用户名: 密码: 验证码:
矾冰纳米乳制剂研究及其安全性和药效学评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     本研究利用纳米生物技术,以传统中药外用复方矾冰液为研究模型,研制矾冰纳米乳,达到优化剂型、提高载药量、减小给药剂量、降低毒副作用和提高疗效的目的。
     研究方法
     一、矾冰纳米乳制剂研究
     1.空白纳米乳处方筛选。筛选油相,根据冰片在油相中的溶解性,确定矾冰纳米乳剂的油相为油酸乙酯。固定油相,以聚氧乙烯山梨醇脂肪酸-80(Tween80)、聚氧乙烯醚(40)氢化蓖麻油(RH40)、聚氧乙烯辛基苯基醚(OP-10)、蓖麻油聚氧乙烯(EL)等为表面活性剂,以丙二醇、甘油、正辛醇、乙二醇乙醚、聚甘油酯为助表面活性剂,与油相混合,考察其乳化能力。
     2、矾冰纳米乳的制备。用伪三元相图进行处方优选,分别将冰片、白矾加入RH40/油酸乙酯/水纳米乳中制备矾冰纳米乳。建立矾冰纳米乳中冰片(龙脑)含量检测的气相色谱分析方法,并考察其载药量和包封率;以络合滴定法测定白矾(含水硫酸铝钾)的含量;利用透射电子显微镜、激光粒度分布仪对其形态、粒径进行考察;通过稳定性参数测定、热压灭菌试验、常温试验、冷冻-加热循环试验等考察其稳定性。
     3、矾冰纳米乳的体外释放、透皮试验。采用Franz扩散池进行体外经皮渗透试验,气相色谱法测定皮肤接收液中矾冰纳米乳的药物浓度,并与矾冰液比较,考察矾冰纳米乳的透皮特性。
     二、安全性评价
     1、家兔皮肤急性毒性试验。家兔36只,随机分为6组:完整皮肤对照组、完整皮肤矾冰纳米乳低剂量组、完整皮肤矾冰纳米乳高剂量组、破损皮肤对照组、破损皮肤矾冰纳米乳低剂量组、破损皮肤矾冰纳米乳高剂量组。每天局部给药4次,连续14天。每天观察给受试物后动物的全身中毒表现和死亡情况。
     2、长期毒性试验。48只家兔,随机分为8组,即完整皮肤对照组(基质组)、完整皮肤矾冰纳米乳低、中、高剂量组,破损皮肤对照组、破损皮肤矾冰纳米乳低、中、高剂量组,每组各6只。各组连续皮肤涂药13周后进行常规观察、血液学、血液生化、系统尸检、组织病理学检查。
     3、细胞毒性试验。体外培养L-929细胞作为体外细胞模型,MTT法测定矾冰纳米乳对皮肤成纤维细胞的细胞毒性结果。
     4、皮肤过敏性试验。30只白色雄性豚鼠,随机分为3组,包括阴性对照组、阳性对照组和受试物组。致敏接触和激发接触空白纳米乳、阳性对照物2,4-二硝基氯苯和矾冰纳米乳后,观察皮肤过敏性反应。
     5、皮肤刺激性试验。家兔6只,将背部皮肤脱毛区分为完整皮肤对照区、完整皮肤给药区、破损皮肤对照区、破损皮肤给药区4个区域,给予矾冰纳米乳、空白纳米乳,每天1次,连续给药7天,观察皮肤刺激性。
     三、药效学研究
     1、矾冰纳米乳对大鼠深Ⅱ度烫伤模型的影响。140只SD大鼠,造成深Ⅱ度烫伤模型,随机分为7组,即空白对照组、基质组、阳性对照组、矾冰纳米乳低、中、高剂量组、矾冰液组,采用相应药物局部涂抹,连续给药21d。每天观察创面愈合情况,记录创面愈合时间,分别于第7、14及21天计算创面愈合率,第7天取创面组织测定皮肤羟脯氨酸含量并进行病理组织学检验。
     2、体外抗菌试验。分别采用琼脂扩散法、体外杀菌试验及试管稀释法,测定矾冰纳米乳对临床常见病原菌的体外抑菌、杀菌效果及最低抑菌浓度(MIC)
     3、抗炎作用。50只KM小鼠,随机分为5组,即基质组、醋酸地塞米松软膏组、矾冰纳米乳低、中、高剂量组,用二甲苯诱导小鼠右耳肿胀,左耳对照,观察两耳肿胀度。60只SD大鼠,随机分为6组,即基质组、醋酸地塞米松组、矾冰纳米乳低、中、高剂量组、矾冰液组,用蛋清致炎制作大鼠蛋清性足肿胀模型,于致炎前后用毛细管放大法测定右后足跖容积,观察致炎前后肿胀度。
     4、镇痛作用。50只KM小鼠,随机分为5组,即基质组、阳性药物对照组、矾冰纳米乳低、中、高剂量组,连续3d分别将各组药物均匀涂于小鼠腹部,第4d末给药30分钟后,每只小鼠腹腔注射醋酸溶液,记录小鼠15分钟内的扭体次数,比较药物组与对照组的扭体次数差异。取预选痛阈值合格的雌性小鼠50只,随机分为5组(分组方法同上),记录用药前后小鼠放入预热烧杯至出现舔后足所需时间(s)。
     5、抗痒痛作用。60只KM小鼠,随机分为6组:基质组、矾冰液组、醋酸地塞米松软膏组、矾冰纳米乳低、中、高剂量组,甲醛注射制作小鼠痒痛模型,记录不同时间小鼠舔咬右后足或抓咬阴器的次数,比较各组之间的差异。60只豚鼠,随机分为6组,分组方法同上,以磷酸组胺溶液制作局部瘙痒模型,记录并比较各组的致痒阈。
     研究结果
     一、矾冰纳米乳研究
     伪三元相图显示RH-40与油酸乙酯形成的纳米区域最大,并确定RH40与OP-10为表面活性剂及其和油相的比例。纳米乳处方筛选结果显示:纳米乳的表面活性剂为聚氧乙烯醚(40)氢化蓖麻油,助表面活性剂为甘油,汕相为汕酸乙酯;制备的空白纳米乳为澄清、透明、略带淡蓝色乳光的液体,电镜下呈球形,粒径为28.15nm,亚甲基蓝染料在其中的扩散速度明显大于苏丹红Ⅲ的扩散速度,为水包油型。
     经伪三元相图及稳定性试验得到了矾冰纳米乳中油酸乙酯的最佳用量为0.6%(g/g),油酸乙酯与RH-40的比例为1:3.5。
     建立了气相色谱法检测冰片中龙脑含量,龙脑在0.1015 mg.mL-1~1.015 mg.mL-1范围内线性关系良好,平均回收率为100.59%(RSD为2.72%),龙脑的平均含量为1.48mg.mL-1。络合滴定法测定矾冰纳米乳中含水硫酸铝钾平均含量为13.70 mg.mL-1,平均回收率为98.26%(RSD为0.92%)。经考察连续制备的三批聚氧乙烯醚(40)氢化蓖麻油/油酸乙酯/白矾、冰片纳米乳为澄清、透明、略带淡蓝色乳光的液体,电镜下呈球形,平均粒径为26.1 nm,Zeta电位为-0.51±1.47 mV,载药量为1.35mg.mL-1,包封率大于80%,矾冰纳米乳的稳定性参数为4.48±0.63。
     矾冰纳米乳24h的累积释放量为(2083.00±431.17)μg·cm-2,其平均透皮速率为84.07μg·cm-2·h-1,结果显示矾冰纳米乳的透皮能力优于对照组。
     二、安全性评价
     1、家兔连续给予矾冰纳米乳14天后未见全身中毒表现和死亡情况,动物体重增加,对呼吸、循环、中枢神经系统、四肢活动等无影响。破损皮肤个别动物有轻微红斑而无水肿,停药后24h即消失,用药区无药物残留斑点。
     2、矾冰纳米乳各剂量组动物的外观行为、体重、脏器系数、血液学和血液生化学指标与对照组比较无显著性差异,组织病理学检查未见明显异常,停药后也未见药物延迟性毒性反应。
     3、纳米矾冰乳对L929培养细胞无明显毒性作用,细胞形态良好,细胞毒性属于1级。
     4、受试豚鼠的局部皮肤未出现红斑、水肿等过敏反应。
     5、家兔单次和多次给药后,完整皮肤和破损皮肤均未见红斑、水肿等皮肤刺激反应。
     三、药效学试验
     1、矾冰纳米乳各剂量组创面于19-25d基本愈合;低剂量、中高剂量组与空白对照组比较,能缩短创面愈合时间(P<0.05;P<0.01),创面愈合百分率明显增高(P<0.05;P<0.01);各实验组羟脯氨酸含量在烫伤后7d高于空白对照组,但差异无显著性;创面组织病理形态学结果提示矾冰纳米乳具有明显的促进烫伤创面愈合的作用。
     2、矾冰纳米乳对金黄色葡萄球菌、表皮葡萄球菌、大肠埃希菌、铜绿假单胞菌、白假丝酵母菌的抑制及杀灭活性均明显强于矾冰液(p<0.05);对金黄色葡萄球菌、铜绿假单胞菌、大肠埃希菌临床菌株MIC9o值分别为1.02、2.04和2.04 mg. mL-1,均明显低于矾冰液的MIC90值(p<0.05)。
     3、矾冰纳米乳各剂量组对二甲苯诱导的小鼠耳肿胀均有不同程度的抑制作用,中、高剂量组与基质组比较,差异具有显著性意义(P<0.05);低、中、高剂量组于致炎后1-6h,可不同程度的抑制大鼠蛋清性足跖肿胀,与基质组比较差异有显著性:(P<0.05,P<0.01)。
     4、矾冰纳米乳各剂量组具有抑制醋酸诱发的小鼠扭体反应,但与对照组比较差异无显著性意义(P>0.05);与对照组比较均有延长小鼠热板致痛反应痛阈值的趋势,但差异无显著性意义(P>0.05)。
     5、矾冰纳米乳各剂量组能减少小鼠舔咬后足或抓咬阴器次数,与基质组比较差异有统计学意义(P<0.01);中、高剂量组能明显提高豚鼠的致痒阈(P<0.05,P<0.01)。
     结论
     1、筛选的空白纳米乳符合纳米乳的要求。
     2、通过优选处方、工艺制得的矾冰纳米乳为O/W型复合纳米乳,为澄清、透明、略带淡蓝色乳光的液体,平均粒径为26.1 nm,质量稳定,符合2010年版中国药典乳剂项下的要求。
     3、矾冰纳米乳具有良好的透皮能力,其透皮作用的机制与冰片和乳剂的纳米尺寸有关。
     4、矾冰纳米乳对动物正常皮肤及破损皮肤长期给药无明显毒性反应,对L929细胞无明显毒性作用,对动物皮肤无致敏性,对正常皮肤和破损皮肤均无刺激性。
     5、与传统药物矾冰液比,矾冰纳米乳具有明显的促进烫伤创面愈合、抗炎、抗痒痛作用。
Aims
