用户名: 密码: 验证码:
高温热泵技术及系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国余热资源丰富,若能充分回收利用,则可显著提高能源利用效率,节省常规能源,缓解发展与能源之间的矛盾。余热利用主要有换热、高温热泵、发电三种利用方式。目前,由于高温热泵可以提升能源品位,并具有实施简单、技术相对较成熟等优势,因此受到人们的普遍关注。本文针对我国的余热资源的温区范围以及应用目的,研制了新型高温工质BY-3,通过理论计算、实验检测以及工程长期运行验证,确定其最佳运行温区,分析其运行性能,并对集中供热系统进行了经济、环境以及综合性能分析。
     本文研制出高温双元混合工质BY-3。其运行参数适合于单级温升为60℃,高温热源温度在60-85℃的工况。计算中提出双元混合工质温度滑移的简单计算模型。并通过相平衡计算以及质量守恒计算理论分析了BY-3的泄漏对单位质量工质循环性能的影响,结果表明该双元混合工质的泄漏对其性能影响较小。之后,给出了双元混合工质泄漏时的简易补充方法。
     通过实验检测以及工程运行验证了BY-3的循环性能。通过对BY-3热泵机组与其它机组的对比得出,该工质不宜用于夏季空调工况,在中温热泵工况时其COP与R22热泵机组相当,而在大温升、60-85℃供水温度的工况下, BY-3工质的排气温度低于105℃,排气压力低于1.98MPa,COP较高,利于机组安全、稳定的运行。工程实例验证的结果与实验值的吻合性较好。
     对高温热泵集中供热工程进行经济性、环境性以及综合性能分析。经济性分析结果表明,当热泵COP=3时,系统的年运行费用与燃气锅炉系统持平,但比燃煤锅炉系统高约5%。当热泵COP>3时,与其他供热系统相比有明显的经济优势,其中当热泵COP=4时,热泵系统可以比燃煤锅炉系统节约10%左右的费用,而与燃气锅炉相比可以节约14%的运行费用;利用生命周期评价的方法对供热系统进行环境影响评价,结果表明当热泵机组COP>2.5时,与锅炉供热系统比较有较明显的环境效益。该方法覆盖从能源生产到消耗的整个过程中对环境的影响,并将权重方法、电力结构、标准化数据以及余热利用因素的影响考虑在内,可以更全面的分析系统的环境影响;基于生态效率的方法提出适合于集中供热系统的综合影响评价指标,结果表明,当热泵机组COP>3时,热泵供热系统的生态效率高于锅炉系统的。该方法可综合评价系统的经济性、环保性,并避免不同热源、形式、供热面积等因素的影响,可为供热系统方案选择提供参考。
There are many kinds of low temperature heat source in our country, which maycause the heat pollution and the energy waste. If they can be recycled by heatexchange, high temperature heat pump or electricity generation, then the energy useefficiency will be improved obviously. Being an energy-saving equipment with greatdevelopment potential, high temperature heat pump is becoming one of the researchhotspots in recent years.
     In this paper, new refrigerant mixture BY-3is conducted. Theoretical andexperimental analysis is processed to find out the optimal operation temperature rangeand to analysis the operation performance. Combined with engineering operation, thestability and security of long term operation is tested. At last, the economicperformance, environmental performance and comprehensive performance is analysisfor the central heating system.
     (1) A new refrigerant mixture BY-3was conducted based on the theoreticalcalculation, which is suitable for the situation of temperature difference between thelow temperature and high temperature heat source is about60℃and the condensingtemperature is between60-85℃. The temperature glide model of the mixturerefrigerants is built to offer the parameter for the unit design. The impact to theperformance of leakage is also analyzed using the phase equilibrium model and massequilibrium model, and the result shows that the leakage of BY-3impacts the specificmass performance little. A kind of mixture refrigerant supplement method is alsoproposed to solve the mixture refrigerant leakage problem.
     (2) The BY-3performance is tested by the experiment and engineeringoperation. The comparing result shows that the BY-3is not suitable for theair-conditioning condition and equivalent to R22unit in moderate heat pumpcondition. However, the BY-3system has better performance in the high temperatureheat pump condition. It can produce85℃hot water when the low temperature is20℃with high efficiency. Under this condition, the discharge temperature is lowerthan105℃, and the refrigerant vapor pressure keeps lower than1.98Mpa. Theoperation results match the experimental results well, which shows the BY-3performance is suitable for the stability and security of the long term operation.
