用户名: 密码: 验证码:
含油超临界CO_2冷却换热理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用自然工质CO_2的跨临界循环技术具有广阔的应用前景,而提高CO_2跨临界制冷循环系统性能是推广此技术应用的关键。本文通过理论分析和实验研究相结合,重点分析了CO_2专用润滑油PAG及CO_2/PAG混合物性能、超临界CO_2冷却换热的机理、新型气体冷却器换热性能及其对CO_2跨临界水-水热泵循环系统性能的影响。
     论文对润滑油基本参数的不同计算公式进行了分析,利用已知润滑油烷基苯的数据,提出了便于工程应用的合成润滑油基本参数的新通用计算公式。在少量已知的润滑油PAG物性数据基础上,通过修改润滑油物性经验公式,得出PAG物性的新计算公式。
     论文利用润滑油与制冷剂混合物物性计算公式对超临界CO_2/PAG混合物物性进行了计算分析;同时还利用聚集态理论和非平衡热力学对临界区物性的特殊性进行了分析,结果表明临界区分子聚集行为变化较为显著是临界区物性剧烈变化的主要原因。
     论文分析了润滑油对制冷系统的影响。利用连续性方程和动量方程计算分析了换热管内壁上的当量油膜厚度分布。并根据提出的气体冷却器的新换热模型,对气体冷却器的性能进行了计算分析。根据计算分析结果,提出了气体冷却器的优化结构,并设计加工出新型实验用气体冷却器。新型实验用气体冷却器不仅能够减小换热管内壁上的油膜厚度,减小热阻,而且还能强化了两侧流体的对流换热效果,在很大程度上,提高了气体冷却器的整体换热性能。
     论文通过实验研究对CO_2新型实验用气体冷却器性能进行了分析,发现新型实验用气体冷却器换热性能较好。同时还对带膨胀机或节流阀的CO_2跨临界水-水热泵循环系统进行了实验研究。结果表明,新型实验用气体冷却器在很大程度上提高了CO_2跨临界水-水热泵循环系统性能。气体冷却器出口处的CO_2温度越低,CO_2跨临界水-水热泵循环系统性能就越高,膨胀机可回收功也就越小。
The natural refrigerant CO_2 transcritical cycle technology has a broad application foreground. Improvement of cycle system performance is the key for the CO_2 transcritical cycle technology popularization. Performance of lubricant oil special for CO_2 transcritical cycle and CO_2/PAG mixture were researched. The theoretical and experimental research was used to analyze heat transfer performance of gas cooler. The mechanics of supercritical CO_2 heat transfer under cooling condition was investigated. Heat transfer performance of the new type gas cooler was studied by means of simulated and experimented. And the effect of new type gas cooler on CO_2 transcritical water-to-water heat pump cycle system was researched.
     New general computing formulas of synthetic lubricant oil basic parameters were put forward by use of alkybenzene lubricant oil data, after different empiric formulas of lubricant oils basic parameter had been analyzed. The new computing formulas of lubricant oil PAG physical properties were presented on the base of existed empiric formulas and a few of PAG physical properties data.
     The properties of CO_2 and PAG mixture were calculated according to property empiric calculating formulas of refrigerant and lubricant oil mixture. The molecular aggregation theory and non-equilibrium thermodynamics were applied to study properties change in the critical region. The CO_2 properties severe change is resulted in severe change of CO_2 molecular aggregation behavior in the critical region.
     The effect of lubricant oil on refrigeration system was investigated. The equivalent oil film thickness distribution along length of tube was calculated by continuity equation and momentum equation. The new heat transfer model of gas cooler was proposed according to practical heat exchange process of gas cooler in the CO_2 transcritical refrigeration or heat pump cycle unit. The new heat transfer model was used to simulated heat transfer performance of the different structure gas cooler. And the new experimental gas cooler was designed and made by the simulated and analyzed results. The new experimental gas cooler not only reduces lubricant oil thickness and decreases heat resistance, but strengthens heat convection of heat exchanger fluids CO_2 and water. Thus the whole heat transfer performance of new experimental gas cooler was enhanced at a great degree.
     The experimental researches on new experimental gas cooler and new CO_2 transcritical water-to-water heat pump cycle were performed. It found that the heat transfer performance of the new experimental gas cooler was better than old one. And experimental research on performance of the CO_2 transcritical water-to-water heat pump cycle system with expander or throttling valve was executed. It was found that the new experimental gas cooler improved the cycle performance of the CO_2 transcritical water-to-water heat pump cycle, at a large degree. The lower the CO_2 outlet temperature of gas cooler is, the better the cycle performance of the CO_2 transcritical water-to-water heat pump system is. The lower the CO_2 outlet temperature of gas cooler is, the smaller the recovery work.