     The aims of this study was to develop Alum-Borneol nanoemulsion based on the traditional Alum-Borneol liquid. Nano biotechnology was used to optimize the formulation and technology to improve drug loading, reduce the dose, decrease side effects and improve efficacy.
     Methods
     1. The preparation study of Alum-Borneol nanoemulsion
     1.1 Blank nanoemulsion formulation screening.
     The oil phase of the Alum-Borneol nanoemulsion has been determined on the basis of solubility of the borneol in oil phase. The oil phase has been set firstly. Tween80, RH40, OP-10, and EL were selected as surfactant, while propylene glycol, glycerin, octanol, ethylene glycol ether and polyethylene glycerol were selected as co-surfactant, and then all of those were mixed with oil phase to investigate the emulsification.
     1.2 The preparation of Alum-Borneol nanoemulsion
     The optimized prescription was screened by pseudo-ternary phase method. The borneol and alum were added into RH40, ethyl oleate or water nanoemulsion to produce Alum-Borneol nanoemulsion. The analysis method of gas chromatography was established to detect the content of borneol in the Alum-Borneol nanoemulsion, and its drug loading and encapsulation efficiency. The content of alum (hydrated aluminum potassium sulfate) was detected by complexometric titration. The particle morphology and particle diameter were assayed by transmission electron microscopy and laser particle size distribution analyzer, respectively. Stability parameters determination, hot sterilized test, temperature test, freezing-heating cycle test were used to study its stability.
     1.3 In vitro release and penetration tests of Alum-Borneol nanoemulsion
     Franz diffusion cell was used to do percutaneous penetration test, while the gas chromatography was used to detect the drug concentration of Alum-Borneol nanoemulsion from the skin received liquid and compared with Alum-Borneol and then the transdermal properties of Alum-Borneol nanoemulsion were investigated.
     2. Safety evaluation of Alum-Borneol nanoemulsion
     2.1 Rabbit skin acute toxicity trial
     36 rabbits were randomly divided into 6 groups:the complete skin control group, intact skin of ice nanoemulsion low dose alum group, intact skin of ice nanoemulsion high dose alum group, skin and the control group, skin and Alum-Borneol nanoemulsion low dose group, skin and Alum-Borneol nanoemulsion high dose group. The drugs were administered 4 times a day for 14 days to observe the performance of systemic poisoning of animals and death situation of subjects on a daily basis.
     2.2 The long-term toxicity tests
     48 rabbits were randomly divided into 8 groups, including intact skin the control group (matrix group), alum skin, full of ice nanoemulsion low, medium and high dose group, skin and the control group, skin and Alum-Borneol nanoemulsion low, medium, high-dose group with 6 rabbits, respectively. Routine observations of hematology, blood biochemistry, systems autopsy and histopathologic examination were conducted after 13 weeks of continuous skin application in every group.
     2.3 Cytotoxicity test
     L-929 cells were cultivated in vitro cell as model, while MTT method was used to test the cytotoxicity of Alum-Borneol nanoemulsion to skin fibroblast cell.
     2.4 Skin allergy test
     30 white male guinea pigs were randomly divided into 3 groups, including the negative control group, positive control and test substance groups. The skin allergy was observed after the allergy exposure and stimulation in negative control group with blank nanoemulsion, positive control group with 2,4-dinitrochlorobenzene and the test substance group with Alum-Borneol nanoemulsion.
     2.5 Skin irritation test
     There were in total 6 rabbits whose back skin hair was removed. They were divided into completed control areas of skin, completed areas of skin for drug administration, broken skin control area, and broken skin for drug administration. Those 4 areas were given Alum-Borneol nanoemulsion and blank nanoemulsion on a daily basis for 7 days and then the skin irritation was observed.
