92:487-511.
    [2]Sanders D, Pelloux J, Brownlee C, Harper J F. Calcium at the crossroads of signaling. Plant Cell. 2002,14:S401-417.
    [3]Reddy A S. Calcium:silver b μLlet in signaling. Plant Sci.2001,160:381-404.
    [4]Rudd J J, Franklin-Tong V E. Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol.2001,151:7-33.
    [5]Snedden W A, Fromm H. Calmod μLin as a versatile calcium signal transducer in plants.New Phytol.2001,151:35-66.
    [6]Hetherington A M, Brownlee C. The generation of Ca2+ signals in plants. Annu Rev Plant Biol. 2004,55:401-27.
    [7]Hepler P K. Calcium:a central regulator of plant growth and development. Plant Cell.2005, 17:2142-55.
    [8]Bouche N, Yellin A, Snedden W A, Fromm H. Plant-Specific Calmodulin-Binding Proteins. Annu Rev Plant Biol.2005,56:435-466.
    [9]Chen H J, Wu S D, Huang G J, Shen C Y, Afiyanti M, Li W J, Lin Y H.Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. J Plant Physiol.2012,169(1):86-97.
    [10]Oh P S, Lim K T. Plant glycoprotein modulates the expression of interleukin-1 beta via inhibition of MAP kinase in HMC-1 cells. Biosci Biotech Bioch.2008,72(8):2133-2140.
    [111]Liu H T, Gao F, Cui S J, Han J L, Sun D Y, Zhou R G:Primary evidence for involvementof IP3 in heat-shock signal transduction in Arabidopsis. Cell Res.2006,16(4):394-400.
    [12]Harteneck C, Gollasch M:Pharmacological Modulation of Diacylglycerol-Sensitive TRPC3/6/7 Channels. Curr Pharm Biotechno.2011,12(1):35-41.
    [13]Hepler P K. Tip growth in pollen tubes:Calcium leads the way. Trends in plant science.1997, 2(3):79-80.
    [14]Messerli M A, Creton R, Jaffe L F, Robinson K R. Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev Biol.2000,222(1):84-98.
    [15]Bibikova T N, Zhigilei A, Gilroy S. Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta.1997,203(4):495-505.
    [16]Wymer C L, Bibikova T N, Gilroy S. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant Journal.1997,12(2):427-439.
    [17]Wood N T, Haley A, Viry-Moussaid M, Johnson C H, van der Luit A H, Trewavas A J. The calcium rhythms of different cell types oscillate with different circadian phases. Plant physiology.2001,125(2):787-796.
    [18]Johnson C H, Knight M R, Kondo T, Masson P, Sedbrook J, Haley A, Trewavas A. Circadian Oscillations of Cytosolic and Chloroplastic Free Calcium in Plants. Science.1995, 269(5232):1863-1865.
    [19]Ehrhardt D W, Wais R, Long S R. Calcium spiking in plant root hairs responding to Rhizobium nod μLation signals. Cell.1996,85(5):673-681.
    [20]Shaw S L, Long S R. Nod factor elicits two separable calcium responses in Medicago truncat μLa root hair cells. Plant physiology.2003,131(3):976-984.
    [21]Digonnet C, Aldon D, Leduc N, Dumas C, Rougier M. First evidence of a calcium transient in flowering plants at fertilization. Development.1997,124(15):2867-2874.
    [22]Felle H. Auxin Causes Oscillations of Cytosolic Free Calcium and Ph in Zea-Mays Coleoptiles. Planta.1988,174(4):495-499.
    [23]Mcainsh M R, Brownlee C, Hetherington A M. Abscisic Acid-Induced Elevation of Guard-Cell Cytosolic Ca-2+ Precedes Stomatal Closure. Nature.1990,343(6254):186-188;
    [24]Mcainsh M R, Brownlee C, Hetherington A M. Visualizing Changes in Cytosolic-Free Ca2-during the Response of Stomatal Guard-Cells to Abscisic-Acid. Plant Cell.1992,4(9): 1113-1122;
    [25]Allen G J, Kwak J M, Chu S P, Llopis J, Tsien R Y, Harper J F, Schroeder J I. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant Journal.1999,19(6):735-747;
    [26]Klusener B, Young J J, Murata Y, Allen G J, Mori I C, Hugouvieux V, Schroeder J I. Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant physiology.2002,130(4):2152-2163.
    [27]Gilroy S, Jones R L. Gibberellic-Acid and Abscisic-Acid Coordinately Regulate Cytoplasmic Calcium and Secretory Activity in Barley Aleurone Protoplasts. Proceedings of the National Academy of Sciences of the United States of America.1992,89(8):3591-3595.
    [28]Lynch J, Polito V S, Lauchli A. Salinity Stress Increases Cytoplasmic-Ca Activity in Maize Root Protoplasts. Plant physiology.1989,90(4):1271-1274.
    [29]Knight M R, Campbell A K, Smith S M, Trewavas A J. Transgenic Plant Aequorin Reports the Effects of Touch and Cold-Shock and Elicitors on Cytoplasmic Calcium. Nature.1991, 352(6335):524-526.
    [30]Campbell A K, Trewavas A J, Knight M R. Calcium imaging shows differential sensitivity to cooling and communication in luminous transgenic plants. Cell Calcium.1996,19(3): 211-218;
    [31]Thomashow M F. Role of cold-responsive genes in plant freezing tolerance. Plant physiology. 1998,118(1):1-7;
    [32]Knight H, Veale E L, Warren G J, Knight M R. The sfr6 mutation in arabidopsis suppresses low-temperature induction of genes dependent on the CRT DRE sequence motif. Plant Cell. 1999,11(5):875-886.
    [33]Subbaiah C C, Bush D S, Sachs M M. Elevation of Cytosolic Calcium Precedes Anoxic Gene-Expression in Maize Suspension-C μLtured Cells. Plant Cell.1994,6(12):1747-1762
    [34]Subbaiah C C, Bush D S, Sachs M M. Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-c μLtured cells. Plant physiology.1998,118(3):759-771.