引文
[1] 里夫金.霍华德. 熵:一种新的世界观. 上海:上海译文出版社,1987.
    [2] 尼科利斯,普利高津. 非平衡体系的自组织. 北京:科学出版社,1986.
    [3] NICOLIS G, PRIGOGINE I. 非平衡系统的自组织. 北京:科学出版社,1986.
    [4] 刘 万 福 , 马 一 太 . 地 球 生 命 系 统 与 可 持 续 发 展 . 天 津 大 学 学 报 , 2004,37(4):336-340
    [5] 张文红,陈森发,施建军. 生态工业、循环经济与可持续发展. 东南大学学报,2005,7(3):59-62。
    [6] http://www.phys.ncku.edu.tw. The Worlds Largest Ozone Hole.
    [7] 颜其德,康建成. 地球生命的保护伞-臭氧层.科学,2006(1):60-63
    [8] The scientific assessment panel of monteral protocol on substances that deplete the ozone layer. Scientific assessment of ozone deleption:2006,WMO and UNEP,18-August-2006
    [9] 柯南. 温室的昨天,今天和明天-IPCC 关于全球变暖的报告. 三思科学,2001,8,1.
    [10] 黄兴友. 温室气体全球增温潜能的研究. 北京:中国科学院,2001.
    [11] http://www.china5e.com/news/huanbao. 京都议定书即将生效 中国如何应对国际环保条约. 2004,12,3.
    [12] Kim Man-Hoe, Pettersen J, Bullard CW. Fundamental process and system design issues in CO_2 vapor compression systems. Progress in Energy and Combustion Science, 2004, 30:119-174.
    [13] James M. Calm, David A. Didiion. Trade-offs in refrigerant selections: past, present and future. Int J. Refri,1998,21(4):308-32.
    [14] James M.Calm. Options and outlook for chiller refrigerants. Int J of Ref, 2002,25:705-715
    [15] Lorentzen G, Pettersen J. New possibilities for non-CFC refrigeration. ⅡR International Symposium on Refrigeration, Energy and Environment, Trondheim, Norway. 1992:147-163.
    [16] Lorentzen G. Revival of carbon dioxide as a refrigerant. Int. J. Refrig,1994,17(5): 292-301.
    [17] Lorentzen G, Pettersen J. A new, efficient and environmentally benign system for car air conditioning. Int. J. Refrig, 1993, 16(1): 4-12.
    [18] Neks(?) P, Rekstad H, Zakeri GR, Schiefloe PA. CO_2-heat pump water heater:characteristics, system design and experimental results. Int. J. Refrig, 1998, 21 (3): 172-179.
    [19] 李敏霞,马一太,李丽新,苏维诚. 带膨胀机的二氧化碳跨临界循环水源热泵系统运行特性实验研究. 太阳能学报,2005,26(3):343-348.
    [20] 宁静红,马一太,李敏霞. R290/CO_2 自然工质低温复叠式制冷循环理论分析. 天津大学学报,2006,39(4):449-453.
    [21] Kauf F. Determination of the optimum high pressure for transcritical CO_2- refrigeration cycles. International Journal of Thermal Sciences, 1999, 38(4): 325-330.
    [22] Liao SM, Zhao TS, Jakobsen A. A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles. Applied Thermal Engineering, 2000, 20(9): 831-841.
    [23] Brown JS, Yana-Motta SF, Domanski PA. Comparitive analysis of an automotive air conditioning systems operating with CO_2 and R134a. Int. J. Refrig, 2002, 25(1):19-32.
    [24] Hwang Y. Comprehensive investigation of carbon dioxide refrigeration cycle. PhD. Dissertation, City: University of Maryland, 1997.
    [25] Pitla SS, Groll EA, Ramadhhyani S. New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO_2. International Journal of Refrigeration, 2002, 25(7):887-895.
    [26] Pitla SS, Bhatia K, Khetarpal V. and Strikis G. Numerical heat transfer analysis in heat exchangers for transcritical CO_2 system. Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000, 307-314.
    [27] Jun Lan Yang, Yi Tai Ma, Min Xia Li et al. Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander. Energy, 2005,30:1162-1175.
    [28] Douglas M. Robinson, Eckhard A.groll. Efficiencies of transcritical CO_2 cycles with and without an expansion turbine. International Refrigeration Journal, 1998,21(7):577-589.