     3. Pharmacodynamics
     3.1 Deep II degree burn model in rats.
     140 SD rats with deepⅡdegree burn were randomly divided into 7 groups, which were control group, matrix group, positive control group, low, medium and high dose alumina nano-ice milk group and alum icing fluid group. After appropriate medication, continuous administration was carried out in each group for 21 days. The situation of wound healing was observed everyday and the wound healing time were recorded respectively. The calculation of wound healing rate was calculated on the seventh, fourteenth and twenty-first days. The wound tissue was collected on the seventh day to do the skin hydroxyproline determination test and histopathological examination.
     3.2 In vitro antibacterial test
     Agar diffusion method, in vitro bactericidal test and tube dilution method were used to test. The effects of alumina ice nanoemulsion on clinical common pathogens in vitro antibacterial, bactericidal effects and minimum inhibitory concentration (MIC).
     3.3 Anti-inflammatory effect
     50 KM mice were randomly divided into 5 groups, including matrix group, dexamethasone acetate ointment group, low, medium and high dose Alum-Borneol nanoemulsion groups, with the xylene to induce right ear swelling, and left ear as control to observe the two swelling ears.60 SD rats were randomly divided into 6 groups, including matrix group, dexamethasone acetate group, low, medium and high Alum-Borneol nanoemulsion dose groups, alum icing fluid group. Making white rat inflamed paw swelling model using egg white. Capillary enlarge method was used to test the volume of right hind paw and the swelling was observed before and after the inflammation.
     3.4 Analgesic effect
     50 KM mice were randomly divided into 5 groups, including matrix groups, positive control group, low, medium and high Alum-Borneol nanoemulsion dose groups. Each drug was applied to each group evenly to the abdomen of mice.30 minutes after the end of administration on the fourth day, each mouse was injected with acetic acid solution, and then the mice's writhing within 15 minutes was recorded, the differences in the times of writhing between the control group and drug group were compared.50 female mice which were selected according to pre-qualified pain threshold were randomly divided into 5 groups (groups as above). The time between the mice been put in to pre-heated beaker and the time they licked the back legs were recorded before and after the treatment with drugs.
     3.5 Anti-itching effect
     60 KM mice were randomly divided into 6 groups, including matrix group, alum icing fluid group, dexamethasone acetate ointment group, Alum-Borneol nanoemulsion low, medium and high dose groups. The mice tickle model was established by injecting mice with formaldehyde. The different time when the mice licking the right hind bite or scratch and bite genitals were recorded to compare the differences among groups.60 guinea pigs were randomly divided into 6 groups described as above in order to make local itching histamine phosphate solution model. The itching threshold of each group was recorded and compared among each group.
     Results
     1.The preparation of Alum-Borneol nanoemulsion
     Pseudo-ternary phase diagram showed the nano region formed by the RH-40 and the oil ethyl was the biggest, and the ratio of surfactant and oil phase were determined. Nanoemulsion formulation screening results showed that the surfactant of nanoemulsion was 40-polyoxyethylene castor oil, the co-surfactant was glycerol and oil phase was ethyl oleate. Blank nanoemulsion was clear, transparent, slightly opalescent pale blue liquid. The particles were spherical under electron microscope with diameter of 28.15 nm. The diffusion rate of methylene blue was significantly higher than that of Sudan III for oil in water type which is in line with the requirements of nanoemulsion.
     The pseudo-ternary phase diagram and the stability test were used to establish oil Alum-Borneol nanoemulsion dosage of ethyl to be 0.6% (g /g), ethyl oleate and RH-40 ratio of 1:3.5. Gas chromatography was used to detect borneol content, the standard curve for borneol had a good linear relationship between 0.1015 mg.mL-1 to 1.015 mg.mL-1. The average content of borneol was 1.48 mg·mL-1 with the average recovery rate as 100.59% and the recovery rate of RSD was 2.72%. The average concentration of aluminum potassium sulfate was 13.70 mg·mL-1 in Alum-Borneol nanoemulsion which was detected by complexometric titration. Its average recovery was 98.26%, and the recovery rate of the RSD was 0.92%. The consecutive three batches of 40-polyoxyethylene castor oil/ethyl oleate/alum borneol nanoemulsion were clear, transparent and slightly opalescent pale blue liquid. It was spherical under electron microscope with average particle diameter of 26.1 nm and zeta potential wa -0.51±1.47 mV. Its drug loading was 1.35mg·mL-1 and had more than 80% encapsulation efficiency rate. The stability parameter of Alum-Borneol nanoemulsion was 4.48±0.63.
     The release rate of Alum-Borneol nanoemulsion after 24 h accumulation was (2083.00±431.17)μg·cm-2, which average penetration rate 84.07μg·cm-2·h-1. The results show that the transparency of Alum-Borneol nanoemulsion was better than the control group.
     2. Safety evaluation
     2.1 There was no systematic toxicity and death in the subjects of rabbits after giving Alum-Borneol nanoemulsion. The rabbits had gained weight and there was no harm to the rabbits'biological system including respiratory, circulatory, central nervous system, limbs and other activities. There was slight erythema but no individual animal edema in the very few subjects whose symptoms disappeared after 24 h with no drug residues spots in drug area.
     2.2 There was no significant difference in appearance of each dose group behavior of animals, body weight, organ coefficient, hematology and hematological indices in the Alum-Borneol nanoemulsion group when compared with the control group. There were no obvious abnormalities in histopathological examination and no delayed symptoms of toxicity after stopping the drugs.
     2.3 The Alum-Borneol nanoemulsion had no significant toxicity on L929 cells and the cell morphology was good with first class of cell toxicity.
     2.4 There was no local skin erythema and no other allergic reactions in tested guinea pigs.
     2.5 Neither of the intact skin or damaged skin of tested rabbits showed erythema, edema or other skin irritations after single and multiple dosing.
     3.pharmacodynamics
     3.1 The wound treated with different doses of Alum-Borneol nanoemulsion were healed between 19 and 25 days. The healing time of the low and high dose groups was significantly shorten than the blank control group (P<0.05; P<0.01). The wound healing rate of the former was significantly higher (P<0.05; P<0.01) than the later and the content of hydroxyproline in each experimental groups was higher than the control group 7 days after the burn, but the difference was not significant. The pathological results suggested that Alum-Borneol nanoemulsion had significantly better healing effects on burn wounds.
     3.2 The effects of Alum-Borneol nanoemulsion to staphylococcus aureus, staphylococcus epidermidis, escherichia coli, pseudomonas aeruginosa, candida albicans. The killing or inhibitory activity was significantly stronger than Alum-Borneol fluid (P<0.05); the MIC90 values of Alum-Borneol nanoemulsion on staphylococcus aureus, pseudomonas aeruginosa, clinical escherichia coli were 1.02,2.04 and 2.04 mg.mL-1 which were significantly lower than the MIC90 values of Alum-Borneol fluid (P<0.05).
     3.3 The Alum-Borneol nanoemulsion dose groups had different degrees of inhibition for the xylene-induced ear edema in mice. There was significant differences (P<0.05) between the medium, high dose groups and the base group. There was significant different degrees of inhibition of egg white rat paw edema when compared with low, medium and high dose groups in inflammation after 1-6 h with matrix groups (P <0.05, P<0.01).