    [35]Knight H, Trewavas A J, Knight M R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant Journal.1997,12(5):1067-1078;
    [36]Takahashi K, Isobe M, Muto S. An increase in cytosolic calcium ion concentration precedes hypoosmotic shock-induced activation of protein kinases in tobacco suspension c μLture cells. Febs Lett.1997,401(2-3):202-206.
    [37]Kawano T, Kadono T, Furuichi T, Muto S, Lapeyrie F. Aluminum-induced distortion in calcium signaling involving oxidative bursts and channel regulation in tobacco BY-2 cells. Biochemical and biophysical research communications.2003,308(1):35-42.
    [38]Levine A, Tenhaken R, Dixon R, Lamb C. H2o2 from the Oxidative Burst Orchestrates the Plant Hypersensitive Disease Resistance Response. Cell.1994,79(4):583-593;
    [39]McAinsh M R, Clayton H, Mansfield T A, Hetherington A M. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant physiology. 1996,111(4):1031-1042
    [40]Pei Z M, Murata Y, Benning G, Thomine S, Klusener B, Allen G J, Grill E, Schroeder J I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature.2000,406(6797):731-734.
    [41]Clayton H, Knight M R, Knight H, McAinsh M R, Hetherington A M. Dissection of the ozone-induced calcium signature. Plant Journal.1999,17(5):575-579.
    [42]Gong M, van der Luit A H, Knight M R, Trewavas A J. Heat-shock-induced changes in intracell uLar Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant physiology. 1998,116(1):429-437.
    [43]Knight M R, Smith S M, Trewavas A J. Wind-Induced Plant Motion Immediately Increases Cytosolic Calcium. Proceedings of the National Academy of Sciences of the United States of America.1992,89(11):4967-4971;
    [44]Polisensky D H, Braam J. Cold-shock reg μLation of the arabidopsis TCH genes and the effects of modulating intracell μLar calcium levels. Plant physiology.1996,111(4):1271-1279.
    [45]Shacklock P S, Read N D, Trewavas A J. Cytosolic Free Calcium Mediates Red Light-Induced Photomorphogenesis. Nature.1992,358(6389):753-755.
    [46]Harada A, Sakai T, Okada K. photl and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proceedings of the National Academy of Sciences of the United States of America.2003,100(14):8583-8588
    [47]Stoelzle S, Kagawa T, Wada M, Hedrich R, Dietrich P. Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proceedings of the National Academy of Sciences of the United States of America.2003,100(3): 1456-1461.
    [48]Frohnmeyer H, Loyall L, Blatt M R, Grabov A. Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca+ and stimulates gene expression in transgenic parsley cell c μLtures. Plant Journal.1999,20(1):109-117.
    [49]Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant Journal.2000,23(4): 441-450.
    [50]Levine A, Pennell R I, Alvarez M E, Palmer R, Lamb C. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol.1996,6(4):427-437
    [51]Lamb C, Dixon R A. The oxidative burst in plant disease resistance. Annu Rev Plant Phys. 1997,48:251-275
    [52]Zimmermann S, Nurnberger T, Frachisse J M, Wirtz W, Guern J, Hedrich R, Scheel D. Receptor-mediated activation of a plant Ca2+ -permeable ion channel involved in pathogen defense. Proceedings of the National Academy of Sciences of the United States of America. 1997,94(6):2751-2755
    [53]Mithofer A, Ebel J, Bhagwat A A, Boller T, Neuhaus-Url G. Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with beta-glucan or chitin elicitors. Planta.1999,207(4):566-574
    [54]Lecourieux D, Mazars C, Pa μLy N, Ranjeva R, Pugin A. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell.2002, 14(10):2627-2641.
    [55]McAinsh M R, Hetherington A M. Encoding specificity in Ca2+ signalling systems. Trends Plant Sci.1998,3:32-36.
    [56]Allen G J, Schroeder J I. Combining genetics and cell biology to crack the code of plant cell calcium signaling. Sci STKE.2001,2001:RE13.
    [57]Pa μLy N, Knight M R, Th μLeau P, Graziana A, Muto S, Ranjeva R, Mazars C. The nucleus together with the cytosol generates patterns of specific cellular calcium signatures in tobacco suspension culture cells. Cell Calcium.2001,30:413-21.
    [58]Hua W, Zhang L, Liang S, Jones R L, Lu Y T. A tobacco calcium/calmodulin-binding protein kinase functions as a negative reg μLator of flowering. J Biol Chem.2004,279:31483-94.
    [59]Vanoosthuyse V, Tichtinsky G, Dumas C, Gaude T, Cock JM. Interaction of calmod μLin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S locus receptor kinase. Plant Physiol.2003,133:919-29.
    [60]Stein J C, Howlett B, Boyes D C, Nasrallah M E, Nasrallah J B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA.1991,88:8816-20.
    [61]Delorme V, Giranton JL, Hatzfeld Y, Friry A, Heizmann P, Ariza M J, Dumas C, Gaude T,Cock J M. Characterization of the S locus genes, SLG and SRK, of the Brassica S3 haplotype:identification of a membrane-localized protein encoded by the S locus receptor kinase gene. Plant J.1995,7:429-40.
    [62]Charpenteau M, Jaworski K, Ramirez B C, Tretyn A, Ranjeva R, Ranty B. A receptor-like kinase from Arabidopsis thaliana is a calmod μLin-binding protein. Biochem J.2004, 379:841-848.
    [63]Taylor L P, Hepler P K. Pollen germination and tube growth. Annu Rev Plant Phys.1997,48: 461-491.
    [64]Qin Y, Yang Z B A. Rapid tip growth:Insights from pollen tubes. Semin Cell Dev Biol.2011, 22(8):816-824.
    [65]Pierson E S, Miller D D, Callaham D A, vanAken J, Hackett G, Hepler P K. Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol.1996; 174(1):160-173.
    [66]Messerli M A, Creton R, Jaffe L F, Robinson K R. Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev Biol.2000; 222(1):84-98.