    [29] M. Saikawa, K. Hashimoto, K. Kusakari etc. Development of prototype of CO_2 heat pump water heater for residential use. 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA, 2000:59-65.
    [30] 马一太,管海清,李敏霞,杨俊兰. CO_2跨临界循环系统润滑油分析. 天津大学学报,2004,37(9):783-786.
    [31] T.Hirao, H.Mizukami, M.Takeuchi, M.Taniguchi. Development of airconditioning system using CO_2 for automobile. The proceedings of the 4thIIR-Gustav Lorentzen Conference on Natural Working Fluids. Purdue: Purdue University, 2000, 193-200.
    [32] Lorenzo Cremaschi, Yunho Hwang, Reinhard Radermacher. Experimental investigation of oil retention in air conditioning systems. International Journal of Refrigeration, 2005, 28:1018-1028.
    [33] Vesovic V, Wakeham WA, Olchowy GA, et al. The transport properties of carbon dioxide. Journal of Physics Chemistry Reference Data, 1990, 19(3): 763-808.
    [34] R. Span, W. Wagner. A new equation of state for carbon dioxide. Journal of Physics Chemistry Reference Data, 1996, 25(6): 1513-1545.
    [35] Christoph Bratschi. Phase Equilibria and Critical Properties of Carbon Dioxide Obtained by Molecular Dynamics Simulations. Philosophisch- Naturwissenschaftlichen Fakult?t der Universit?t, Basel, Swiss, 2005.
    [36] Preissner. M. Carbon Dioxide Vapor Compression Cycle Improvements With Focus on Scroll Expanders. Ph.D Thesis, University of Maryland, College Park, MD.
    [37] C.Seeton, Jorg Fahl, D.Henderson. Solubility, viscosity, boundary, lubrication and miscibility of CO_2 and synthetic refrigerant oils. The proceedings of the 4thIIR-Gustav Lorentzen Conference on Natural Working Fluids. Purdue: Purdue University, 2000, 417-424.
    [38] Hsinheng Li, Thomas E.Rajewski. Experimental study of refrigerant oil candidates for the CO_2 Refrigeration.The proceedings of the 4thIIR-Gustav Lorentzen Conference on Natural Working Fluids. Purdue: Purdue University, 2000, 409-416.
    [39] Kawaguchi.Y, M. Takesue, M. Kaneko, T. Tazaki. Performance Study Refrigerating Oil with CO_2. 2000 SAE Automotive Alternative Refrigerant System Symposium, Scottsdale, 2000,AZ.
    [40] Hauk. A, E. Weidner. Thermodynamic and Fluid-Dynamic Properties of Carbon Dioxide with Different Lubricants in Cooling Circuits for Automobile Application. Industrial & Engineering Chemistry Research, 2000, 39: 4646-4651.
    [41] Yasuhiro Kawaguchi, Masahiko Takesue, Masato Kaneko et al. Performance Study of Refrigerating Oils with CO_2.Idemitsu Kosan Co,Ltd. July, 2000 Japan.
    [42] Youbi-Idrissi M, Bonjour J, Terrier MF, Meunier F, Marvillet C. Solubility ofCO_2 in a synthetic oil.The Proceedings of the international congress of refrigeration, Washington DC; 2003.
    [43] R.H.P. Thomas, H.T. Pham. ASHRAE Trans, 98,1992:783.
    [44] A.Yokozeki. Solubility of refrigerants in various lubricants. International Journal of Thermophysics, 2001, 22(4):1057–1071.
    [45] A.Yokozeki. Solubility correlation and phase behaviors of carbon dioxide and lubricant oil mixtures. Applied Energy, 2007,84(2):159-175
    [46] Manuel R.Conde. Estimation of thermophysical properties of lubricanting oils and their solution with refrigerants: An appraisal of existing methods. Applied Thermal Engineering, 1996,16(1):51-61.
    [47] Kenneth N. Marsh, Mohamed E. Kandil. Review of thermodynamic properties of refrigerants +lubricant oils. Fluid Phase Equilibria, 2002, 199:319-334.
    [48] Tomoya Tsuji, Shuichiro Tanaka, Toshihiko Hiaki, Rei Saito. Measurements of bubble point pressure for CO +decane and CO_2+lubricating oil. Fluid Phase Equilibria, 2004, 319:87-92
    [49] Y. Mermond, M. Feidt, C. Marvillet. Thermodynamic and physical properties of mixtures of refrigerants and oils. International Journal of Refrigeration, 1999, 22:659-579.