     3.4 The Alum-Borneol nanoemulsion could significantly inhibit the acetic acid induced writhing in mice, but there was no significant difference when compared with the control group (P> 0.05). There was a trend of prolonging the hot plate pain threshold in mice when compared with the control group, but the difference was not significant (P> 0.05).
     3.5 The Alum-Borneol nanoemulsion could reduce the times of licking biting or scratching biting genitals in mice when compared with the matrix group and the difference was significant (P<0.01); in medium and high dose groups it could significantly improve the itching threshold of guinea pig(P<0.05, P<0.01).
     Conclusions
     1. The proposed blank nanoemulsion can meet the requirements of nanoemulsion.
     2.The Alum-Borneol nanoemulsion obtained through the optimization of formulation is O/W type, it was clear, transparent and slightly opalescent pale blue liquid with average particle diameter of 26.1 nm, which meets the requirements of Chinese Pharmacopoeia (2010 edition).
     3.The Alum-Borneol nanoemulsion has no significant toxic effect on animals'skin, normal skin and damage after long-term administration. There was no significant toxic effect on L929 cell, or on skin allergies as well as no irritation to broken skin or normal skin.
     4.The Alum-Borneol nanoemulsion obviously improves the burn wound healing. It has anti-inflammatory and anti-itching effects. It may have analgesic and antibacterial effects on a broad-spectrum of bacteria and fungus. The Alum-Borneol nanoemulsion is significantly more effective than the traditional drug of Alum-Borneol fluid.
     5.The Alum-Borneol nanoemulsion has a good penetration capacity through skin.
引文
[1]张阳德.纳米生物技术学[M].北京:科学出版社,2007.
    [2]冯年平.中药纳米制剂探讨.世界科学技术—中医药现代化[J],2003,5(4):51-53.
    [3]Keahler T.Nanotechnology:basic concepts and definitions[J].Clin Chem,1994, 40(9):1797
    [4]张颖,陈世玲,盖国胜,等.中草药与难溶药物超细粉碎技术的应用[J].世界科学技术.2001,32(3):9-12.
    [5]屠梅芳,施顺清.试论中药剂型改进的思路[J].中草药,2001,32(10):956.
    [6]徐碧辉,杨祥良,谢长江,等.纳米技术在中药研究中的应用[J].中国药科大学学报.2001,32(3):162.
    [7]陆彬.药物新剂型与新技术(第2版)[M]北京:人民卫生出版社,2005.
    [8]翟志光.以良附丸为模型药物的中药复方微乳载药体系研究[D].北京中医药大学博士论文,2007.
    [9]刘丽芳,周青,刘鸿宾.矾冰液湿敷治疗浅Ⅱ度烧伤120例临床观察[J].中国中医急症,2002,11(6):448.
    [10]黄坚,程宇星,熊凤珍等.矾冰液治疗烧伤157例疗效观察[J].新中医,2002,34(9):25-26.
    [11]曾韧,周青.矾冰液湿敷治疗变态反应性皮炎50例疗效观察[J].湖南中医药导报,2001,7(8):411.
    [12]刘丽芳,周青.青黛散合矾冰液外治带状疱疹60例临床观察[J].中医外治杂志,2002,11(3):18.
    [13]许惠林,郭贤立.矾冰液外用治疗糖尿病足62例[J].新中医,2005,37(9):76.
    [14]严志登等.矾冰液治疗外科感染性创面85例疗效观察[J].中华实用医药杂志,2003,3(14)
    [15]刘华,李冬雅,黄乃矿.矾冰液湿敷治疗化疗药物性静脉炎的临床观察[J].湖南中医学院学报,2000,20(3):61-62.
    [16]阳涛.矾冰液湿敷预防静滴甘露醇所致静脉炎的护理体会[J].中医药导报2005,11(11):46,60.
    [17]李东雅.矾冰液湿敷治疗20%甘露醇静脉滴注外渗的观察[J].当代护士·学术版,2007,(5):71-72.
    [18]魏晓琦,谭莉.矾冰液湿显敷治疗1—2级放射性皮炎的临床观察[J].中医药导报,2009,15(4):59.
    [19]张红,苏志新.康复新液联合矾冰液治疗Ⅲ度急性放射性皮肤损伤的临床观察[J].中国中医急症,2009,18(2):215.
    [20]魏晓琦.矾冰液联合康复新液湿敷治疗Ⅲ~Ⅳ度放射性皮肤损伤的护理观察[J].医学创新研究,2008,5(35):96
    [21]国家药典委员会编.中华人民共和国药典(2005年版一部)[M].北京:化学工业出版社,2005年1月.
    [22]韩进庭.白矾的药理作用及临床应用研究进展[J].现代医药卫生,2006,22(24):3763-3764.
    [23]严梅桢.白矾对小鼠肠道微生态平衡的影响[J].中国中西结合杂志,1999,19(9):54.
    [24]和喜梅,陈小让,何欣.白矾对大鼠学习记忆能力的影响[J].郑州大学学报(医学版),2006,41(6):1075-1077.
    [25]赵文树,武鸿斌.白矾在肛肠科的临床应用[J].中医药学报,2004,32(2):41-42.
    [26]古娟珍,阎炜,刘超.结肠敬保留灌肠治疗慢性结肠炎临床现察[J].实用医技杂志,2004,11(9):1855-1856.
    [27]杨建华等.内外合治溃疡性结肠炎100例[J].吉林中医药,2008,28(11):813-814.
    [28]张健.茵陈消黄汤治疗重型黄疸性肝炎32例[J].陕西中医,2008,29(3):303-304
    [29]张琪海.中药敷脐治疗急慢性病毒性肝炎47例[J].陕西中医,2001,22(7):412-413.
    [30]陈丕烈.定痫证散治疗痫证44例[J].陕西中医,2003,24(4):326.
    [31]曲宏民,李艳.愈痫灵新散治疗难治性癫痫12例[J].河南中医,2005,25(12):46-47.
    [32]卢立军.仙人掌和白矾外敷治疗小儿腮腺炎32例分析[J].中国误诊学杂志,2007,7(22):5378.
    [33]李云.马齿苋和白矾外敷治疗小儿腮腺炎[J].基层医学论坛,2008,12(9):823.
    [34]张爱华,李月辉,曹庆玲.仙人掌加白矾治疗重度静脉炎56例[J].中国民间疗法,2007,15(9):9.
    [35]褚静.仙人掌加白矾的妙用[J].中医外治杂志,2007,16(4):29.
    [36]孙永恒.B超定位经皮肾穿刺注射白矾五倍子液治疗肾囊肿[J].新医学,2004,35(9):550-551.
    [37]孙景涛,魏文凯,陈相梅等.浅谈二味拔毒散在皮外科临床运用的体会[J].中外健康文摘,2008,(22):11-12.
    [38]李滨,王旭程.白鲜皮白矾制剂治疗扁平疣24例[J].中国民间疗法,2000,8(9).
    [39]刘耿熙,刘琳霞.二白汤治疗扁平疣32例[J].中国民间疗法,2002,10(2):43.
    [40]孙成龙.仙人掌伍用白矾治疗带状疱疹54例[J].中国社区医师,2000,19(23):38.
    [41]宋红艳.中药治疗婴幼儿鹅口疮临床疗效分析[J].口腔医学,2995,25(3):190-191.
    [42]蒋王林,傅风华,田京伟等.口腔溃疡含片对大鼠实验性口腔溃疡的治疗作用[J].中草药,2003,23(9):835-837.