    [67]Lee Y J, SzumLanski A, Nielsen E, Yang Z B. Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol.2008; 181(7):1155-1168.
    [68]Michard E, Alves F, Feijo J A. The role of ion fluxes in polarized cell growth and morphogenesis:the pollen tube as an experimental paradigm. Int J Dev Biol.2009,53(8-10): 1609-1622.
    [69]Gomez T M, Spitzer N C. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature.1999,397(6717):350-355.
    [70]Schmitz Y, Luccarelli J, Kim M, Wang M, S μLzer D. Glutamate Controls Growth Rate and Branching of Dopaminergic Axons. J Neurosci.2009,29(38):11973-11981.
    [71]Mouline K, Very A A, Gaymard F, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud J B, Sentenac H. Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Gene Dev.2002,16(3):339-350.
    [72]Zonia L, Munnik T. Understanding pollen tube growth:the hydrodynamic model versus the cell wall model. Trends in plant science.2011,16(7):347-352.
    [73]Winship L J, Obermeyer G, Geitmann A, Hepler P K. Pollen tubes and the physical world. Trends in plant science.2011,16(7):353-355.
    [74]Hill A E, Shachar-Hill B, Skepper J N, Powell J, Shachar-Hill Y. An Osmotic Model of the Growing Pollen Tube. PloS one.2012,7(5).
    [75]Kuhtreiber W M, Jaffe L F. Detection of Extracell μLar Calcium Gradients with a Calcium-Specific Vibrating Electrode. J Cell Biol.1990,110(5):1565-1573.
    [76]Obermeyer G, Weisenseel M H. Calcium-Channel Blocker and Calmodulin Antagonists Affect the Gradient of Free Calcium-Ions in Lily Pollen Tubes. Eur J Cell Biol.1991,56(2): 319-327.
    [77]Rathore K S, Cork R J, Robinson K R. A Cytoplasmic Gradient of Ca2+ Is Correlated with the Growth of Lily Pollen Tubes. Dev Biol.1991,148(2):612-619.
    [78]Pierson E S, Miller D D, Callaham D A, Shipley A M, Rivers B A, Cresti M, Hepler P K. Pollen-Tube Growth Is Coupled to the Extracellular Calcium-Ion Flux and the Intracellular Calcium Gradient-Effect of Bapta-Type Buffers and Hypertonic Media. Plant Cell.1994, 6(12):1815-1828.
    [79]Malho R, Trewavas A J. Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell.1996,8(11):1935-1949.
    [80]Holdaway-Clarke T L, Hepler P K. Control of pollen tube growth:role of ion gradients and fluxes. New Phytologist.2003,159(3):539-563.
    [81]Cole R A, Fowler J E. Polarized growth:maintaining focus on the tip. Curr Opin Plant Biol. 2006,9(6):579-588.
    [82]Wu J Y, Wang S, Gu Y C, Zhang S L, Publicover S J, Franklin-Tong V E. Self-Incompatibility in Papaver rhoeas Activates Nonspecific Cation Conductance Permeable to Ca2+ and K+. Plant physiology.2011,155(2):963-973.
    [83]Dodd A N, Kudla J, Sanders D. The Language of Calcium Signaling. Annu Rev Plant Biol. 2010,61:593-620.
    [84]Cheung A Y, Wu H M. Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annual Review of Plant Biology.2008,59:547-572.
    [85]Wang H J, Wan A R, Jauh G Y. An actin-binding protein, L1LIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant physiology.2008,147(4): 1619-1636.
    [86]Zhang H, Qu X L, Bao C C, Khurana P, Wang Q N, Xie Y R, Zheng Y Y, Chen N Z, Blanchoin L, Staiger C J, Huang S J. Arabidopsis VILLIN5, an Actin Filament Bundling and Severing Protein, Is Necessary for Normal Pollen Tube Growth. Plant Cell.2010,22(8):2749-2767.
    [87]Kroeger J H, Geitmann A, Grant M. Model for calcium dependent oscillatory growth in pollen tubes. J Theor Biol.2008,253(2):363-374.
    [88[1 Camacho L, Malho R. Endo/exocytosis in the pollen tube apex is differentially reg uLated by Ca2+ and GTPases. J Exp Bot.2003,54(380):83-92.
    [89]Hepler P K, Winship L J. Calcium at the Cell Wall-Cytoplast Interface. Journal of integrative plant biology.2010,52(2):147-160.
    [90]Holdaway-Clarke T L, Weddle N M, Kim S, Robi A, Parris C, Kunkel J G, Hepler P K. Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. J Exp Bot.2003,54(380):65-72.
    [91]Michard E, Lima P T, Borges F, Silva A C, Portes M T, Carvalho J E, Gilliham M, Liu L H, Obermeyer G, Feijo J A. Glutamate Receptor-Like Genes Form Ca2+ Channels in Pollen Tubes and Are Reg μLated by Pistil D-Serine. Science.2011,332(6028):434-437.
    [92]Iwano M, Shiba H, Miwa T, Che F S, Takayama S, Nagai T, Miyawaki A, Isogai A. Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant physiology.2004,136(3):3562-3571.
    [93]Iwano M, Entani T, Shiba H, Kakita M, Nagai T, Mizuno H, Miyawaki A, Shoji T, Kubo K, Isogai A, Takayama S. Fine-Tuning of the Cytoplasmic Ca2+ Concentration Is Essential for Pollen Tube Growth. Plant physiology.2009,150(3):1322-1334.
    [94]Konrad K R, Wudick M M, Feijo J A. Calcium reg μLation of tip growth:new genes for old mechanisms. Curr Opin Plant Biol.2011; 14(6):721-730.
    [95]Hepler P K, Kunkel J G, Rounds C M, Winship L J. Calcium entry into pollen tubes. Trends in plant science.2012,17(1):32-38.
    [96]Malho R, Read N D, Pais M S, Trewavas A J. Role of Cytosolic-Free Calcium in the Reorientation of Pollen-Tube Growth. Plant Journal.1994; 5(3):331-341.