    [50] S.E Quinones-Cisneros, J.Garcia, J.Fenandez, M.A.Monsalvo. Phase and viscosity behaviour of refrigerant-lubricant mixture. International Journal of Refrigeration, 2005(28):714-724.
    [51] P.Coimbra, C.M.M.Duarte, H.C.de Sousa. Cubic equation of state correlation of the solubility of some anti-inflammatory drugs in supercritical carbon dioxide. Fluid Phase Equilibria, 2006, 239:188-199.
    [52] Masafumi Katsuta, Hiromitu Kinpara, Shunta Yagi. The effect of oil contamination on evaporative heat transfer characteristies of CO_2 refrigeration cycle. The 2nd Asian Conference on Refrigeration and Air-conditioning ACRC. Beijng: Chinese Association of Refrigeration, 2004, 332-340.
    [53] A.Zingerli, E.A.Groll. Influence of refrigeration oli on the heat transfer and pressure drop of supercritical CO_2 during in-tube cooling. The proceedings of the 4thIIR-Gustav Lorentzen Conference on Natural Working Fluids. Purdue: Purdue University, 2000, 269-278.
    [54] Koji Mori, Hirokazu Shimaoka,Junji Onishi et al. Heat transfer characteristics of CO_2 and CO_2-oil mixtures in cooling stage at supercritical pressure conditions[R].2005,5,Japan.
    [55] 魏东,马一太,王景刚等. 二氧化碳超临界流体的管内对流换热研究. 工程热物理,2002,23(1):85-87
    [56] 王补宣.工程传热传质学(下册)北京:科学出版社,1998:465
    [57] S. Kakac, S. Kakac. The effect of temperature-dependent fluid properties on convective heat transfer . Handbook of Single-phase Convective Heat Transfer, USA, ohn Wiley & Sons, 1987 :18.1–18.56.
    [58] W.B. Hall. Heat transfer near the critical point. Irvine Advances in Heat Transfer. Academic Press, USA, 1971, (7):1–86.
    [59] A.F. Polyakov, Heat transfer under supercritical pressures[M]. in: J.P. Hartnett, T.F. Irvine Jr. (Eds.), Advances in Heat Transfer, vol. 21, Academic Press, USA, 1991:1–53.
    [60] Igor L. Pioro, Hussam F. Khartabil1, Romney B. Duffey. Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey). Nuclear Engineering and Design, 2004,230:69-91.
    [61] 魏东. CO_2 跨临界循环换热与膨胀机理的研究.天津大学博士论文,2002.
    [62] Pettersen J, Rieberer R, Leister A. Heat transfer and pressure drop characteristics of supercritical carbon dioxide in micro-channel tubes under cooling. Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000, 99-106.
    [63] Olson DA. Heat transfer of supercritical carbon dioxide flowing in a cooled horizontal tube. Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000, 251-258.
    [64] S.M. Liao, T.S. Zhao. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes. International Journal of Heat and Mass Transfer, 2002,45:5025-5034.
    [65] Yoon SH, Kim JH, Hwang YW, et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region. International Journal of Refrigeration, 2003, 26(8):857-864.
    [66] Chaobin Dang, Eiji Hihara. Heat transfer coefficient of supercritical carbon dioxide. Preliminary Proceedings of the 5th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Guangzhou, China, September 17-20, 2002:100-107.
    [67] Pitla SS, Groll EA, Ramadhhyani S. New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO_2. International Journal of Refrigeration, 2002, 25(7):887-895.
    [68] Pitla SS, Bhatia K, Khetarpal V. and Strikis G. Numerical heat transferanalysis in heat exchangers for transcritical CO_2 system. Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000, 307-314.
    [69] Liao SM, Zhao TS. A numerical investigation of laminar convection of supercritical carbon dioxide in vertical mini/micro tubes. Progress in Computational Fluid Dynamics, 2002, 2(2/3/4):144-152.
    [70] 董彬,吕静,尹从绪,秦娜,杜雅萍. 超临界CO_2水平管内换热的实验研究. 流体机械,2006,34(5):57-61.
    [71] 姜培学,李勐,徐轶君等. 多孔介质中超临界CO_2对流换热数值模拟. 工程热物理学报,2002,23(2):200-202.
    [72] Pei-xue Jiang, Run Fu Shi, Yi-Jun Xu et al. Experimental investigation of flow resistance and convection heat transfer of CO_2 at supercritical pressures in a vertical porous tube. Journal of Supercritical Fluid, 2006,38(3):339-346.
