用户名: 密码: 验证码:
大视场日冕仪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日冕仪是观测日冕和日冕物质抛射现象的仪器。观测日冕和日冕物质抛射现象可以研究太阳磁场对地球的影响,并可以对影响地球及日地空间的灾害性空间天气进行预警。本论文论及的大视场日冕仪是国际上首次设计的中心遮拦的大视场日冕仪,国际上报道的中心遮拦的日冕仪最大视场为30R⊙(R⊙为太阳半径),大视场日冕仪在近地点的视场为72R⊙,在远地点的视场达到215R⊙,可以对太阳到地球范围内的日冕及日冕物质抛射现象进行观测。
     本论文借鉴国际上日冕仪研制的经验,对日冕仪进行设计。本论文研制的大视场日冕仪光学系统主要参数为:视场为以太阳为中心±20度,像素分辨率为1.2arcmin,像素大小为13.5μm,波段为630nm~730nm,系统总长为896mm,其中光学系统总长为356mm,工作F数为5,像方焦距为40mm,传递函数大于0.65。
     本论文研制的日冕仪由于视场远大于国际上现有的日冕仪,增加了日冕仪对杂散光抑制的要求。为此对日冕仪的杂散光抑制进行了深入研究。首先从理论上对日冕仪外掩体和外窗口的衍射杂散光水平进行了计算。其次,对大视场日冕仪的衍射杂散光和散射杂散光分别进行建模,得到理论上杂散光的量级。衍射杂散光建模主要应用分数傅立叶变换理论和菲涅耳——基尔霍夫衍射积分理论,散射杂散光建模主要应用ABC模型,对表面粗糙度和灰尘污染物造成的杂散光进行计算。最后,本文对大视场日冕仪所有可能产生的杂散光进行分级,并对其分别进行抑制。其中一级为太阳直射光;二级为外掩体和外窗口的衍射光;三级为物镜口径的衍射光,物镜表面粗糙度和灰尘造成的散射光,拒热镜表面散射的杂散光和物镜表面多次反射造成杂散光。最后对日冕仪整机杂散光进行检测,总杂散光抑制水平达到10-11B⊙量级(B⊙为太阳平均亮度)。
Coronagraph is an instrument observing the corona and coronal mass ejections.Observations of the corona and coronal mass ejections help to study the effects ofthe sun's magnetic field on the earth. In the mean while, they can monitor the severespace weather events which affecting the earth and the solar-terrestrial space. In thispaper, the Large Field of View Coronagraph is designed for the first time which iscentral occulted and with large field of view. At present, the largest field of view ofthe coronagraph which is central occulted is30R⊙(R⊙is the sun radius). The fieldof view of the Large Field of View Coronagraph is72R⊙in the perigee, and215R⊙in the apogee. This Coronagraph can monitor the corona from the sun to the earth.
     This paper learns from the international coronagraph manufacture experience.For the Large Field of View Coronagraph in this paper, the main parameters of theoptical system are as follows: the field of view is±20degrees; the pixel resolutionis1.2arcmin; the pixel size is13.5μm; the wavelength is from630nm to730nm;the overall length of system is896mm; the overall length of optical system is356mm; the effective F number is5; the focal length is40mm; and the transfer functionis greater than0.65.
     The field of view of the coronagraph in this paper is larger than the existingcoronagraph internationally. However the increase of the field greatly increases thedemand of stray light suppression. Therefore, this paper further studies the stray light suppression of the coronagraph. Firstly, the diffraction intensity of the occulter andthe external diaphragm is calculated. Secondly, the theoretical models of thediffracted stray light and the scattered stray light of the coronagraph are constructedin this paper. Diffracted stray light is modeled by the theory of fractional Fouriertransform and Fresnel-Kirchhoff diffraction integral theory. While the scattered straylight is modeled by ABC model. Scattered stray light is mainly caused by the surfaceroughness and dust contamination. Thirdly, the stray light of the coronagraph isclassed to three levels and is suppressed respectively. The first level of the stray lightis the sun light. The second level is the diffracted light from the occulter and externaldiaphragm. The third level is the diffracted light from the objective frame, the lightscattered by the surface roughness and dust contamination, the light scattered by theheat reject mirror and the stray light caused by multiple reflection of the objectivesurface. Finally the overall stray light level of the coronagraph is tested and the straylight can reach10-11B⊙(B⊙is the brightness of the sun).