    [97]Franklin-Tong V E, Hackett G, Hepler P K. Ratio-imaging of Ca(2+) in the self-incompatibility response in pollen tubes of Papaver rhoeas. Plant Journal.1997,12(6): 1375-1386.
    [98]Lancelle S A, Hepler P K. μLtrastructure of Freeze-Substituted Pollen Tubes of Lilium-Longiflorum. Protoplasma.1992,167(3-4):215-230.
    [99]Schiott M, Romanowsky S M, Baekgaard L, Jakobsen M K, Palmgren M G, Harper J F. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proceedings of the National Academy of Sciences of the United States of America. 2004,101(25):9502-9507.
    [100]Reiss H D, Herth W. Nifedipine-Sensitive Calcium Channels Are Involved in Polar Growth of Lily Pollen Tubes. J Cell Sci.1985,76(1):247-254.
    [101]Cardenas L, Lovy-Wheeler A, Kunkel J G, Hepler P K. Pollen tube growth oscillations and intracell μLar calcium levels are reversibly mod μLated by actin polymerization. Plant physiology.2008,146(4):1611-1621.
    [102]Feijo J A, Sainhas J, Hackett G R, Kunkel J G, Hepler P K. Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol. 1999,144(3):483-496.
    [103]Parton R M, Fischer S, Malho R, Papaso μLiotis O, Jelitto T C, Leonard T, Read N D. Pronounced cytoplasmic pH gradients are not required for tip growth in plant and fungal cells. J Cell Sci.1997,110:1187-1198.
    [104]Messerli M A, Robinson K R. Cytoplasmic acidification and current influx follow growth p μLses of Lilium longiflorum pollen tubes. Plant Journal.1998,16(1):87-91.
    [105]Michard E, Dias P, Feijo J A. Tobacco pollen tubes as cell uLar models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using pHluorin and YC3.1 CaMeleon. Sex Plant Reprod.2008,21(3):169-181.
    [106]Zonia L, Cordeiro S,Tupy J, Feijo J A. Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetrakisphosphate. Plant Cell.2002,14(9):2233-2249.
    [107]Steinhorst L, Kudla J. Calcium-a central regulator of pollen germination and tube growth. Biochimica et Biophysica Acta,2013,1833:1573-1581.
    [108]HoldawayClarke T L, Feijo J A, Hackett G R, Kunkel J G, Hepler P K. Pollen tube growth and the intracell μLar cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell.1997,9(11):1999-2010.
    [109]Putney J W. Capacitative Calcium Entry Revisited. Cell Calcium.1990,11(10):611-624.
    [110]Malho R, Read N D, Trewavas A J, Pais M S. Calcium-Channel Activity during Pollen-Tube Growth and Reorientation. Plant Cell.1995,7(8):1173-1184.
    [111]Dutta R, Robinson K R. Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant physiology.2004,135(3):1398-1406.
    [112]Frietsch S, Wang Y F, Sladek C, Po μLsen L R, Romanowsky S M, Schroeder J I, Harper J F. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proceedings of the National Academy of Sciences of the United States of America.2007,104(36): 14531-14536.
    [113]Feijo J A, Sainhas J, Holdaway-Clarke T, Cordeiro M S, Kunkel J G, Hepler P K. Cell μLar oscillations and the reg μLation of growth:the pollen tube paradigm. Bioessays.2001,23(1): 86-94.
    [114]Qu H Y, Shang Z L, Zhang S L, Liu L M, Wu J Y. Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytologist. 2007,174(3):524-536.
    [115]Kretsinger R H, Nockolds C E.Carp muscle calcium-binding protein. Ⅱ. Structure determination and general description. J Biol Chem,1973,248:3313-3326.
    [116]Nakayama N, Kawasaki H, Kretsinger R. Evolution of EF-hand proteins. Topics Biol Inorg Chem.2000,3:29-58.
    [117]Houdusse A, Cohen C. Structure of the reg μLatory domain of scallop myosin at 2 A resolution: implications for reg μLation. Structure,1996,4:21-32.
    [118]Declercq J P, Tinant B, Parello J, Rambaud J. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. J Mol Biol,1991,220:1017-1039.
    [119]Malmendal A, Linse S, Evenas J, Forsen S, Drakenberg T. Battle for the EF-hands: magnesium-calcium interference in calmod μLin. Biochemistry,1999,38:11844-11850.
    [120]Skelton N J, Kordel J, Akke M, Forsen S, Chazin W J. Signal transduction versus buffering activity in Ca2+-binding proteins. Nat Struct Biol,1994,1:239-245.
    [121]Holmes K C. Muscle proteins—their actions and interactions. Curr Opin Struct Biol,1996, 6:781-789.
    [122]Yap K L, Ames J B, Swindells M B, Ikura M. Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins,1999,37:499-507.
    [123]van Asselt E J, Dijkstra A J, Kalk K H, Takacs B, Keck W, Dijkstra BW. Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure,1999,7:1167-1180.
    [124]Strynadka N C, Cherney M, Sielecki A R, Li M X, Smillie L B, James M N:Structural details of a calcium-induced molec μLar switch:X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 A resolution. J Mol Biol,1997, 273:238-255.
    [125]Declercq J P, Evrard C, Lamzin V, Parello J. Crystal structure of the EF-hand parvalbumin at atomic resolution (0.91A) and at low temperature (100K.). Evidence for confotmational m μLtistates within the hydrophobic core. Protein Sci,1999,8:2194-2204.
    [126]Brodersen D E, Etzerodt M, Madsen P, Celis J E, Thogersen H C, Nyborg J, Kjeldgaard M. EF-hand at atomic resolution:the structure of human psoriasin (S100A7) solved by MAD phasing. Structure,1998,6:477-489.
    [127]Ishikawa K, Nakagawa A, Tanaka I, Suzuki M, Nishihira J. The structure of human MRP8, a member of the S100 calcium-binding protein family, by MAD phasing at 1.9 A resolution. Acta Crystallogr D,2000,56:559-566.