     (3) The cost, environmental performance and comprehensive performance is putforward to compare the different heating systems. The cost analysis shows that, whenthe COP=3, the heat pump system cost almost the same money with gas boiler systembut higher than coal boiler heat system; when the COP>3, heat pump system savescost compared to boiler heat systems. For example, it saves10%and14%costcompared to the gas boiler heating system and coal boiler heating system respectivelywhen COP=4. The environmental performance analysis use the life cycle analysismethod, and the results show that when the COP>2.5, the heat pump system hasadvantage to the boiler heating systems. The comprehensive analysis is based on theeco-efficiency method, and the result shows that, if COP>3, the heat pump heatingsystem would have best comprehensive performance, i.e. it has lower cost and lessenvironmental impact than the other systems. This method can avoid the impact of theheating source, building area and so on.
引文
[1]李国新,马一太,吕灿仁.中高温热泵工质的优选及试验研究[J].制冷,1993,3(44):7-11.
    [2]朱剑明,彭代勇.世界能源现状与内燃机的发展机遇[J].内燃机工程,2011,32(2):80-84.
    [3] Selahatt n G ktun. Selection of working fluids for high temperature heat pumps[J].Energy,1994,20(7):623-625.
    [4]李廷勋,郭开华,王如竹,等.非共沸混合工质R22/R141b高温热泵实验研究[J].化工学报,2002,53(5):542-545.
    [5] Zhao Xiaoli, Li Na, Ma Chunbo. Residential energy consumption in urban China:A decomposition analysis [J]. Energy Policy,2012,41:644-653.
    [6] Zhang Na, Noam Lior, Hongguang Jin, The energy situation and its sustainabledevelopment strategy in China [J]. Energy,2011,36:3639-3649.
    [7] Jiang Bing, Sun Zhenqing, Liu Meiqin. China’s energy development strategyunder the low carbon economy [J]. Energy,2010,35:4257-4264.
    [8]蔡九菊,王建军,陈春霞,等.钢铁企业余热资源的回收与利用[J].钢铁,2007,42(6):1-7.
    [9]赵力.高温热泵在我国的应用及研究进展[J].制冷学报,2005,2:8-13.
    [10]连红奎,李艳,束光阳子,等.我国工业余热回收利用技术综述[J].节能技术,2011,29(2):123-133.
    [11]赵钦新,王宇峰,王学斌,等.我国余热利用现状与技术进展[J].工业锅炉,2009,5:8-15.
    [12]蒋能照.空调用热泵技术及应用[M].北京:机械工业出版社,1997.
    [13]产业在线.风起云涌的全球采暖市场[J].中国电子商情,2011.12:51-53.
    [14]国家统计局能源统计司.中国能源统计年鉴2009[M].北京:中国统计出版社,2010.
    [15]宣永梅.新型替代制冷剂的理论及实验研究[D],浙江:浙江大学制冷与低温研究所,浙江大学,2004.
    [16]张萍. R22替代制冷剂的理论与实验研究[D],浙江:浙江大学制冷与低温研究所,浙江大学,2000.
    [17] James M. Calm,The next generation of refrigerants–Historical review,considerations, and outlook[J]. International Journal of Greenhouse Gas Control,2008,31(7):1123–1133.
    [18] Devottat S, Gopichand S, Rao Pendyala V. Comparative assessment of someHCFCs, HFCs and HFEs as alternatives to CFC11[J]. International Journal ofRefrigeration,1994,17(1):32–39.
    [19]严家騄.工程热力学[M].北京:高等教育出版社,2005.
    [20]曹德胜,史琳.工质使用手册[M].北京:冶金工业出版社,2003.
    [21] R Defibaugh D, Morrison G. Interaction coefficients for15mixtures offlammable and non-flammable components [J]. International Journal ofRefrigeration,1995,18(8):518–523.
    [22] Adolph L. Beyerlein, Darryl D, et al. Properties of novel fluorinated compoundsand their mixtures as alternative refrigerants [J]. Fluid Phase Equilibria,1998,150:287–296.
    [23]李廷勋,王如竹,郭开华,等,制冷/供热中应用混合工质制冷剂的研究现状[J].流体机械,2001,29(6):49-52.
    [24] Zhang Ming, WangWenwen. Analysis of China’s energy utilization for2007[J].Energy Policy,2011,39(3):1612–1616.