引文
[1] Billings D E. A guide to the solar corona[R]. COLORADO UNIV AT BOULDERDEPT OF ASTRO-GEOPHYSICS,1966.
    [2] R. Rosner, W. H. Tucker, G. S. Vaiana. Dynamics of the quiescent solar corona[J].The Astrophysical Journal,1978,220:643-645.
    [3] L. Carleson. Interpolations by bounded analytic functions and the coronaproblem[J]. Annals of Mathematics,1962:547-559.
    [4] Van de Hulst H C. The electron density of the solar corona[J]. Bulletin of theAstronomical Institutes of the Netherlands,1950,11:135.
    [5] M. J. Aschwanden. Physics of the solar corona[M]. Berlin: Springer,2004.
    [6] A. Hundhausen. Coronal mass ejections[M]. The many faces of the sun. SpringerNew York,1999:143-200.
    [7] S. K. Antiochos, C. R. DeVore, J. A. Klimchuk. A model for solar coronal massejections[J]. The Astrophysical Journal,1999,510(1):485.
    [8] B. J. Thompson, S. P. Plunkett, J. B. Gurman J B, et al. SOHO/EIT observationsof an Earth‐directed coronal mass ejection on May12,1997[J]. GeophysicalResearch Letters,1998,25(14):2465-2468.
    [9] S. Yashiro, N. Gopalswamy, G. Michalek, et al. A catalog of white light coronalmass ejections observed by the SOHO spacecraft[J]. Journal of Geophysical Research:Space Physics (1978–2012),2004,109(A7).
    [10]A. J. Hundhausen. Sizes and locations of coronal mass ejections: SMMobservations from1980and1984‐1989[J]. Journal of Geophysical Research: SpacePhysics (1978–2012),1993,98(A8):13177-13200.
    [11]苏杨,甘为群.太阳爆发:源动力之谜[J].物理,2014(1).
    [12]张瑶.二维磁场重联的OpenCL研究[D].中国地质大学(北京),2013.
    [13]王晶晶,罗冰显,刘四清,等.对自相似扩展(SSE)模型的改进和研究[J].地球物理学报,2013,56(9):2871-2884.
    [14]R. A. Kopp, G. W. Pneuman. Magnetic reconnection in the corona and the loopprominence phenomenon[J]. Solar Physics,1976,50(1):85-98.
    [15]M. D. Altschuler, Jr. G. Newkirk. Magnetic fields and the structure of the solarcorona[J]. Solar Physics,1969,9(1):131-149.
    [16]G. W. Pneuman, R. A. Kopp. Gas-magnetic field interactions in the solarcorona[J]. Solar Physics,1971,18(2):258-270.
    [17]R. G. Athay. The solar chromosphere and corona: quiet Sun[C] Astrophysics andSpace Science Library.1976,53.
    [18]J. S. Chang, P. A. Lawless, T. Yamamoto. Corona discharge processes[J]. PlasmaScience, IEEE Transactions on,1991,19(6):1152-1166.
    [19]A. Burgess. Delectronic Recombination and the Temperature of the SolarCorona[J]. The Astrophysical Journal,1964,139:776-780.
    [20]Y. M. Wang, N. R. Sheeley. On potential field models of the solar corona[J]. TheAstrophysical Journal,1992,392(1):310-319.
    [21]G. L. Withbroe, R. W. Noyes. Mass and energy flow in the solar chromosphereand corona[J]. Annual review of astronomy and astrophysics,1977,15:363-387.