    [73] 徐轶君,姜培学,张宇,任泽霈. 竖直圆管中超临界压力CO_2在低雷诺数下对流换热研究.工程热物理,2005,26(3):468-470
    [74] 淮秀兰,Shgeru Koyama. 微通道内超临界二氧化碳的压降与传热特性. 工程热物理学报,2004,25(5):843-845.
    [75] X.L. Huaia, , S. Koyamab, T.S. Zhao. An experimental study of flowand heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions. Chemical Engineering Science,2005, 60:3337 – 334.
    [76] Hoo-Kyu Oh, Tae-Guen Yu. Heat transfer and pressure drop characteristics of supercritical CO_2 in helically coiled tube. The 3nd Asian Conference on Refrigeration and Air-condtioning. Gyeongiu, Korea, 2006:231-234.
    [77] S. He, Pei-Xue Jiang , Yi-Jun Xu et al. A computational study of convection heat transfer to CO_2 at supercritical pressures in a vertical mini tube. International Journal of Thermal Sciences, 2005, 44:521–530.
    [78] Pedro C. Simoes, Joao Fernandes, Jose Paulo Mota. Dynamic model of a supercritical carbon dioxide heat exchanger.Journal of Supercritical Fluids,2005,35:167-173.
    [79] Xiaoying Shan, David P. Schmidt, James J. Watkins. Study of natural convection in supercritical CO_2 cold wall reactors: Simulations and experiments. Journal of Supercritical Fluids, 2007,40:84-92.
    [80] Pietro Asinari. Numerical prediction of turbulent convective heat transfer in mini/micro channels for carbon dioxide at supercritical pressure. International Journal of Heat and Mass Transfer, 2005, 48:3864–3879.
    [81] 饶政华,廖胜明. 超临界CO_2在水平三角细微管内层流对流换热的数值模拟.制冷学报,2006,27(5):43-47.
    [82] F.Zoggia, S.Filippini, C.Perfetti, G.Lozza. Environmental friendly heat exchangers.7th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Trondheim, Norwy, 2006:366-369.
    [83] 刘圣春.超临界CO_2流体特性及跨临界循环系统的研究.天津大学博士论文,2006.
    [84] Klaus Spindler. A review of heat transfer correlations for supercritical carbon dioxide under cooling conditions. 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Trondheim, Norwy, 2006:420-423.
    [85] I. Ishihara, H. Mori, R. Matusumoto. Natural convection cooling heat transfer of CO_2 at the supercritical pressure. 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Trondheim, Norwy, 2006:424-427.
    [86] Chaobin Dang, Eiji Hihara. Numerical study on in-tube laminar heat transfer of supercritical carbon dioxide. Proceedings of the Third Asian Conference on Refrigeration and Air Conditioning, The Society of Air-Conditioning and Refrigerating Engineers of Korea, Gyeongju, Korea, 2006,5, pp. 227-230.
    [87] Zingerli A, Groll EA. Influence of refrigeration oil on the heat transfer and pressure drop of supercritical CO_2 during in-tube cooling. Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000, 269-278.
    [88] L. Gao, T. Honda, Experiments on heat transfer characteristics of heat exchanger for CO_2 heat pump system. Proceedings of the Asian Conference on Refrigeration and Air Conditioning 2002, Japan Society of Refrigeration and Air Conditioning Engineers, Kobe, Japan, 2002, 12 pp. A2-A4.
    [89] K. Mori, J. Onishi, H. Shimaoka et al.Cooling heat transfer characteristics of CO_2 and CO_2/oil mixture at supercritical pressure conditions. Proceedings of the Asian Conference on Refrigeration and Air Conditioning, Japan Society of Refrigeration and Air Conditioning Engineers, Kobe, 2002, pp. A2-A5.
    [90] Chaobin Dang, Koji Iino, Ken Fukuoka, Eiji Hihara. Effect of lubricating oil on cooling heat transfer of supercritical carbon dioxide. International Journal of Refrigeration, 2006.(online)
    [91] R.Yun, Y.Hwang, R.Radermacher. Gas cooling heat transfer and pressure drop charaterictics of CO_2/oil mixture in microchannel. 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Trondheim, Norwy, 2006:503-505.
    [92] Pettersen J, Hafner A, Skaugen G. Development of compact heat exchangersfor CO_2 air-conditioning systems. Int J. Refrig, 1998, 21(3): 180-193.
    [93] Yin Jian Min, Bullard CW, Hrnjak PS. R-744 gas cooler development and validation. International Journal of Refrigeration, 2001,24:692-701.