    [43]陈发祥.盐矾散治疗牙龈炎[J].新中医,2006,38(6):3.
    [44]廖辉,彭吉军,李丽等.经皮穿刺卵巢巧克力囊肿内注射复方白矾溶液远期疗效观察[J].中国中医急症,2008,17(12):1693-1694.
    [45]傅兰芳,安玉梅.中药治疗宫颈糜烂的疗效观察[J].宁夏医学院学报,2000,22(3):221-222.
    [46]黄晓敏,廖玲军,曾松荣,等.梅花冰片3种剂型体外抗茵活性研究[J].江西中医学院学报,2005,17(1):63-65.
    [47]赵晓洋,蝎福,葛荣明,等.冰片抗真菌作用的超微结构观察[J].哈尔滨医科大学学报,1992,20(3):295-297.
    [48]常颂平,李玉春.冰片对真茵细胞超微结构的影响及治疗化脓性中耳炎的临床应用[J].中国中药杂志,2000,25(5):306-308.
    [49]夏忠玉,何庆,李诚秀,等.天然冰片胶囊的药效学试验分析[J].贵州医药,2006,30(4):361-362.
    [50]方永奇,邹衍衍,李羚,等.芳香开窍药和祛痰药对中枢神经兴奋性的影响[J].中医药研究,202.18(3):04.
    [51]何晓静,肇丽梅,刘玉兰,等.冰片注射液对小鼠实验性脑缺血的保护作用[J].华西药学杂志,2005,20(4):323-325.
    [52]何晓静,菅凌燕,刘玉兰,等.冰片注射液对小鼠实验性脑缺血的保护作用[J].新乡医学院学报,2006,23(1):23-25.
    [53]何晓静,肇丽梅,刘玉兰,等.冰片注射液对实验性脑缺血的保护作用[J].广东药学院学报,2006,22(2):171.173.
    [54]何晓静,吕庆杰,刘玉兰,等.冰片注射液对缺血再灌注大鼠脑内炎症反应的影响[J].华西药学杂志,2006,21(6):523-526.
    [55]肇丽梅,何晓静,刘玉兰,等.冰片注射液对小鼠脑缺血再灌注后学习和记忆行为的影响[J].华西药学杂志,2006,21(1):60-62.
    [56]薜丽,谌小维,樊宏孝.等.冰片对长时间连续作业大鼠前额叶皮层单胺类递质水平的影响[J].第三军医大学学报,2006,28(18):1867.
    [57]樊双义,谌小维,樊宏孝.等.冰片对长时连续作业大鼠觉醒能力及认知功能的影响[J].药物不良反应杂志,2006,8(2):101-104.
    [58]刘养凤,张伯礼.冰片的药理学研究进展[J].中医药学报,2003,31(6):55-58.
    [59]肖玉强,张良玉,唐海涛,等.冰片促进砷剂透过血脑屏障实验研究[J].中华神经外科疾病研究杂志,2007;6(3)244-246.
    [60]刘娜,高祥春.冰片可控性开放血脑屏障的实验研究[J].潍坊医学院学报,2007,29(6):398-400.
    [61]董先智,汤小爱,高秋华,等.冰片对顺铂透血脑屏障促进作用的研究[J].中国药学杂志,2002,37(4):275-277.
    [62]许卫华,王晖,许卫铭,等.川芎嗪的鼻腔吸收及冰片的促进作用[J].中国临床药理学与治疗学,2002,7(5):434-436.
    [63]陈新梅,朱家壁,孙卫东,等.冰片对人参皂苷RgI鼻腔吸收的促进作用及鼻腔纤毛毒性研究[J].中国药学杂志,2006,41(4):261-264.
    [64]吕长江,赵荣淑,李范珠,等.眼镜蛇神经毒素鼻黏膜透过性的研究[J].中国现代应用药学,2006,23(2):169-171.
    [65]吴庆知,高秋华,朱玉山,等.冰片对胰岛素透黏膜吸收的促进作用研究[J].华中科技大学学报(自然科学版),2001,29(A01):41-43.
    [66]胡利民,樊官伟,高秀梅,等.天然冰片、合成冰片对大鼠胃黏膜屏障影响的比较[J].天津中医学院学报,2005,24(3):123-125.
    [67]吴寿荣,程刚,王琳,等.冰片对利福平大鼠小肠的吸收动力学影响[J].沈阳药科大学学报,2003,20(4):245-248.
    [68]冯亮,蒋学华,周静,等.三七皂苷R1和人参皂苷Rg1的大鼠在体肠吸收动力学研究[J].中国药学杂志,2006,41(14):1097-1102.
    [69]许碧莲,王晖,许卫铭,等.冰片对盐酸川芎嗪促透作用的研究[J].中成药,2001,23(12):864-867.
    [70]王灿.冰片对中医眼科外用药促渗作用的研究[J].中国中医基础医学杂志,2002.8(6):46,54.
    [71]向柏,方瑜,郑小莉,等.复方丹参滴丸的临床应用进展[J].中成药,2007,29(12):1819-1820.
    [72]阎向东,杨雁,李彩霞,等.调督抗痫胶囊治疗癫痫105例疗效观察[J].山东中 医杂志,2006,25(11):22-24.
    [73]李红磊,张忠义,成海民-丹参酮和丹酚酸复合微乳的初步研究[J].中药材,2006,29(4):376-380.
    [74]崔福德,药剂学(第6版)[M].北京:人民卫生出版社,2008.
    [75]崔正刚,段福珊.微乳化技术及应用[M].北京:中国轻工业出版社,1999.
    [76]吴旭锦.紫苏子纳米油的研究[D].西北农林科技大学博士论文,2008.
    [77]张阳德.纳米药物学[M].北京:化学工业出版社,2006.
    [78]Waris Noicharoen W, Lansley AB, Law Rence M J.Nonionic oil-in-water microemulsions:the effect of oil type on phase behaviour[J].Int J Pharm,2000, 198:7-27.
    [79]赵宝玺,朱埗瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003,589-634.
    [80]安红丽.原花青素纳米乳的研制[D].西北农林科技大学硕士论文,,2007.
    [81]Lawrenoe MJ,Rees GD.Advanced Drug Delivery Reviews[J].2000,15:89.
    [82]杨雪云,欧阳五庆,曹发昊,等.复方阿莫西林纳米乳的制备及其稳定性研究[J].西北农林科技大学学报(自然科学版),2008,36(12):19-23.
    [83]杨惊宇.隐丹参酮微乳的制备工艺及相对生物利用度的测定[D].湖南中医学院硕士学位论文,2005.
    [84]孙红武.黄连素纳米乳给药系统的研究[D].西北农林科技大学博士论文,2007.
    [85]祝伟伟,翟光喜,于爱华.喷昔洛韦微乳经皮渗透的研究[J].山东大学学报(医学版),2008,46(3):320-323.
    [86]王晖.经皮给药的药代动力学研究进展[J].中国临床药理学与治疗学,2007,12(11):1216-1220.
    [87]李熙,刘玉亭,吴淑梅,等.青藤碱微乳体外透皮特性的研究[J].中成药,2008,30(8):1119-1122.
    [88]祝红达,张先洲.微乳透皮给药系统的研究概况[J].中国药师,2006,9(9):849-851.
    [89]Bockman R S, Boskey A L,Blumenthal N C,et al. Gallium in-creases bone calcium and crystallite perfection of hydroapatite[J]. Calcif Tissue Int.1986,39(6): 376-381.