    [22]J. C. Raymond. Imaging the Sun’s Eruptions in Three Dimensions [J]. Science,2004,305,49~50
    [23]J. P. Byrne, S. A. Maloney, R. T. J. Mcateer, et al.. Propagation of anEarth-directed coronal mass ejection in three dimensions [J]. Nat. Commun.,2010,1:74
    [24]N. Srivastava, P. Venkatakrishnan. Relation between CME speed andgeomagnetic storm intensity [J]. Geophysical Research Letters,2002,29(9):1287~1291
    [25]赵海斌,林启生,陈一平,等.2008年8月1日日全食的日冕结构和亮度分布[J].科学通报,2009,54:1790~1792.
    [26]李春生,傅其骏.太阳射电爆发的起因:耀斑或/和日冕物质抛射[J].紫金山天文台台刊,1999,18(2):161-164.
    [27]陈晓娟,纪树臣.射电运动IV型爆发和日冕物质抛射[J].云南天文台台刊,1999(2):24-29.
    [28]汪红娟.日冕物质抛射伴生现象的数值研究[D].中国科学院研究生院(云南天文台),2009.
    [29]林元章.太阳风暴及其影响[J].科技术语研究,2001,3(2):38-41.
    [30]胡中为.日全食——日冕的观测研究[J].自然杂志,2009,31(5):258~261
    [31]高朋鑫,李可军.日冕物质抛射基本物理参数的统计特征[J].天文学进展,26(2),115~125(2008).
    [32]宋丽敏,张军,杨志良,等.对地日冕物质抛射研究[J].天文学进展,2002,20(1):33-44.
    [33]王水.日冕物质抛射与空间天气学[J].中国基础科学,2000,4:12~15.
    [34]章公亮.双向膨胀日冕物质抛射事件[J].空间科学学报,1996,16(1):1-6.
    [35]熊明,郑惠南,汪毓明,等.1998年11月4日至5日日冕物质抛射日地传输时间的数值模拟[J].地球物理学报,2005,48(4):731-738.
    [36]李枫林,姜新英,熊东辉.两冕流间物质抛射事件的数值模拟[J].空间科学学报,1999,19(4):308-314.
    [37]L. Bernard. The study of the solar corona and prominences without eclipses [J].MNRAS,1939,99:538.
    [38]C. Aime, R. Soummer. Multiple-stage apodized pupil Lyot coronagraph forhigh-contrast imaging[C] Astronomical Telescopes and Instrumentation. InternationalSociety for Optics and Photonics,2004:456-461.
    [39]M. N. Gnevyshev, G. M. Nikolsky, A. A. Sazanov. The Lyot-coronagraph with53cm objective[J]. Solar Physics,1967,2(2):223-226.
    [40]J. W. Evas. A Photometer for Measurement of Sky Brightness Near the Sun [J]. J.Opt. Soc. Am.,1948,38,1083~1085.
    [41]J. W. Evans. Observations of the Solar Emission Corona Outside Eclipse[J].Publications of the Astronomical Society of the Pacific,1957:421-426.
    [42]J. W. Evans. The Coronagraph[J]. The Sun,1953:635.
    [43]S. Koutchmy. Space-borne coronagraphy [J]. Space Science Reviews.1988,47,95-143.
    [44]Jr. G. Newkirk, J. A. Eddy. Light scattering by particles in the upperatmosphere[J]. Journal of the Atmospheric Sciences,1964,21(1):35-60.
    [45]Newkirk L L. Calculation of low‐energy neutron flux in the atmosphere by the Sn method[J]. Journal of Geophysical Research,1963,68(7):1825-1833.
    [46]Tousey R, Purcell J D, Garrett D L. An echelle spectrograph for middle ultravioletsolar spectroscopy from rockets[J]. Applied optics,1967,6(3):365-372.
    [47]Tousey R, Bartoe J D F, Brueckner G E, et al. Extreme ultravioletspectroheliograph ATM experiment S082A[J]. Applied optics,1977,16(4):870-878.