    [25]徐邦裕.热泵[M].北京:建筑工业出版社,1988.
    [26]比泽尔制冷技术有限公司.工质报告[R].2006,第5版.
    [27]王怀信,郭涛,王继霄.几种中高温热泵工质的理论循环性能[J].太阳能学报,2010,31(5):592-597.
    [28] Nakatani, Mitsuhiro Ikoma, Koji Arita, et al. Development of high-temperatureheat pump using alternative mixture [J]. National Technical Report,1989,35(6):12-16.
    [29] Miyara A, Koyama S, Fujii T. Performance evaluation of a heat pump cycleusing NARMs by a simulation with equations of heat transfer and pressure drop[J]. International Journal of Refrigeration,1993,16(3):161-168.
    [30] Kulcar B, Goricanec D, Krope J. Economy of exploiting heat fromlow-temperature geothermal sources using a heat pump [J]. Energy andBuildings,2008,40(3):323–329.
    [31] Li T X, Guo K H, Wang R Z. High temperature hot water heat pump withnon-azeotropic refrigerant mixture HCFC-22/HCFC-141b[J]. Energy Conversionand Management,2002,43(15):2033–2040.
    [32]朱秋兰,史琳,韩礼钟,等.中高温热泵新工质HTR02实验研究[J].工程热物理学报,2005,26(2):208-210.
    [33]昝成,史琳.零ODP的中高温热泵工质HTR04实验研究[J].工程热物理学报,2007,28(6):919-921.
    [34]孙方田,马一太,王洪利.中高温热泵热水器新工质TJR01循环性能分析[J].天津大学学报,2007,40(2):153-156.
    [35]张文全,梁年良,李卫,等.以ZHR02为工质的中高温热泵实验研究[J].制冷技术,2007,38(7):43-47.
    [36] Devotta S, Rao Pendyala V. Thermodynamic screening of some HFCs and HFEsfor high-temperature heat pumps as alternatives to CFC114[J]. InternationalJournal of Refrigeration,1994,17(5):338-342.
    [37] Liu Nanxi, Lin Shi, Han Lizhong, et al. Moderately high temperature watersource heat-pumps using a near-azeotropic refrigerant mixture [J]. AppliedEnergy,2005,80(4):435–447.
    [38]马利敏,王怀信,郑臣明.几种中高温热泵工质的理论循环性能[J].天津大学学报,2005,38(8):689-694.
    [39]郭涛,王怀信.采用不同工质的中高温热泵理论循环特性[J].天津大学学报,2010,43(8):667-673.
    [40] Zhang Shengjun, Wang Huaixin, Guo Tao. Experimental investigation ofmoderately high temperature water source heat pump with non-azeotropicrefrigerant mixtures[J]. Applied Energy,2010,87(5):1554–1561.
    [41] Pan Lisheng, Wang Huaixin, Chen Qingying, et al. Theoretical and experimentalstudy on several refrigerants of moderately high temperature heat pump [J].Applied Thermal Engineering,2011,31(11):1886-1893.
    [42]周湘江,连之伟,叶晓江,等.高温热泵在我国应用的可行性分析[J].流体机械,2003,31(7):55-58.
    [43]胡斌,王文毅,王凯,等.高温热泵技术在工业制冷领域的应用[J].制冷学报,2011,32(5):1-5.
    [44] Wang Kai, Cao Feng, Xing Ziwen. Development and experimental validation ofa high-temperature heat pump for heat recovery and building heating [J]. Energyand Buildings,2009,41(7):732–737
    [45]王凯,曹锋,邢子文.一种新型余热回收高温热泵机组的性能研究[J].西安交通大学学报,2008,42(10):1309-1312.
    [46]张于峰,陈成敏.地热尾水热泵供热工程分析[C]//赵继昌,徐生恒,刁乃仁,等.第四届地温(热)资源开发与地源热泵技术应用论文集.地质出版社,2010:85-90.
    [47]郝红,张于峰,张舸,等.除湿转轮与中高温热泵耦合空调系统性能实验[J].天津大学学报,2008,41(7):864-870.
    [48]郝红,张于峰,邓娜,等.转轮热泵耦合式空调系统的节能性研究[J].太阳能学报,2009,30(1):45-50.
    [49]张于峰,胡晓微,苗哲生,等.高温热泵在除湿转轮空调系统中的性能[J].化工学报,2009,60(9):2177-2182.