    [128]Cates MS, Berry MB, Ho EL, Li Q, Potter JD, Phillips GJ.Metal-ion affinity and specificity in EF-hand proteins:coordination geometry and domain plasticity in parvalbumin. Structure, 1999,7:1269-1278.
    [129]Franchini P L, Reid R.E. Investigating site-specific effects of the-X glutamate in a parvalbumin CD site model peptide. Arch Biochem Biophys,1999,372:80-88.
    [130]Gribenko A V, Makhatadze G,I. Oligomerization and divalent ion binding properties of the S100P protein:a Ca2+/Mg2+-switch model. J Mol Biol,1998,283:679-694.
    [131]Allouche D, Parello J, Sanejouand Y H. Ca2+/Mg2+exchange in parvalbumin and other EF-hand proteins. A theoretical study.J Mol Biol,1999,285:857-873.
    [132]Maler L, Blakenship J, Rance M, Chazin W J. Site-site communication in the EF-hand Ca2+-binding protein calbindin D9k. Nat Struct Biol 2000,7:245-250.
    [133]Malmendal A, Evenas J, Forsen S, Akke M. Structural dynamics in the C-terminal domain of calmod μLin at low calcium levels. J Mol Biol 1999,293:883-899.
    [134]Evenas J, Forsen S, Malmendal A, Akke M. Backbone dynamics and energetics of a calmod μLin domain mutant exchanging between closed and open conformations. J Mol Biol,1999, 298:603-617.
    [135]Hill T J, Lafitte D, Wallace J I, Cooper H J, Tsvetkov P O, Derrick P J. Calmod μLin-peptide interactions:apocalmodulin binding to the myosin light chain kinase target site. Biochemistry,2000,39:7284-7290.
    [136]Blanshard H, Groch μLski P, Li Y, Arthur J S C, Davies P L, Elce J S, Cygler M. Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational change. Nat Struct Biol,1997,4:532-538.
    [137]Lin G D, Chattopadhyay D, Maki M, Wang K K, Carson M, Jin L, Yuen P W, Takano E, Hatanaka M, DeLucas L J, Narayana S V. Crystal structure of calcium bound domain VI of calpain at 1.9 A resolution and its role in enzyme assembly, reg μLation and inhibitor binding. Nat Struct Biol,1997,4:539-547.
    [138]Hosfield C M, Elce J S, Davies P L, Jia Z. Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation. EMBO J,1999,18:6880-6889.
    [139]Strobl S, Fernandez-Catalan C, Braun M, Huber R, Masumoto H, Nakagawa K, Irie A, Sorimachi H, Bourenkow G, Bartunik H et al.. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci USA,2000,97:588-592.
    [140]Meador W E, Means A R, Quiocho F A. Target enzyme recognition by calmod μLin:2.4 A structure of a calmodulin-peptide complex. Science,1992,257:1251-1255.
    [141]Meador E M, Means A R, Quiocho F A. Modulation of calmod μLin plasticity in molecular recognition on the basis of X-ray structure.Science,1993,262:1718-1721.
    [142]Zhang M, Tanaka T, Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo-calmod μLin. Nat Struct Biol,1995,2:758-767.
    [143]Lee A L, Kinnear S A, Wand A J. Redistribution and loss of side chain entropy upon formation of a calmod μLin- peptide complex. Nat Struct Biol,2000,7:72-77.
    [144]Osawa M, Tokumitsu H, Swindells M B, Kurihara H, Orita M, Shibanuma T, Furuya T, Ikura M.A novel target recognition revealed by calmod μLin in complex with Ca2+-calmodulin-dependent kinase kinase. Nat Struct Biol,1999,6:819-824.
    [145]Elshorst B, Hennig M, Forsterling H, Diener A, Maurer M, Sch μLte P, Schwalbe H, Griesinger C, Krebs J, Schmid H et al.:NMR solution structure of a complex of calmod μLin with a binding peptide of the Ca2+ pump. Biochemistry,1999,38:12320-12332.
    [146]Rety S, Osterloh D, Arie JP, Tabaries S, Seeman J, Russo-Marie F, Gerke V, Lewit-Bentley A: Structural basis of the Ca2+-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure,2000,8:175-184.
    [147]Rustandi R R, Baldisseri D M, Weber D J:Solution structure of the negative reg μLatory domain of p53 bound to S1OOB(bb). Nat Struct Biol,2000,7:570-574.
    [148]Lewit-Bentley A, Rety S. EF-hand calcium-binding proteins. Current Opinion in Structural Biology,2000,10:637-643
    [149]Ito T, Chiba T, Ozawa R, YoshidaM, Hattori M, SakakiY. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA,2001,98 (8) 4569-4574.
    [150]Giot L, Bader J S, Brouwer C. A protein interaction map of drosophila melanogaster. Science, 2003,302:1727-1736.
    [151]Li S, Armstrong C M, Bertin N, Ge H, Milstein S, Boxem M, Vidal M, et al. A map of the interactome network of the metazoan C. elegans. Science,2004,303(5657):540-543.
    [152]Monti M, Orru S, Pagnozzi D, Pucci P. Interaction proteomics. Bioscience reports,2005, 25(1-2):45-56.
    [153]Smith D B, Johnson K S. Single-step purification of polypeptides expressed in< i> Escherichia coli as fusions with glutathione< i> S-transferase[J]. Gene,1988,67(1):31-40.
    [154]许俊强,孙梓健,宋明,汤青林,王志敏,工小佳.甘蓝花粉管钙感应蛋白CaM与SRK相互作用研究.园艺学报,2013,40(12):2429-2440.
    [155]汤青林,许俊强,宋明,王志敏.芥菜开花信号整合子的两个核心转录因子FLC和SVP相互作用的体外检测.园艺学报,2011,38(12):2317-2324.
    [156]Fields S, Song OK. A Novel Genetic System to Detect Protein Protein Interactions. Nature. 1989,340(6230):245-246.