    [48]R. Tousey. Observations of the white light corona by rocket [J]. Ann. Astrophys.1965,28,600~604.
    [49]J. D. Bohlin. Solar coronal streamers[J]. Solar Physics,1970,12(2):240-265.
    [50]Eddy J A. Gordon Newkirk’s Contributions to Coronal Studies[M]//Highlights ofAstronomy. Springer Netherlands,1989:503-512.
    [51]Hansen S F, Hansen R T, Garcia C J. Evolution of coronal helmets during theascending phase of solar cycle20[J]. Solar Physics,1972,26(1):202-224.
    [52]Broussard R M, Sheeley Jr N R, Tousey R, et al. A survey of coronal holes andtheir solar wind associations throughout sunspot cycle20[J]. Solar Physics,1978,56(1):161-183.
    [53]Gregory B N, Kreplin R W. Observations of solar X‐ray activity below20Angstroms[J]. Journal of Geophysical Research,1967,72(19):4815-4820.
    [54]G. C. Little. Reports of observatories[J]. The Astronomical Journal,1965,70:765.
    [55]R. M. MacQueen, Greeley B W. Solar coronal dust scattering in the infrared[J].The Astrophysical Journal,1995,440:361-369.
    [56]MacQueen R M. Infrared observations of the outer solar corona[J]. TheAstrophysical Journal,1968,154:1059.
    [57]Lena P, Hall D, Soufflot A, et al. The thermal emission of the dust corona, duringthe eclipse of June30,1973. II-Photometric and spectral observations[J]. Astronomyand Astrophysics,1974,37:81-86.
    [58]A. Dollfus, B. Fort, C. Morel:1968a, La Recherche Spatiale, Vol. III.
    [59]A. Dollfus, B. Fort, C. Morel:1968b, Compt. Rend. Acad. Sci. Paris, T266,P.1537
    [60]J. D. Bohlin, M. J. Koomen, R. Tousey. Rocket-coronagraph photometry of the7March,1970corona from3to8.5R s[J]. Solar Physics,1971,21(2):408-417.
    [61]M. J. Koomen, C. R. Detwiler, G. E. Brueckner, et al.. White light coronagraph inOSO-7[J]. Appl. Opt.,1975,14(3),743~751
    [62]R. M. Macqueen, J. T. Gosling, R. H. Munro, et al.. The high altitude observatorywhite light coronagraph [J]. Proc. SPIE,1974,44,207~212
    [63]R. K. Smith, N. S. Brickhouse, J. C. Raymond, et al. American AstronomicalSociety[C]. HEAD meeting.1999,31(33.07).
    [64]T. E. Gergely, M. R. Kundu, F. T. Erskine III, et al. Radio and visible-lightobservations of a coronal arcade transient[J]. Solar physics,1984,90(1):161-176.
    [65]R. M. Macqueen, A. Csoeke-Poechk, E. Hildner, et al.. The high altitudeobservatory coronagraph/polarimeter on the solar maximum mission [J]. Sol. Phys.,1980,65,91~107.
    [66]Bohlin J D, Frost K J, Burr P T, et al. Solar maximum mission[J]. Solar Physics,1980,65(1):5-14.
    [67]Hundhausen A J, Sawyer C B, House L, et al. Coronal mass ejections observedduring the Solar Maximum Mission: Latitude distribution and rate of occurrence[J].Journal of Geophysical Research: Space Physics (1978–2012),1984,89(A5):2639-2646.
    [68]G. E. Brueckner, R. A. Howard, M. J. Koomen, et al.. The large anglespectroscopic coronagraph (LASCO)[J]. Sol. Phys.,1995,162,357~402.
    [69]Schwenn R, Inhester B, Plunkett S P, et al. First view of the extended green-lineemission corona at solar activity minimum using the LASCO-C1coronagraph onSOHO[M]//The First Results from SOHO. Springer Netherlands,1997:667-684.