    [94] Kenneth N.Marsh, Mohamed R.Kandil. Review of thermodynamic properties of refrigerants+lubricant oils. Fluid Phase Equilibria, 2002,(199):314-334.
    [95] G.D. Short, Synthetic lubricants and their refrigeration applications. Lubrication Eng. 1989, 46: 239–247.
    [96] Falex Corporation. Bulletin Number:QG-18. Pin&Vee Block Test Machine. Illinois, USA.
    [97] Yasuhiro Kawaguchi, Masahiko Takesue, Masato Kaneko , Toshinori Tazaki. Performance Study of Refrigerating Oils with CO_2.Idemitsu Kosan Co,Ltd. July, 2000 Japan.
    [98] Y.Mermond, M.Feidt, C.Marvillet. Properties of thermodynamiques et physiques des mélanges de fluids frigorigenes et d’huiles. International Journal of Refrigeration, 1999, 22:569-579.
    [99] J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria, 3rd Edition,Prentice-Hall, Upper Saddle River, 1999.
    [100] W.Cordes, J.Rarey. A new method for the estimation of the normal boiling point of non-electrolyte organic compounds. Fluid Phase Equilibria. 2002, 201:409–433.
    [101] Hilal Gurbuz Yucel. Prediction of molecular weight and density of n-alkanes(C6-C44). Analytica Chinica Acta, 2005,547:94-97.
    [102] Maxwell, J.B. and Bonnell, L.S. Derivation and Precision of a New Vapor Pressure Correlation for Petroleum Hydrocarbons. Ind. Eng. Chem. 1957,49(7):1187-1196.
    [103] C.H. Twu. Fluid Phase Equilib. An internally consistent correlation for predicting the critical properties and molecular weight of petroleum and coal-tar liquids. 1984,16(2):137-150.
    [104] W.Yuan, A.C. Hansen, Q.Zhang. Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels. Fuel, 2005,84:943-950.
    [105] Nokay.R. Estimate petrochemical properties. Chem Eng, 1959, 66(2):147-148.
    [106] Kesler.M.G, Lee.B.I. Improved prediction of enthalpy of fraction. Hydrocarbon Proc, 1976, 55(3):153-158.
    [107] M. L. Huber, E .W. Lemmon, D. G.. Friend. Modeling bubble points ofmixtures of hydrofluorocarbon refrigerants and polyol ester lubricants. Fluid Phase Equilibria, 2002, 194-197:511-519.
    [108] D.L. Morgan, R. Kobayashi. Extension of pitzer CSP models for vapor pressures and heats of vaporization to long-chain hydrocarbons. Fluid Phase Equilib. 94 (1994) 51-87
    [109] Reid.R.C, Prausnitz.J.M, Poling B.C. The properties of gases and liquids. LENI-EPFL, Lausanne, 1992.
    [110] Hesse U, Kruse H. Prediction of the behavior of oil-refrigerant mixtures. Proceedings Purdue Meeting of ⅡR commissions B, B2, E1,E2, 1998, P:101-109.
    [111] Pitzer, K.S. The Volumetric and Thermodynamic Properties of Fluids: Theoretical Basis and Virial Coefficients. Am. Chem. Soc, 1955, 77: 3427-3432.
    [112] Takaishi.Y, Oguchi.K. Solubility of the solutions of HFC-134a and polyolester-based oil. Pro. Gent Meeting of ⅡR commissions, 1993, B1/2:141-148
    [113] Klincewicz.K.M, Reid R.C. Estimation of critical properties with group contribution methods. AIChE J, 1984, 30:137-142.
    [114] Goyal.P, Doraiswamy.L.K. Estimating liquid densities. Hydrocarbon Proc Petrol Ref, 1966,45:200-202.
    [115] Liley PE, Gambill WR. Physical and chemical data. In: Perry,Chilton, editors. Chemical Engineering Handbook, 5th ed. New York, 1973.
    [116] Brock. J.R, Bird.R.B. Surface tension and the principle of corresponding states. ALChE J, 1955, 1(2):174-177.
    [117] I. Katime, J. R. Ochoa. Viscosity-temperature relationships for dilute solutions of poly(cyclohexyl methacrylate) in methyl isobutyl ketone. Journal of Applied Polymer Science, 1984, 29(12):4427-4431.
    [118] Riedel, L. Neue. Warmeleitfahigkeitsmessungen an organischen Fliissigkeiten. Chem. Eng. Technik, 1951,23(13):321-324.