    [50]胡晓微.新型干式工业空调系统的研究[D].天津:天津大学环境科学与工程学院,天津大学,2010.
    [51]张振涛,张璧光,顾炼百,等.两级压缩高温热泵木材干燥的研究[J].南京林业大学学报,2007,31(4):41-45.
    [52]王喜平,张壁光,赵忠信.高温热泵除湿干燥技术的初步研究[J].木材工业,1994,8(4):11-13.
    [53]王志国,宋永臣,刘瑜,等.高温热泵室内模拟试验及工业应用[J].机械工程学报,2006,42(7):62-66.
    [54]洪涛,杨坤丽.成都地区地源热泵空调系统的经济分析[J].2009,35(1):249-250.
    [55]薛玉伟,季民,李新国,等.单U、双U型埋管换热器换热性能与经济性研究[J].太阳能学报,2006,27(4):410-414.
    [56]李新国,赵军,朱强.地源热泵供暖空调的经济性[J].太阳能学报,2001,22(4):418-421.
    [57]徐玉党,雷飞,王凡.地热源热泵空调系统的技术经济分析[J].应用科学学报,2003,21(4),377-380.
    [58]中国建筑业协会建筑节能专业委员会.建筑节能技术[C].北京:中国计划出版社,1996:234—244.
    [59]刘雪玲,朱家玲.水源热泵在冬季供暖中的应用[J].太阳能学报,2005,26(2),262-265.
    [60]傅允准,林豹,张旭.深井水源热泵技术经济分析[J].同济大学学报,2006,34(10):1383-1388.
    [61]吴佐莲,刘小春,王萌,等.利用热泵技术回收热电厂余热的可行性与经济性分析[J].山东农业大学学报,2008,39(1):62-68.
    [62]李新国,赵军.低温地热运用热泵供热的技术经济性[J].太阳能学报,2000,21(4):447-450.
    [63]龚延风.空气源热泵全年运行的经济性分析[J].流体机械,2001,30(3):58-62.
    [64] Abdeen Mustafa Omer. Ground source heat pump system and application[J].Renewable and Sustainable Energy Reviews,2008,12(2):344-371.
    [65]王永镖,李炳熙,姜宝成.地源热泵运行经济性分析[J].热能动力工程,2002,17(6):565-567.
    [66] Brenn J, Soltic P, Bach Ch. Comparison of natural gas driven heat pumps andelectrically driven heat pumps with conventional systems for building heatingpurposes[J]. Energy and Buildings,2010,42(6):904-908.
    [67] Lazzarin R, Noro M. District heating and gas engine heat pump: Economicanalysis based on a case study [J]. Applied Thermal Engineering,2006,26(2):193–199.
    [68] Katarína Heikkil. Environmental evaluation of an air-conditioning systemsupplied by cooling energy from a bore-hole based heat pump system [J].Building and Environment,2008,43(1):51–61.
    [69]何国庚,邓承武,饶学华.新型混合制冷剂替代R12的性能研究[J].低温工程,2005,2:28-31.
    [70] Devotta S, Waghmare A.V, Sawant N.N, et al. Alternatives to HCFC-22for airconditioners[J]. Applied Thermal Engineering,2001,21(6):703-715.
    [71] Mark W. Spatz, Samuel F Yana Motta. An evaluation of options for replacingHCFC-22in medium temperature refrigeration systems [J]. International Journalof Refrigeration,2004,27(5):475–483.
    [72] Mohanraj M, Jayaraj S, Muraleedharan C. Environment friendly alternatives tohalogenated refrigerants—A review[J]. International Journal of Greenhouse GasControl,2009,3(1):108-119.
    [73]赵军,李新国,朱强,等.地源热泵用R22及替代工质热力性能研究[J].太阳能学报,2002,23(4):418-421.
    [74]张于峰,唐汝宁.丙烷及其混合物作为空调制冷剂可行性研究[J].制冷学报,1999,2:18-24.
    [75]王松岭,论立勇,谢英柏,等.用R290与R152a混和制冷剂替代R22[J].天然气工业,2005,25(7):115-118.
    [76]李惠黎,任建刚.环保型工质-氢氟烃的生产、性质及应用[M].北京:化学工业出版社,2003.
    [77]高洪亮.绿色替代工质制冷性质的计算及应用[M].郑州:黄河水利出版社,2005.