    [70]Erdélyi R, De Pontieu B, Sarro L M. Multiwavelength Observations (SOHO,TRACE, La Palma) and Modelling of Explosive Events[C]//Magnetic Fields andSolar Processes.1999,448:1345.
    [71]R. A. Howard, J. D. Moses, D. G. Socker. Sun Earth connection coronal andheliospheric investigation (SECCHI)[J]. Proc. SPIE,2000,4139,259~283.
    [72]Harrison R A, Davis C J, Eyles C J. The STEREO heliospheric imager: how todetect CMEs in the heliosphere[J]. Advances in Space Research,2005,36(8):1512-1523.
    [73]R. A. Frazin, A. M. Vasquez, W. T. Thompson, et al., Intercomparison of theLasco-C2, SECCHI-COR1, SECCHI-COR2, and Mk4Coronagraphs [J]. Solar Phys,2012,280:273-293.
    [74]Tu C Y, Schwenn R, Donovan E, et al. Space weather explorer–The KuaFumission[J]. Advances in Space Research,2008,41(1):190-209.
    [75]Wu J, Wang C, Wang S, et al. Solar polar orbit radio telescope for space weatherforecast[C]. Proceedings of the ILWS Workshop.2006,1:215.
    [76]J. S. Morrill, C. M. Korendyke, G. E. Brueckner, et al. Calibration of theSOHO/LASCO C3white light coronagraph[J]. Solar Physics,2006,233(2):331-372.
    [77]N. Lugaz, J. N. Hernandez-Charpak, I. I. Roussev, et al. Determining theazimuthal properties of coronal mass ejections from multi-spacecraft remote-sensingobservations with STEREO SECCHI[J]. The Astrophysical Journal,2010,715(1):493.
    [78]C. E. DeForest, T. A. Howard, S. J. Tappin. Observations of detailed structure inthe solar wind at1AU with STEREO/HI-2[J]. The Astrophysical Journal,2011,738(1):103.
    [79]卜和阳,卢振武,张红鑫,等.内掩式透射地基日冕仪中杂光鬼像的消除[J].中国光学,2013,6(2):231~236.
    [80]J. P. Lloyd, A. Sivaramakrishnan. Tip-tilt error in Lyot coronagraphs[J]. TheAstrophysical Journal,2005,621(2):1153.
    [81]D. W. Wilson, P. D. Maker, J. T. Trauger, et al. Eclipse apodization: realization ofocculting spots and Lyot masks[C]. Astronomical Telescopes and Instrumentation.International Society for Optics and Photonics,2003:361-370.
    [82]W. T. Thompson, J. M. Davila, R. R. Fisher, et al. COR1inner coronagraph forSTEREO-SECCHI[C]. Astronomical Telescopes and Instrumentation. InternationalSociety for Optics and Photonics,2003:1-11.
    [83]R. M. MacQueen, J. T. Gosling, E. Hildner, et al. Initial results from the highaltitude observatory white light coronagraph on SKYLAB-A progress report[J].Philosophical Transactions of the Royal Society of London. Series A, Mathematicaland Physical Sciences,1976,281(1304):405-414.
    [84]G. Newkirk Jr. and D. Bohlin,"Reduction of scattered light in the coronagraph,"Appl. Opt.2,131(1963)
    [85]M. Bout, P. Lamy, A. Maucherat, C. Colin, and A. Llebaria,“Experimental studyof external occulters for the Large Angle and Spectrometric Coronagraph2:LASCO-C2,”Appl. Opt.39(22),3955(2000)
    [86]B. Fort, C. Morel, and G. Spaak,"The reduction of scattered light in an externalocculting disk coronagraph," Astron. Astrophys.63,243(1978)
    [87]Purcell J. D., Koomen M. J.:1962a, J. Opt. Soc. Am.52,596
    [88]Purcell J. D., Koomen M. J.:1962b, Paper presented at Spring Meeting Opt. Soc.of America, Abstract published in Purcell and Koomen:1962a
    [89]R. J. Vanderbei, D. N. Spergel, N. J. Kasdin. Circularly Symmetric Apodizationvia Starshaped Masks [J]. Astrophys. J.2003,599,686~704
    [90]W. Cash. Detechtion of Earth-like planets around nearby stars using apetal-shaped occulter [J]. nature,2006,442(6)04930
    [91]R. J. Vanderbei, E. Cady, N. J. Kasdin. Optimal occulter design for findingextrasolar planets[J]. The Astrophysical Journal,2007,665(1):794.