    [119] K.Takigawa et al. Solubility and viscosity of refrigerant/lubricant mixture: hydrofluorocarbon/alkylbenzend systems. International Journal of Refrigeration, 2002, 25(8):1014-1024.
    [120] 童景山. 聚集力学原理及其应用. 北京高等教育出版社,2007.2.
    [121] 陈仁烈. 统计物理引论. 北京:人民出版社,1961.
    [122] 童景山.分子聚集理论及其应用.科学出版社,1999.
    [123] 薛卫东,张广丰,朱正和等.CO_2二聚体分子弱结合作用的DFT计算.物理化学学报,2001,17(6):501-506..
    [124] Mayer J, Mayer M G. Statistical Mechanics. New York: Wiley, 1946.
    [125] 苏汝铿.统计物理学.复旦大学出版社,1990.
    [126] 周强泰编著.两相流动和热交换.水利电力出版社,1987.
    [127] 付东,李总成,李以圭等.用重整化群理论研究胶体模型体系的相行为.化学学报,2003,61(10):1561-1566.
    [128] 孙方田,马一太,李敏霞,汪耀东. 润滑油对带膨胀机的 CO_2 跨临界循环的影响. 工程热物理学报,2007,28(3):369-372.
    [129] 胡青, 金立军, 谢金花. 制冷机含油对汽车空调性能影响的实验研究. 流体机械, 2004, 32(4):8-11.
    [130] O Lottina.Effects of synthetic oil in a compression refrigeration system using R410A .Part II:quality of heat transfer and pressure losses within the heat exchangers.International Journal of Refrigeration,2003,783(26)
    [131] Whitacre,Stein,Boyd,et a1.Analysis of the potentialities of using analog computer in the development of residential refrigerators.Report to Whirlpool Corporation,Columbus:OH,1963
    [132] 甘承军等.HFC-134含油时管内蒸发换热的特征.制冷学报,1996,(1):9-16
    [133] K Mohrlok.The influence of a low viscosity oil on the pool boiling heat transfer of the refrigerant R507. International Journal of Refrigeration,2001,24(1):25-40.
    [134] Samue F.Yana Motta.A visual study of R-404A/oil flow through adiabatic capillary tubes.International Journal of Refrigeration,2002,586(25).
    [135] Whiacre et al. Analysis of potentialities using analog computer development of residential refrigerators[R]. Report to Whirlpool corporation, Columbus, OH, 1963.
    [136] Wijaya H. A experimental evalution of adiabatic capilitary tube performance for HFC134a and CFC12. International CFC and Halon Alterantive Conference Proc, Baltimore,1991:474-483.
    [137] Bolstad N M, Jondan R C. Theory and use of the capillary tube expansion device. Refrigerating Engineering, 1948,56(12):519-523.
    [138] 曹晓林, 吴业正. 含油制冷剂流过毛细管的流动特性的实验研究. 流体机械, 1999,27(9):48-50.
    [139] 李敏霞. 二氧化碳跨临界循环转子式膨胀机的分析与实验研究. 天津:天津大学,2003.
    [140] Baustian, J J. Pate, M B. Bergles, A E. Measuring the concentration of a flowing oil-refrigerant mixture with a bypass viscometer. ASHRAETransactions. 1988, 94 (2):588-601. Publ by ASHRAE, Atlanta, GA, USA p
    [141] Jensen M.K., D.L. Jackman. Prediction of nucleate pool boiling heat transfer coefficients of refrigerant-oil mixtures. Trans of ASME, Journal of heat transfer, 1984, (106):184-190
    [142] Bo Shen, Eckhard A. Groll. Critical literature review of lubricant influence on refrigerant heat transfer and pressure drop. ARTI-21 CR/611-20080, 2003.
    [143] Spauschus, H., Speaker L. M. A review of viscosity data for oil-refrigerant solutions. ASRAE trans 1987. 667-680.
    [144] Van Gaalen, N A. Zoz, S C. Pate, M B. Solubility and viscosity of solutions of HCFC-22 in naphthenic oil and in alkylbenzene at high pressures and temperatures[A]. ASHRAE Transactions. Publ by ASHRAE, Atlanta, GA, USA. 1991,PP: 100-108.
    [145] Yokozeki, M. A. Solubility and viscosity of refrigerant-oil mixtures. In proceedings of international refrigeration conference. Purdue University, 1992, PP :335-340.
    [146] Jackson JD, Hall WB. Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions in turbulent forced convection in channels and bundles. Kakac S, Spalding DB, Hemisphere, 1979, 613-640.