    [90]Sintov A C,Botner S.Transdermal drug delivery using microemulsion and aqueous systems:influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems [J].Int J pharm,2006,311(1-2):55-62.
    [91]何欣.雷公藤多甙纳米乳透皮给药系统的研究[D].西北农林科技大学博士论文,2008.
    [92]徐钢梅,张彩霞,宁丽.MTT法评价镓合金的细胞毒性[J].中华口腔医学杂志,2001,36(3):189-192
    [93]国家食品药品监督管理局.化学药物刺激性、过敏性和溶血性研究技术指导原则[S].2005年3月。
    [94]李仪奎.中药药理实验方法学(第二版)[M].上海:上海科学技术出版社,2006,10:1020-1022.
    [95]王东风,李宁,张波.双黄烧烫伤喷雾剂对大鼠烫伤治疗作用的研究[J].中国医药导报,2009,6(2):69-70.
    [96]黄沙,金岩,吴红,等.甲基丙烯酸羟乙酯-胶原抗菌药物缓释膜促SD大鼠烧伤创面愈合的实验研究[J].生物医学工程与临床,2005,9(1):4-6.
    [97]中华人民共和国卫生部药政局制定发布.中药新药研究指南(药学、药理学、毒理学)[S].110-197.
    [98]徐叔云,卞如濂,陈修.药理实验方法学[M].第3版,北京:人民卫生出版社,2002,693-741.
    [99]Dimicco MA, Waters SN, Akeson WH, et al. Interative articular cartilage repair:dependence on developmental stage and collagen metabolism[J].Osteoarthritis and Cartilage,2002,10:218-2251.
    [100]WANG Jh, YU Hr, SONG Gy. Experimental study on the effects of deproteinated calf blood jelly on deep partial thickness burn wound healing in rats[J].J Jinzhou Wed College,2004,25(6):27-30.
    [101]欧阳五庆,曹发昊,王艳萍.呋喃西林纳米乳的制备及体外抑菌试验[J].黑龙江畜牧兽医杂志,2007,(6):81-82.
    [102]AI-Adham IS, Khalil E, AI-Hmoud ND, et al. Microemulsions are membrane active antimicrobial, self-preserving systems [J]. J Appl Microbiol,2000, 89(1):32-39.
    [1]Keahler T.Nanotechnology:basic concepts and definitions[J].ClinChem,1994, 40(9):1797
    [2]张颖,陈世玲,盖国胜,等.中草药与难溶药物超细粉碎技术的应用[J].世界科学技术。2001,32(3):9-12.
    [3]Hoar T P,Schulman J H.Transparent water-in-oil dispersions:the oleopathic hydro-micelle[J].Nature,1943,152:102
    [4]S.Friberg, etal.in Encyclopedia of Emulsion Technology[M].Vol.1, Basic Theory, Edited by P.Becher, Chapter 4, Marcel Dekker,New York and Basel.1984: 262.
    [5]屠梅芳施顺清.试论中药剂型改进的思路[J].中草药,2001,32(10):956.
    [6]徐碧辉,杨祥良,谢长江,等.纳米技术在中药研究中的应用[J].中国药科大学学报.2001,32(3):162.
    [7]叶海英,张忠义,高中,等.法莫替丁微乳的研制及其质量评价[J].第一军医大学学报,2003,,23(1):68-70.
    [8]Yuri Feldman and Nick koziovich,Mechanism of Transport of Charge Carriers in the Sodium Bis(2-ethylhexyl)Sulfosuccinate-Water-Decane Microemulsion near the PercolationTemperature Threshold[J].J Phys Chem,1996,100:3745-3748.
    [9]Lagues M and Sauterey C.Percolation Transition in Water in oil Microemulsion Electrical Conductivity[J].J Phys Chem,1980,84:3503-3508.
    [10]Amarnath Maitra and Charlly Mathew.Closed and open structure aggregates in microemulsions and mechanism of percolative conduction[J].Phys Chem,1990, 94:5290-5292.
    [11]Lagourette B and Peyrelasse J.Percolative Conduction in Microemulsion Type Systems[J].Nature,1979,281 (9):60-62.
    [12]张丽,张冬柏,马季铭.非水反相微乳的加溶与电导性质研究[J].物理化学学报,2003,19(2):120-124.
    [13]严乐美,王雪松,杨桂琴,等.以Span80和’Tween60为混合表面活性剂的微乳液研究[J].化学工业与工程,2000,17(5):249-253.
    [14]夏剑忠,庞振,鲍景旦,等.水/十一烷基硫酸钠/正丁醇/正辛烷体系的微乳液相行为和结构[J].华东华工学院学报,1991,17(5):600-604.
    [15]曾红霞,李子平,王汉卿.水/TX-100/正已醇/正辛烷反相微乳液中水的微乳环境研究[J].化学研究与应用,1999,11(2):142-145.
    [16]张阳德.纳米药物学[M].北京:化学工业出版社,2006.
    [17]L.M.Prince,Microemulsion,Theory and Practice[M].Academic Press.New York.1977.
    [18]Robbins M L.Microemulsion Solubilization and Microemulsion[M].Plenum Press,New York,1997,713.
    [19]Michell D J and Ninham B W[J].Chem Soc,Faraday Trans,1981,2(77):601.
    [20]M.J.Lawrence,G.D.Rees.Microemulsion-based media as novel drug delivery systems[J].Advanced Drug Delivery Reviews.2000,45(1):89-121.
    [21]J.Sjoblom,R.Lindberg,S.E.Friberg. Microemulsions-phase equilibria characterization, structure, applications and chemical reaction[J].Advances in colloid and interface Science.2004,9(3-4):264-278.
    [22]Shinoda K,Araki M.Sadaghiani A,et al.Lecithinbased microemulsions:phase behavior and microstructure[J].JPhys Chem,1991,95:989-993.
    [23]Eli Ruckenstein.Concentrated emulsion polymerization[M].Springer Berlin, 1997.
    [24]J.T.G.Overbeek, etal, in"EmulsionandSolubilization", Introduction, JohnWiley&Sons,1986,26:65.
    [25]安红丽.原花青素纳米乳的研制[D].西北农林科技大学硕士论文,2007.
    [26]Waris Noicharoen W, Lansley AB, Law Rence M J.Nonionic oil-in-water microemulsions:the effect of oil type on phase behaviour[J].Int J Pharm,2000, 198:7-27.
    [27]吴旭锦.紫苏子油纳米乳的研究[D].西北农林科技大学博士论文,2008.
    [28]陆彬.药物新剂型与新技术[M].北京,人民卫生出版社,2002:60.
    [29]Panyiotisp, Constantinides, Jean-pauls. Formulation and physical characteri-zation of water-in-oil microemulsions containing long-cersusmedium-chain glycerides [Jj.Int J Pharm,1997,158(1):57-68.
    [30]Malcolmson C,Satra C,Kantaria S,Effect of oil on the level of solubilization of testosterone Propionate into nonionic oil-in-water microemulsions[J].Pharm Sci,1998,87(1):109-116.
    [31]翟志光.以良附丸为模型药物的中药复方微乳载药体系研究[D].北京中医药大学博士论文,2007.
    [32]张蕾,周庆华,吕鑫.微乳的制备及其在中药制剂中的应用[J].中医药学报,2007,35(6) :37.