    [157]Remmerie N, De Vijlder T, Laukens K, Dang TH, Lemiere F, Mertens I, Valkenborg D, Blust R, Witters E. Next generation functional proteomics in non-model plants:A survey on techniques and applications for the analysis of protein complexes and post-translational modifications. Phytochemistry.2011,72(10):1192-1218.
    [158]朱金鑫,李小方.酵母双杂交技术及其在植物研究中的应用.植物生理学通讯. 2004(02):235-240
    [159]张军杰,崔红军,黄玉碧.玉米叶片酵母双杂交cDNA文库的构建及评价.西北农业学报.2008(05):162-165.
    [160]邢俊杰,陶小平,李玲龙,阳志刚,唐丽,李丁,谢灵灵,李莉,曹孟良.小粒野生稻酵母双杂交cDNA文库的构建.杂交水稻,2010(01):67-69.
    [161]程萍,冯仁军,袁克华,张银东.香蕉红素氧还蛋白酵母双杂交cDNA文库的构建及鉴定.生命科学研究.2009(04):349-353.
    [162]孙晓丽,段小红,才华,李勇,柏锡,纪巍,季佐军,朱延明.利用酵母双杂交技术筛选与AtbZIP1相互作用的蛋白质.中国生物化学与分子生物学报.2010(11):1050-1058.
    [163]刘燕,谷慧琳,熊小波,李一星,李友国.紫云英AD-cDNA文库构建及与豆血红蛋白Lb相互作用靶蛋白的筛选.微生物学报.2010(12):1607-1612.
    [164]郭英慧,于月平,郑成超,杨国栋.棉花锌指蛋白GhZFP1相互作用蛋白的酵母双杂交筛选.中国生物化学与分子生物学报.2010(05):423-428.
    [165]侯成千,梁卫红,王军.水稻OsMY1和OsRacD基因互作的分子鉴定.中国生物工程杂志.2008(07):63-66.
    [166]马燕斌,李壮,蔡应繁,周朋,肖阳,黄玉碧,付凤玲,潘光堂,杨克诚,杨建平.玉米2个光敏色素A基因的克隆、蛋白结构与光诱导表达模式.中国农业科学.2010(10):1985-1993
    [167]Beczner F, Dancs G, Scs-Hegedus A, Antal F, Banfalvi Z. Interaction between SNF1-related kinases and a cytosolic pyruvate kinase of potato. J Plant Physiol.2010,167(13):1046-1051.
    [168]Hu C D, Chinenov Y, Kerppola T K. Visualization of interactions among bZip and Rel family proteins in living cells using bimolec μLar fluorescence complementation. Mol Cell, 2002,9(4):789-798.
    [169]Geoffrey S B, David A Z, Roger Y T. Circ μLar permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. USA 96.1999,96(20),11241-11246.
    [170]Morell M, Espargaro A, Aviles F, et al. Detection of transient protein2protein interactions by bimolec μLar fluorescence complementation:the Ab12SH3 case. Proteomics,2007,7 (7):1023-1036.
    [171]Hu C D, Kerppola T K. Sim μLtaneous visualization of m μLtiple protein interactions in living cells using m μLticolor fluorescence complementation analysis. Nat Biotechnol 2003,21 (5):539-545.
    [172]Grinberg A V, Hu C D, Kerppola T K. Visualization of MycPMaxP Mad family dimers and the competition for dimerization in living cells. Mol Cell Biol,2004,24(10):429424308.
    [173]Operana T N, Tukey R H. Oligomerization of the UDP-glucuronosyltransferase 1A Proteins HOMO-AND HETERODIMERIZATION ANALYSIS BY FLUORESCENCE RESONANCE ENERGY TRANSFER AND CO-IMMUNOPRECIPITATION. Journal of biological chemistry,2007,282(7):4821-4829.
    [174]Walker C, Bottger S, Low B. Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model. The American journal of pathology,2006,168(5):1526-1530.
    [175]Rigaut G, Shevchenko A, Rutz B, Wilm M, Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol, 1999,17(10):1030-1032.
    [176]Krogan N, Cagney G, Yu H, Zhong G Q, Guo X H, Ignatchenko A, Li J, Pu S Y, Nira Datta N, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Natur e,2006,440(7084):637-643.
    [177]Mariani C, Beuckeleer M D, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature,1990,347(6295):737-741.
    [178]Koltunow A M, Truettner J, Cox K H, Wallroth M, Goldberg R B. Different temporal and spatial gene expression patterns occur during anther development. The Plant Cell,1990, 2(12):1201.
    [179]Bate N, Twell D. Functional architecture of a late pollen promoter:pollen-specific transcription is developmentally reg μLated by multiple stage-specific and co-dependent activator elements. Plant molec μLar biology,1998,37(5):859-869.
    [180]李胜国,刘玉乐,田波.植物花粉发育的分子生物学研究进展.生物工程进展,1997,17(2):17-22.
    [181]Seurinck J, Truettner J, Goldberg R B. The nyleotide sequence of an another-soecific gene. Nucleic acids research,1990,18(11):3403-3403.
    [182]Koltunow A M, Truettner J, Cox K H, Wallroth M, and Goldberg R B. Different temporal and spatial gene expression patterns occur during anther development. The Plant Cell,1990, 2(12):1201.
    [183]Albani D, Robert L S, Donaldson P A, et al. Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development. Plant molec μLar biology,1990,15(4):605-622.
    [184]汪迎春,孙勇如,张利明,李文彬.植物花药花粉特异性基因的调控序列.生物工程进展,2000,20(2):52-54.
    [185]Twell D, Wing R, Yamaguchi J, McCormick S. Isolation and expression of an anther-specific gene from tomato. Molec μLar and General Genetics MGG,1989,217(2-3):240-245.
    [186]Ursin V M, Yamaguchi J, McCormick S. Gametophytic and sporophytic expression of anther-specific genes in developing tomato anthers. The Plant Cell Online,1989,1(7): 727-736.