    [147] Petukhov B.S,Polyakov A.V.Boundaries of Regimes with Worsened heat transfer for Supercritical Pressure Coolant . Teplofizika Vysokikh Temperature, 1974,12(1):221~224.
    [148] k. Sakurai, h. S. Ko, k. Okamoto, h. Madarame. Visualization of forced convection heat transfer for carbon dioxide in supercritical condition . Proceedings of icone 8th international conference on nuclear engineerin april, 2000, baltimore, md usa:1-5.
    [149] C. Dang, K. Iino, E. Hihara, Flow visualization of supercritical carbon dioxide with small amount lubricating oil entrained. Proceedings of the Third Asian Conference on Refrigeration and Air Conditioning, The Society of Air-Conditioning and Refrigerating Engineers of Korea, Gyeongju, Korea, May 21-23, 2006, pp. 235-238.
    [150] Jun-Pyo Lee. Experimental and theoretical investigation of oil retention in a carbon dioxide air-conditioning system. Maryland University, 2003.
    [151] Gnielinski V. New equation for heat and mass transfer in turbulent pipe and channel flow. International Journal of Chemical Engineering,1976,16:359-368.
    [152] Krasnoshechekov EA, Kuraeva IV, Protopopov VS. Local heat transfer of carbon dioxide at supercritical pressure under cooling conditions. Teplofizika Vysokikh Temoperatur, 1970, 7(5):922-930.
    [153] Baskov VL, Kuraeva IV, Protopopov VS. Heat transfer with the turbulent flow of a liquid at supercritical pressure in tubes under cooling conditions. Teplofizika Vysokikh Temoperatur, 1977, 15(1):96-102.
    [154] Fang XD. Modeling and analysis of gas coolers. ACRC CR-16, 1999.
    [155] Churchill SW. Friction-factor equation spans all fluid-flow regimes. Chemical Engineering, 1977, 7:91-92.
    [156] Liao SM, Zhao TS. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels. Transactions of the ASME Journal of Heat Transfer, 2002,124:413-420.
    [157] Chang-Hyo Son, Dong-Geon Lee, Si-Young Jeong et al. An experimental study on heat transfer characteristics of carbon dioxide during gas cooling process in a horizontal tube. The 2nd Asian Conference on Refrigeration and Air-conditioning , 2004, Beijing China:321-331.
    [158] Yi Cheol Choi, Byung Ha Kang, Sukhyun Kim. Heat transfer correlation during supercritical cooling process of carbon dioxide in a horizontal tube. The 2nd Asian Conference on Refrigeration and Air-conditioning , 2004, Beijing China:313-320.
    [159] Zukaus.A, J. Karmi. High-performance single-phase heat exchanger. New York: Hemisphere Corporation, 1989,PP:381-382.
    [160] Colebrook C F. Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipes laws. J Inst Civil Eng, 1939, 11:133-139.
    [161] Kuraeva I V, Proropopov V N. Mean friction coefficients for turbulengt flow of a liquid at a supercritical pressure in horizontal circular tubes. Teplofizikav Vysokikh Temperature, 1974, 12(1):218-220.
    [162] Petrov N E, Popov V N. Heat transfer and resistance of carbon dioxide being cooled in the supercritical region. Thermal Engineering (In Russian), 1985, 32(3):16-19.
    [163] Incopera F. D, D. P Dewitt. Fundamental of heat and mass transfer[M]. 3nd Ed. New York:John Wiley and Suns. 1990.
    [164] Wang H, Touber S. Distributed and non-steady-state modeling of an air cooler[J]. International Journal of Refrigeration, 1991,14:98-111.
    [165] ASHARE Handbook-fundamentals. Atlanta: America Society of Heating,Refrigerating and Air-conditioning Engineers Inc, 1993, 325.
    [166] Pettersen J, Rieberer R, Munkejord S T. Heat transfer and pressure drop for flow of supercritical and subcritical CO_2 in microchannel tubes. SIBTEF Energy Research Technical Report TR, 2000.
    [167] Chang-Hyo Son, Seung-Jun Park. An experimental study on heat transfer and pressure drop chararcteristics of carbon dioxide during gas cooling process in a horizontal tube. International Journal of Refrigeration, 2006, 29:539-546.
    [168] Chaobin Dang, Eiji Hihara. In-tube cooling heat transfer of supercritical carbon dioxide part1:Experimental measurement. International Journal of Refrigeration, 2004, 27:736-747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700