    [33]张文萍,张志耘.我国纳米技术在药学领域中应用现状[J].天津药学 2002,14(5):17.
    [34]王正平,马晓晶,陈兴娟.微乳液的制备及应用[J].化学工程师,2004,101(2):61-62.
    [35]杨宝平,欧阳五庆,吴旭锦,等.白蒺芦醇纳米乳的制备及其质量评价[J].西北农业学报,2008,17(2):20-23.
    [36]孙红武,欧阳五庆.盐酸小檗碱纳米乳的制备及理化性质研究[J].中国医药技术经济与管理,2008,2(9);41-48
    [37]潘国梁,魏惠华,陈彦,等.葛根素微乳的质量评价[J].时珍国医国药,2005,16(7):582-583
    [38]杨雪峰,欧阳五庆,曹发昊,等.复方阿莫西林纳米乳的制备及其稳定性研究[J].西北农林科技大学学报(自然科学版),2008,36(12):19-23.
    [39]张建春,李培勋,王原.环磷酰胺微乳制剂的研制[J].中国医院药学杂志,2003,23(1):9-11
    [40]刘英,蒋雪涛,鲁莹.紫外分光光度法测定5-氟尿嘧啶微乳的含量[J].中国新药杂志,,2000,9(7):464-465.
    [41]欧阳五庆,曹发昊,王艳平.呋喃西林纳米乳的制备及体外抑菌试验[J].黑龙江畜牧兽医,2007(6):81-82.
    [42]Lawrenoe MJ, Rees GD. Advanced Drug Delivery Reviews[J].2000,15: 89.
    [43]Lawrence MJ.Surfactant system:Microemulsion and vesicles for drug delivery[J].Eur J Drug Metab Pharmacokinet,1994,19:257
    [44]Peira E, ScolariP, GascoMR. Transdermal permeation of apomorphine through hairless mouse skin from microemulsions[J]. Int J Pharm,2001,226 (1-2): 47-51.
    [45]张立超,胡晋红.微乳透皮给药系统的研究进展[J].外国医学药学分册,2004,31(1):44-48.
    [46]Zhao X,Liu JP, Zhang X, et al. Enhancement of transdermal delivery of theophylline using microemulsion vehicle [J].Int J Pharm,2006,327 (1/2):58-64.
    [47]Dreher F, Walde P, Luisi PL, et al. Human skin irritation studies of a lecithin microemulsion gel and of lecithin liposomes[J]. Skin Pharmacol,1996,9(2): 124-129.
    [48]Dreher F, Walde P, Walther P, et al. Interaction of a lecithin microemulsion gel with human stratum corneumand its effect on transdermal transport[J].J Controlled Release,1997,45(2):131-140
    [49]Changez M,Varshney M, Chander J, et al. Effect of the composition of lecithin/n2p ropanol/isop ropyl myristate/water mi2 croemulsions on barrier p roperties of mice skin for transdermal permeation of tetroacaine hydrochloride:In vitro [J]. Colloids Surf B B iointerfaces,2006,50 (1):18-25.
    [50]Yuan Y, Li SM, MFK, et al. Investigation of mieroemulsion system for transdennal delivery of meloxicam[J].hit J Phanll,2006,321:117.
    [51]俞媛,高申,陈琰,等.盐酸哌甲酯-卵磷脂微乳的制备及其透皮吸收作用[J].中国药学杂志,2005,40(11):843-845.
    [52]. Rhee YS, Choi JG, Park ES, et al. Transdermal delivery of ketoprofen using microemulsions [J]. Int J Pharm,2001,228(1-2):161-170.
    [53]Paolino D,Ventura CA, NisticoS, et al. Lecit hin microemul2 sions for t he topical administ ration of ketoprofen:percutaneous adsorption t hrough human skin and in vi vo human skin tolera2 bility[J]. Int J Pharm,2002,244 (122):21230.
    [54]寇贺红,欧阳五庆,张文娟.10%丁香酚纳米乳的制备及其药效研究[J]中国兽医杂志,2008,44(12):34-37.
    [55]Wu H,Ramachandran C,Weiner ND,et al.Topical transport of hydrophilic compounds using water-in-oil nanoemulsions[J].Int J Phann.2001,220(1-2):63.
    [56]Chen HB, Chang XL,Du DR, et al. Microemulsion2based hy2 drogel formulation of ibup rofen for rop ical delivery [J]. Int J Pharm,2006,315(1/2): 52-58.
    [57]Kreilgaard M,Kemme MJ,Burggraaf J,et al.Influence of a microemulsion vehicle on cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics[J].Pharm Res,2001,18(5):593-599.
    [58]Wu H L, Chandrasekharan R, Norman D W. Top ical transport of hydrophilic compounds
    [59]芮亚培,欧阳五庆,邱刚,等.红霉素纳米乳的制备及其药效学研究[J].西北农林科技大学学报(自然科学版),2008,36(3):59-63.
    [60]using water2in oil nanoemulsiond [J]. Int J Pharm,2001,220:63-75. Gandhi RB, Robinson JR. Bioadhesion in drug delivery. Indian J Pharm Sci,1988, 50(3):145.
    [61]杨蕊,苏乐群,黄欣.微乳在药剂学中的研究进展及应用[J].中国医院药学杂志,2007,27(8):1141-1144.
    [62]Ceschel GC, Maffei P,MorettiMD, et al. In vitro permeation through porcinebuccal mucosaof Salviadesoleana Atzei&Picci essential oil from topical formulations[J]. Int J Pharm,2000,195(1-2):171-177.
    [63]Xu HB, Huang KX, Zhu YS, et al.Hypoglycaemic effect of a novel insulin buccal formulation on rabbits[J]. PharmacolRes,2002,46(5):459-467.
    [64]Vyas TK.Babbar A K,Sharma RK, et al. Intranasal mucoadhesive microemulsions of clonazepam:preliminary studies on brain targeting[J]. J Pharm Sci,2006,95 (3):570-580.
    [66]Li L, Nandi I, Kim KH. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam[J]. Int J Pharm,2002, 237(1-2):77-85.
    [66]Fialho SL,Da Silva2Cunha A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone[J].Clin Experiment Opht halmol, 2004,32 (6):626-632.
    [67]Elbaz E, Zeevi A, Klang S, et al. Positively charged submicronemulsions, a new type of colloidal drug carrier[J]. Int J Pharm,1993,96(1-3):R1-R6.
    [68]Klang SH, Frucht-Pery J, HoffmanA, et al. Physicochemical characterization and acute toxicity evaluation of a positivelycharged submicron emulsion vehicle[J]. J PharmPharmacol,1994,46(12):986-993.
    [69]崔晶,翟光喜,邹满.微乳给药系统的研究与应用[J].食品与药品,2005,7(1A):23-25
    [70]Cottens S,Haeberlin B,Sedrani R,etal.Pharmaceaticecl microemulsion preconcent rates Containing cyclosporings and macrecides[J].Swifz,WO 96132739 May 1996.
    [71]叶国庆,张强,严宝霞.环孢素A微乳浓缩液的药代动力学和生物等效性评价[J].中国抗生素杂志,1999,30(7):299-301.
    [72]工召,杨金奎,陆丽芳,等.胰岛素口服微乳经狗十二指肠给药的体内吸收途径研究[J].中国药科大学学报,1997,28(6):323-325.