    [187]Seiberler S, Scheiner O, Kraft D, Lonsdale D, Valenta R. Characterization of a birch pollen allergen, Bet v III, representing a novel class of Ca2+ binding proteins:specific expression in mature pollen and dependence of patients' IgE binding on protein-bound Ca2+. The EMBO journal,1994,13(15):3481.
    [188]Twell D, Yamaguchi J, McCORMICK S. Pollen-specific gene expression in transgenic plants: coordinate reg μLation of two different tomato gene promoters during microsporogenesis. Development,1990,109(3):705-713.
    [189]Twell D, Yamaguchi J, Wing R A, Ushiba J, McCormick S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared reg μLatory elements. Genes & development,1991,5(3):496-507.
    [190]刘俊杰,魏小春,齐树森,史为民.反义基因技术及其在植物研究上的应用.生物技术通报,2008,(4):78-84.
    [191]Ishizuya-Oka A, Mizuno T. Intestinal cyto differentiation in vitro of chick stomach endoderm induced by the duodenal mesenchyme. Journal of embryology and experimental morphology, 1984,82(1):163-176.
    [192]刘乐承,向殉,曹家树.白菜雄性不育相关基因 BcMF4基因功能的RNAi验证.遗传,2006,28(11):1428-1434.
    [193]Sander JD, Cade L, Khayter C, Reyon D, PetersonR T, Joung J K, Yeh J R J. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol,2011,29(8): 697-708.
    [194]Huang P, Xiao A, Zhou M G, Zhu Z Y, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology,2011,29(8):699-700.
    [195]Mahfouz M M, Li L, Piatek M, Fang X Y, Mansour H, Bangarusamy D K, Zhu J K. Targeted transcriptional repression using a chimeric TALE—SRDX repressor protein. Plant MolBiol,2012,78(3):311-321.
    [196]Li T, Liu B, Spalding M H, Weeks D P, Yang B. High-eficiency TALEN—based gene editing produces disease-resistant rice.Nat Biotechnol,2012,30(5):390-392.
    [197]Tong C, Huang G, Ashton C, Wu H P, Yan H X, Ying Q L. Rapid and cost-efective gene targeting in rat emb ryonic stem cells by TALENs. Genet Genomics,2012,39(6):275-280.
    [198]Sung Y H, Back I J, Kim D H, Jisun Jeon J, Jaehoon Lee J, Kyunghee Lee K, Daewon Jeong D, Jin-Soo Kim JS, Lee H W. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol,2013,31(1):23-24.
    [199]Liu J, kC, Yu Z, Huang P, Wu H G, Wei C X, Zhu N N, Shen Y, Chen Y Xa, Zhang B, et al. Eficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics,2012,39(5):209-215.
    [200]Watanabe T, Ochiai H, Sakuma T, Horch H W, Hamaguchi N,Nakamura T, Bando T, Ohuchi H, Yamamoto T, et al. Non-transgenie genome modifications in a hemimetabolous insect using zinc—finger and TAL effector nucleases. Nat Commun,2012,3:1017.
    [201]Ma S, Zhang S, Wang F, Liu Y, Liu Y Y, Xu H F, Li C, Lin Y, Zhao P,Qingyou Xia Q Y. Highly eficient and specific genome editing in silkworm using custom TALENs.PLOS One,2012,7(9):e45035.
    [202]Carlson D F, Tan W, Lillico S G, Stverakova D, Proudfoot C, Christian M, Voytas D F, Long C R, Whitelaw C B A.Fahrenkrug S C. Eficient TALEN—mediated gene knockout in livestock. Proc Natl Acad Sci U S A,2012,109(43):17382-17387.
    [203]梁述平,汪杏芳,Feldman L J,吕应堂.钙调素依赖型蛋白激酶在植物开花调控中的作用.中国科学:C辑,2001,31(4):306-311.
    [204]孔海燕,贾桂霞,温跃戈.钙在植物花发育过程中的作用.植物学通报,2003,20(2):168-177.
    [205]李兴军.杨梅花芽孕育及发端调控的研究.博士论文,杭州:浙江大学,2001.
    [206]范六民,杨弘远.外源Ca2+对烟草花粉管生长和生殖核分裂的调节.植物学报:英文版,1997,39(10):899-904.
    [207]孙梓健.甘蓝花粉管钙感受蛋白编码基因的克隆与分析.博士论义,重庆.西南大学,2013.
    [208]McCormack E, Tsai Y, Braam J. Handling calcium signaling:Arabidopsis CaMs and CMLs. Trends Plant Sci.2005,10:383-389.
    [209]Pastuglia M, Bouchez D. Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell,2008,20:2146-2159.
    [210]Reumann S, Ma C, Lemke S, Babujee L. AraPerox, A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol.2004,136:2587-2608.
    [211]Tsai Y, Delk N A, Chowdhury N I, Braam J. Arabidopsis potential calcium sensors reg μLate nitric oxide levels and the transition to flowering. Plant Signal Behav.2007,2:446-454.
    [212]Sze H, Padmanaban S, Cellier F, Honys D, Cheng NH, Bock KW,Conejero G, Li X, Twell D, Ward JM, et al. Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and Kl homeostasis in pollen development. Plant Physiol,2004, 136: 2532-2547.
    [213]Bock K W, Honys D, Ward J M, Padmanaban S, Nawrocki EP, Hirschi KD,Twell D, Sze H. Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol,2006,140:1151-1168.
    [214]Magnard J L, Vergne P, Dumas C.Complexity and genetic variability of heat-shock protein expression in isolated maize microspores. PlantPhysiol,1996,111:1085-1096.
    [215]Haralampidis K, Milioni D, Rigas S, Hatzopoulos P. Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene. Plant Physiol,2002,129: 1138-1149.
    [216]Volkov RA, Panchuk Ⅱ, Schoffl F.Small heat shock proteins are differentially reg μLated during pollen development and following heat stress in tobacco. Plant Mol Biol,2005,57: 487-502.