    [92]E. Cady. Boundary diffraction wave integrals for diffraction modeling of externalocculters[J]. Optics Express,2012,20(14):15196-15208.
    [93]S. Koutchmy, M. Belmahdi. Improved measurements of scattered light levelbehind occulting systems [J]. J. Optics,1987,18(5-6),265-269
    [94]A. V. Lensky. Theoretical assessment of efficiency of coronagraph externalocculting systems [J]. Sov. Astron.25(3),366, or Astron. Zhurn.58,648(1981)(inRussian)
    [95]E. Verroi, F. Frassetto, and G. Naletto. Diffraction effects in a giant saw-toothededge externally occulted solar coronagraph [J]. Proc. SPIE,2008,7010,70103Q-1
    [96]E. Verroi, F. Frassetto, and G. Naletto. Analysis of diffraction from the occulteredges of a giant externally occulted solar coronagraph [J]. J. Opt. Soc. Am. A,2008,25(1),182
    [97]F. Landini, M. Romoli, R. C. Colaninno, et al. Comparison of different algorithmsand programming languages in the diffraction calculation for a coronagraphstray-light analysis [J]. Proc. SPIE,2005,5901,191~199
    [98]F. Landini, M. Romoli, S. Fineschi, and E. Antonucci. Stray-light analysis for theSCORE coronagraphs of HERSCHEL [J]. Appl. Opt.,2006,45(26),6657~6667
    [99]P. Dumont, S. Shaklan, E. Cady, et al. Analysis of external occulters in thepresence of defects [J]. Proc. SPIE,2009,7440,744008
    [100] R. Soummer, L. Pueyo, A. Sivaramakrishnan, et al. Fast computation ofLyot-style coronagraph propagation [J]. Opt. Express,2007,15(24),15935
    [101] E. Cady. Boundary diffraction wave integrals for diffraction modeling ofexternal occulters [J]. Opt. Express,2012,20(14),15196
    [102]郭小爱,陈家璧.菲涅耳衍射和分数傅里叶变换[J].大学物理,2002,21(2):8~14
    [103]张岩,顾本源,杨国桢.光线分数傅立叶变换及其应用[J],物理,1999,28(8):484~490
    [104]汪治华,潘英俊,石军.菲涅耳衍射的分数傅立叶变换分析[J].激光杂志,2003,24(5):45~47
    [105] E. Hecht. Optics [M].4th ed., International Ed. Adelphi University,2002,498
    [106] M. Born and E. Wolf. Principles of Optics [M].7th ed. Cambridge UniversityPress,2001,478
    [107]季家镕.高等光学教程——光学的基本电磁理论[M].科学出版社,2007,p.206
    [108] P. G. Nelson. An Analysis of Scattered Light in Reflecting and RefractingPrimary Objectives for Coronagraphs [R]. COSMO Tech Note4. Boulder, CO, HighAltitude Observatory,2007
    [109] T. F. Schiff, J. C. Stover, D. R. Cheever, et al. Maximum and minimumlimitations imposed on BSDF measurements[C].32nd Annual Technical Symposium.International Society for Optics and Photonics,1989:50-57.
    [110] C. Asmail. Bidirectional scattering distribution function (BSDF): asystematized bibliography[J]. J. of Research of the National Institute of Standards andTechnology,1991,96(2):512-223.