    [78]张超,刘寅,周光辉.地源热泵的应用对环境的影响分析[J].制冷技术,2008,36(4):62-64.
    [79]赵军,张春雷,李新国,等. U型埋管地源热泵系统实验研究[J].华北电力大学学报,2004,31(6),65-67.
    [80] Fan Rui, Jiang Yiqiang, Yao Yang, et al. Theoretical study on the performanceof an integrated ground-source heat pump system in a whole year[J].Energy,2008,33(11):1671–1679.
    [81]章欣,刘宣,周昭茂.地下水源热泵技术应用及发展[J].电力需求侧管理,2008,10(4):37-41.
    [82]吴挺,赵军,张春雷,等.水平埋管周围土壤温度场数值模拟研究[J].华北电力大学学报,2004,31(6):68-71.
    [83]刘立才,张远东,李世君,等.冷热负荷失衡条件下采能区地温场的模拟研究[J].太阳能学报,2008,29(9):1072-1076.
    [84]张于峰,陈成敏,聂金哲,等. U型埋管系统地下传热数值模拟[J].天大学报,2010,43(8),717-721.
    [85] Fava J, Consoli F, Dennison R, et a1. A Conceptual framework for life—cycleimpact assessment [R]. Pensacola: SETAC and SETAC Foundation forEnvironmental Education.1993.
    [86] IS014040.Environmental management-life cycle assessment—principles andframework.1996.
    [87] Katarína Heikkil. Environmental evaluation of an air-conditioning systemsupplied by cooling energy from a bore-hole based heat pump system [J].Building and Environment,2008,43(1):51–61.
    [88] Matjaz Prek. Environmental impact and life cycle assessment of heating and airconditioning systems, a simplified case study [J]. Energy and Buildings,2004,36(10):1021–1027.
    [89] Inge Blom, Laure Itard, Arjen Meijer. LCA-based environmental assessment ofthe use and maintenance of heating and ventilation systems in Dutch dwellings[J]. Building and Environment,2010,45(11):2362-2372.
    [90] Viral P. Shah, David Col Debella, Robert J. Ries, Life cycle assessment ofresidential heating and cooling systems in four regions in the United States[J].Energy and Buildings,2008,40(4):503–513.
    [91]刘斌,陈杰华,董小勇. R290/R600a混合工质制冷系统泄漏点对系统性能的影响[J].制冷与空调,2011,11(3):61-64.
    [92]任挪颖,晏刚,颜俊,等.自复叠制冷循环中混合工质泄漏性能的研究[J].低温与超导,2007,35(1):61-64.
    [93]赵力,张启.循环工质的泄漏对于中高温热泵性能的影响[J].太阳能学报,2003,24(2):152-156.
    [94]张绍志,苏健,王勤,等.混合工质自动充注装置的研制[J].低温工程,2001,1:28-31.
    [95] NIST (National Institute of Standard Technology) Standard Reference [Z].Database23, Version8.0,2007.
    [96] Jung D, Kim H J, Kim O. A study on the performance of multi-stage heat pumpsusing mixtures[J].International Journal of Refrigeration,1999,22(5):402-413.
    [97]赵鹏程,赵力,丁国良,等.二元混合工质与换热介质的温度匹配在热泵中的应用[J].太阳能学报,2003,24(2):172-177.
    [98]郑丹星.流体与过程热力学[M].北京:化学工业出版社,2010.
    [99]缪道平,吴业正.制冷压缩机[M].北京:机械工业出版社,2001.
    [100]邢子文.螺杆压缩机[M].北京:机械工业出版社,2000.
    [101]彦启森,石文星,田长青.空气调节用制冷技术[M].北京:中国建筑工业出版社,2004.
    [102]吴业正.小型制冷装置设计指导[M].北京:机械工业出版社,1999.
    [103]张乐平,张早校,郁永章.电子膨胀阀流量特性及选型的分析[J],流体机械,2000,28(12),51-53.
    [104] Chen Chengmin, Zhang Yufeng,Deng Na, et.al,Experimental Performance ofModerate and High Temperature Heat Pump Charged with New RefrigerantMixture BY-3[J]. Transactions of Tianjin University,2011,17(5):386-390;
    [105]马最良,姚杨,杨自强,等.水环热泵空调系统设计[M].北京:化学工业出版社,2004.
    [106]段波,因卓华.浅谈提高功率因数的方法[J].建材发展导向,2005,3(A01):66-68.