    [217]Li H, Lin Y, Heath RM, Zhu MX, Yang Z. Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell,1999,11: 1731-1742
    [218]Schiott M, Romanowsky S M, Baekgaard L, Jakobsen M K, Palmgren MG,Harper J F.A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA,2004,101:9502-9507
    [219]Jiang L, Yang S L, Xie L F, Puah C S, Zhang X Q, Yang W C, Sundaresan V, Ye D. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell,2005,17:584-596
    [220]Becker J D, Boavida L C, Carneiro J, Haury M, Feijo J A. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol.2003,133:713-725
    [221]郜尽,王海侠,李京敬,俞雁.酵母双杂交报告基因β—半乳糖苷酶活性测定方法的研究.上海交通大学学报,2009,29(2):236-240.
    [222]Twell D, Yamaguchi J, McCormick S. Pollen-specific gene expression in transgenic plants: coordinate reg μLation of two different tomato gene promoters during microsporo-genesis. Development,1990,109:705-713.
    [223]Guerrero F D, Crossland L, Smutzer G S, Hamilton D A, Mascarenhas J P. Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco. Mol Gen Genet,1990,24:161-168.
    [224]Filichkin S A, Leonard J M, Monteros A, Liu P P, Nonogaki H. A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol,2004,134:1080-1087.
    [225]Park J I, Hakozaki H, Endo M, Takada Y, Ito H, Uchida M, Okabe T, Watanabe M. Molec μLar characterization of mature pollen-specific genes encoding novel small cysteine-rich proteins in rice (Oryza sativa L.). Plant Cell Report,2006,25:466-474.
    [226]Lang Z, Zhou P, Yu J, Ao G, Zhao Q. Functional characterization of the pollen-specific SBgLR promoter from potato (Solanum tuberosum L.). Planta,2008,227:387-396.
    [227]Custers J B M, Oldenhof M T, Schrauwen J A M, Cordewener J H G, Wullems G J and Campagne M M v L. Analysis of microspore-specific promoters in transgenic tobacco. Plant Molecular Biology,1997.35:689-699.
    [228]Oldenhof M T, De Groot P F M, Visser J H, Schrauwen J A M, Wullems G. Isolation and characterization of a microsporespecificgene from tobacco. Plant Mol Biol,1996.31: 213-225.
    [229]Zhang X R, Henriques R, Lin S-S, Qi-Wen Niu Q W,Nam-Hai ChuaN-H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols,2006,1,641-646.
    [230]Jefferson R A, Kavanagh T A, and Bevan M W.GUS fusions:B-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal,1987,6 (13):3901-3907.
    [231]魏晓峰,宋波,张香琴,苏承刚,张兴国.番茄花药特异表达启动子LAT 52的克隆与表达载体构建.南方农业,2010(3):73-75.
    [232]汪迎春,孙勇如,张利明,李文彬.植物花药花粉特异性基因的调控序列.生物工程进展,2000,20(2):52-54.
    [233]Bate N, Twell D. Functional architecture of a late pollen promoter:pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements:Plant molec μLar biology,1998,37(5):859-869.
    [234]Rogers H J, Bate N, Combe J, S μLlivan J, Sweetman J, Swan C,Lonsdale DM, Twell, D. Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant molecular biology,2001,45(5):577-585.
    [235]Pa μL W, R. Hodge, S Smartt et al. P lantM ol B iol,1991,19:611-622
    [236]张文玲,李凌,刘凡.农杆菌介导羽衣甘蓝转化体系的建立.西南大学学报:自然科学版,2010(4):61-65.
    [237]王晓峰,程智慧.结球甘蓝外源基因转化再生时的激素条件研究.西北农业大学学报,2000,28(1):43-47.
    [238]周音,张智奇,王少欧,钟维瑾.十字花科植物转基因技术研究进展及存在问题.吉林农业大学学报,1996,18(1):96-102.
    [239]张桂华,巩振辉,张广辉.农杆菌介导的芸蔓属作物遗传转化研究进展.西北农业大学学报,2000,28(2):80-83.
    [240]郭元林,向平.飞速发展的生物技术.作物研究,1994,8(4):4-6.
    [241]杨剑波,许智宏,卫志明,白永延.影响根癌农杆菌附着禾谷类作物培养细胞的因素.实验生物学报,1993,26(1):1-7.
    [242]Delzer B W, Somers D A, Orf J H. Agrobacterium tumefaciens susceptibility and plant regeneration of 10 soybean genotypes in maturity groups 00 to II. Crop Science,1990,30(2): 320-322.
    [243]Van Roekel J S C, Damm B, Melchers L S, Hoekema A. Factors influencing transformation frequency of tomato(Lycopersicon esculentum). Plant Cell Reports,1993,12(11):644-647.
    [244]方宏筠.植物基因工程原理与技术.北京:科学出版社,1998.
    [245]MASCARENHAS J P, MACHLIS L. Chemotropic response of the pollen of antirrhinum to caicium.Piant Physioi,1964, (39):70-77.
    [246]Wang Y, Zhang W Z, Song L F, Zou J J, Su Z, Wu W H.Transcriptome Analyses Show Changes in Gene Expression to Accompany Pollen Germination and Tube Growth in Arabidopsis. Plant Physiology,2008,148:1201-1211.
    [247]Boonburapong B,Buaboocha T. Genome-wide identification and analyses of the rice calmod μLin and related potential calcium sensor proteins. BMC Plant Biol.2007:7,4.
    [248]Sistrunk M L, Antosiewicz D M, Purugganan M'M, Braam J. Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue specific reg μLation. Plant Cell 1994,6:1553-1565.
    [249]Roberts I N, Gaude T C, Harrod G, Dickinson H G. Pollen-stigma interactions in Brassica oleracea, a new pollen germination medium and its use in elucidating the mechanism of self-incompatibility. Theor Appl Genet,1983,65:231-238.
    [250]Snedden W A, Fromm H. Calmod μLin as a versatile calcium signal transducer in plants. New Phytol,2001,151:35-66
    [251]Honys D,Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol.2003,132:640-652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700