    [111] M. E. Thomas, D. W. Blodgett, D. V. Hahn. Analysis and representation ofBSDF and BRDF measurements[C]//Optical Science and Technology, SPIE's48thAnnual Meeting. International Society for Optics and Photonics,2003:158-167.
    [112]金玉希.荧光检测器杂散光分析与抑制[D].上海交通大学,2011.
    [113]赵忠义,齐超,戴景民.多光谱双向反射分布函数测量系统的研制[J].中国光学快报,5(3):168.
    [114] B. T. Draine. Scattering by interstellar dust grains. I. Optical andultraviolet[J]. The Astrophysical Journal,2003,598(2):1017.
    [115] C. F. Bohren, D. R. Huffman. Absorption and scattering of light by smallparticles[M]. John Wiley&Sons,2008.
    [116] A. J. Cox, A. J. DeWeerd, J. Linden. An experiment to measure Mie andRayleigh total scattering cross sections[J]. American Journal of Physics,2002,70(6):620-625.
    [117] J. C. Stover. Optical scattering: measurement and analysis[M]. Bellingham,Washington: SPIE optical engineering press,1995.
    [118] A. David, M. J. Grundmann. Droop in InGaN light-emitting diodes: Adifferential carrier lifetime analysis[J]. Applied Physics Letters,2010,96(10):103504.
    [119] G. Kuczera, E. Parent. Monte Carlo assessment of parameter uncertainty inconceptual catchment models: the Metropolis algorithm[J]. Journal of Hydrology,1998,211(1):69-85.
    [120]王光昶,郑志坚,杨向东,等.超短脉冲激光辐照固体靶背向光发射的测量[J].光谱学与光谱分析,2006,26(5):785-789.
    [121]刘建斌,吴健.大气中球形粒子的散射特性研究[J].应用光学,2005,26(2):31-33.
    [122] A. V. Arecchi, R. J. Koshel, T. Messadi. Field guide to illumination[C]. SPIE,2007.
    [123] A. M. Nilsson, J. C. Jonsson. Light-scattering properties of a Venetian blindslat used for daylighting applications[J]. Solar energy,2010,84(12):2103-2111.
    [124] M. G. Dittman. K-correlation power spectral density and surface scattermodel[C]. SPIE Optics+Photonics. International Society for Optics and Photonics,2006:62910R-62910R-12.
    [125]赵飞,王森,邓超,等.兴隆1m光学望远镜淆杂散光系统[J].光学精密工程,2010,18(3):513~520.
    [126]赵飞,王森.兴隆1m光学望远镜杂散光效应研究[J].天文研究与技术:国家天文台台刊,2010,7(2):158~167.
    [127]钟兴,贾继强.空间相机消杂光设计及仿真[J].光学精密工程,2009,17(3):621.
    [128] Dittman M G. K-correlation power spectral density and surface scattermodel[C]. SPIE Optics+Photonics. International Society for Optics and Photonics,2006:62910R-62910R-12.
    [129] Kim Y C, Bisschop P D, Vandenberghe G. Characterization of stray light ofArF lithographic tools: Modeling of power spectral density of an optical pupil[J].Microelectronic engineering,2006,83(4):643-646.
    [130] Beritelli F, Casale S, Ruggeri G, et al. Performance evaluation andcomparison of G.729/AMR/fuzzy voice activity detectors[J]. IEEE Signal ProcessingLetters,2002,9(3):85-88.
    [131] Gouesbet G, Maheu B, Gréhan G. The order of approximation in a theory ofthe scattering of a Gaussian beam by a Mie scatter center[J]. Journal of optics,1985,16(5):239.
    [132] Pollack J B, Cuzzi J N. Scattering by nonspherical particles of sizecomparable to a wavelength: A new semi-empirical theory and its application totropospheric aerosols[J]. Journal of the Atmospheric Sciences,1980,37(4):868-881.
    [133] Tsang L, Kong J A, Ding K H. Scattering of Electromagnetic Waves,Theories and Applications[M]. John Wiley&Sons,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700