    [107]李志海,郑水英,吴荣仁.直线压缩机驱动电机功率因数的分析[J].浙江大学学报,2007,41(8):1400-1404.
    [108]黄治钟,曾艺.提高螺杆工制冷压缩机在部分负荷下运行时功率因数的一种方法[J].节能技术,2002,20(1),36-38.
    [109]刘孟,靳付魁,王其玉.提高永磁同步电机的功率因数[J].中国设备工程,2005,9:24-24.
    [110] Papakostas K T, Michopoulos AK, Kyriakis N A. Equivalent full-load hours for399estimating heating and cooling energy requirements in buildings: Greececase400study[J]. Applied Energy,2009,86(5):757–761.
    [111]赵荣义,钱以明,范存养,等.简明空调设计手册[M].北京:中国建筑工业出版社,1998.
    [112]聂金哲.村镇地下储能直接冷却技术研究[D].天津:天津大学环境科学与工程学院,天津大学,2008.
    [113]李玉云.集中式空调系统能耗评价体系的研究[J].暖通空调,2004,34(5):92-96.
    [114]朱秋兰,史琳,陈军,等.水源热泵采暖的综合经济性分析[J].华北电力大学学报,2004,31(6):93-96.
    [115]李秋生.住宅用水源热泵中央空调机组动态特性研究及能耗分析[D].天津:天津大学环境科学与工程学院,天津大学,2003.
    [116]傅允准,林豹,张旭.深井水源热泵技术经济分析[J].同济大学学报,2006,34(10):1383-1388.
    [117] Rey Martínez F J, Velasco Gómez E, Martín García C, et al. Life cycleassessment of a semi-indirect ceramic evaporative cooler vs a heat pump in twoclimate areas of Spain[J]. Applied Energy,2011(88):914–921.
    [118]邓建强,李文良,张早校.燃气热泵系统生命周期评价[J].西安交通大学学报,2006,40(11):1258-1262.
    [119] IS014041. Environmental management-life cycle assessment—Goal anddefinition and inventory analysis.2010.
    [120]杨建新,徐成,王如松.产品生命周期评价方法及应用[M].北京:气象出版社,2002.
    [121]国网能源研究院.2010中国电力供需分析报告[M].北京:中国电力出版社,2010.
    [122] Katarína Heikkil. Environmental impact assessment using a weighting methodfor alternative air-conditioning systems[J]. Building and Environment,2004,39(10):1133–1140.
    [123]邹治平,马晓茜,赵增立,等.水力发电工程的生命周期分析[J].水力发电,2004,30(4):53-55.
    [124]孙继光.浅议天津引进液化天然气的必要性[J].城市燃气,2005,8:20-23.
    [125]王善珂.西气东输管道工程设计参数选取[J].石油规划设计,2001,12(2):14-16.
    [126]邓南圣,王小兵.生命周期评价[M].北京:化学工业出版社,2003.
    [127]胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990.
    [128]刘刚,高轶文,译.企业环境业绩与财务业绩指标的结合——生态效率指标标准化的方法[M].北京:中国财政经济出版社,2003.
    [129] Zhang Bing, Bi Jun, Fan Ziying, et.al. Eco-efficiency analysis of industrialsystem in China: A data envelopment analysis approach[J]. EcologicalEconomics,2008,68(1):306-316.
    [130]周一虹,芦海燕,陈润羊.企业生态效率指标的应用于评价研究——以宝钢、中国石油和应该BP公司为例[J].兰州商学院学报,2011,27(1):112-121.
    [131] Chen Chengmin, Zhang Yufeng, Ma Lijun. Assessment for central heatingsystems with different heat sources: A case study [J]. Energy and Buildings,2011,48:168–174.
    [132]邱寿丰.探索循环经济规划之道循环经济规划的生态效率方法及应用[M].上海:同济大学出版社,2009.
    [133]中国电力规划编写组.中国电力规划[M].北京:中国水利水电出版社,2005.
    [134]国家统计局人口和就业统计司.2010中国人口和就业统计年鉴[M].北京:中国统计出版社,2010.
    [135]朱明善. CFCs和HCFCs替代制冷剂的趋势与展望[J].制冷学报,2000,1:2-9.
    [136]徐晨萌.实验分析新建筑的首年采暖能耗[J].山西建筑,2011,37(11):194-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700