    [73]汤祎,吕竹芬,陈燕忠,等.克拉霉素纳米乳的制备及体外释放度研究[J].广东药学院学报,2006,22(6):579-582.
    [74]Trotta M, Gallarate M, Carlottim E, et al. Preparation of griseofulvin nanoparticles from water2dilutable microemulsions[J]. Int J Pharm,2003,254 (2) 235-242.
    [75]欧阳五庆,吴旭锦,朱小甫,等.紫苏子油纳米乳的制备及其对小鼠急性高血脂症的影响[J].上海交通大学学报(农业科学版),2007-,25(6):536-540.
    [76]宋强,杜红2,冯前进,等.中药微乳提取技术的初步实验研究[J].世界中西结 合结合杂志,2007,2(7),390-392.
    [77]Kim CK, Cho YJ, Gao ZJ. Preparation and evaluation of biphenyl dimethyl dicaroxylate microemulsions for oral delivery[J].J Control Release,2001,70 (1/2): 149-155.
    [78]鲁莹,蒋雪涛,曾仁杰,等.双氯芬酸钠人体内的药代动力学[J].第二军医大学学报,2001,22(4):364-366.
    [79]阎家麟,王惠杰,童岩,等.紫杉醇微乳的研究[J].中国药学杂志,2000,35(3):173-176.
    [80]张莉,向东,洪诤,等.肝靶向去甲斑蝥素微乳的研究[J].药学学报,2004,39(8):650-655.
    [81]Wang JP, Takayama K, Nagai T, et al Pharmacokinetics and antitumor effects of vincristine carried by microemulsions composed of PEG lip id, oleic acid. vitamin E and cholesterol [J]. Int J Pharm,2003,251 (1/2):13-16.
    [82]胡海燕,林芸竹,龚涛,等.喷昔洛韦微乳小鼠体内分布研究[J].中国药学杂志,2007,42(2):143-146.
    [83]Lee MJ, Lee MH, Shim CK. Inverse targeting of drugs to reticuloendothelial system-richorgans by lipidmicroemulsion emulsified with poloxamer 338[J]. Int J Pharm,1995,113(2):175-187.
    [84]余东升,姚昶,潘立群.黄芪注射液浓缩液微乳的制备[J].山东中医药大学学报,2007,31(2):148-151.
    [85]宋贷赞,平其能,吴正红,等.水飞蓟宾纳米乳的制备及家兔体内药动学[J]中国药科大学学报,2005,36(5):427-431.
    [86]Brime B, MorenoMA, Frutos G, et al. AmphotericinB in oilwater lecithin-basedmicroemulsions:formulation and toxicity evaluation[J]. J Pharm Sci, 2002,91(4):1178-1185.
    [1]张阳德.纳米药物学[M].北京:化学工业出版社.2006:163.
    [2]Waris Noicharoen W, Lansley AB, Law Rence M J.Nonionic oil-in-water microemulsions:the effect of oil type on phase behaviour[J].Int J Pharm,2000, 198:7-27.
    [3]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社.2002:60.
    [4]安红丽.原花青素纳米乳的研制[D].西北农林科技大学硕士论文,2007.
    [5]李红磊,张忠义,成海民.丹参酮和丹酚酸复合微乳的初步研究[J].中药材,2006,29(4):376-380.
    [6]申进宝.绞股蓝纳米乳的制备及其抗衰老作用的研究[D]西北农林科技大学硕士论文,2007.
    [7]赵海燕,刘建平,唐蓉蓉等.刺五加总苷白微乳制备工艺的研究[J].中草药,2006,37(4):521-524.
    [8]史克莉,乔明.水包油型中药按摩微乳的制备研究[J].湖北中医学院学报.2006,8(4):18-20.
    [9]王薇,陈寒梅,杨占秋等.空心莲子草微乳体外抗柯萨奇病毒B3的实验研究[J].武汉大学学报(医学版),2005,6(6):700-703.
    [10]杨宝平,欧阳五庆,吴旭锦等.白蒺芦醇纳米乳的制备及其质量评价[J].西北农业学报,2008,17(2):20-23.
    [11]潘国梁,魏惠华,陈彦,等.葛根素微乳的质量评价[J].时珍国医国药,2005,16(7):582-583.
    [12]吕慧怡,范青,张宁等.丹参酮微乳制剂的HPLC指纹图谱研究[J].中国中药杂志,2004,29(11):1047-1048.
    [13]曹发昊,欧阳五庆,王艳萍,等.苦参碱纳米乳的研制及其对小鼠抗氧化作用的影响[J].西北农林科技大学学报(自然科学版),2007,35(3):61—64.
    [14]韩旭华.白芍有效成分经皮微乳的抗炎镇痛作用及其药效物质基础[D].北京中医药大学博士论文.2006.
    [15]翁婷.雷公藤微乳凝胶剂体外透皮和药效学初步研究[D].华中科技大学硕士论文,2004.
    [16]Lawrenoe MJ,Rees GD.Advanced Drug Delivery Reviews,2000,15:89.
    [17]Lawrence MJ.Surfactant system:Microemulsion and vesicles for drug delivery.Eur J Drug Metab Pharmacokinet,1994,19:257
    [18]阳卫超,欧阳五庆,何欣等.复方丁香酚纳米乳的制备及抗炎镇痛药效学研 究[J].中国医药工业杂志,2008,39(5):352-355.
    [19]崔晶,翟光喜,邹满.微乳给药系统的研究与应用[J].食品与药品,2005,7(1A):23-25
    [20]欧阳五庆,吴旭锦,朱小甫,等.紫苏子油纳米乳的制备及其对小鼠急性高血脂症的影响[J].上海交通大学学报(农业科学版),2007,25(6):536-540.
    [21]宋强,杜红,冯前进,等.中药微乳提取技术的初步实验研究[J].世界中西结合志,2007,2(7),390-392.
    [22]宋贷赞,平其能,吴正红,等.水飞蓟宾纳米乳的制备及家兔体内药动学[J]中国药科大学学报,2005,36(5):427-431.
    [23]张莉,向东,洪诤,等.肝靶向去甲斑蝥素微乳的研究[J].药学学报,2004,39(8):650-655.
    [24]余东升,姚昶,潘立群.黄芪注射液浓缩液微乳的制备[J].山东中医药大学学报,2007,31(2):148-151.
    [1]YANG Xiang-liang,XU Hui-bi,XIE Chang-sheng,et al.Application of Nano-Technology in the Research of TCM [J] Journal of Huazhong University of Science and Technology,2000,28(12):104-105。
    [2]Yangde Zhang.NanoPharmacology[M].Beijing:Chemical Industry Press. 2007,1:157-158.
    [3]QU HONG,WANG Bao-jia,LI Yue,et al. Introduction of nano chinese medicine [J].China Phcermaceuticals,2005,14(4):78-79.
    [4]Pi zhen-bang,Tian xi-ke,YANG Chao,et al. Preparation of nanosized calamine [J]. Journal of Wuhan University(Natural Science Edition),2002,48(6): 649-651.
    [5]MAO Sheng-jun,HOU Shi-xiang,ZHANG Liang-ke,et al. Preparation of Liposomes Surface-modified with Glycyrrhetinic Acid Targeting to Hepatocytes [J]. China Journal of Chinese Materia Medica,2003,28(4):328.
    [6]CHEN Da-bing, YANG Tian-zhi, LU Wang-liang, et al. In vitro and in vivo study of two kinds of long-circulating solid lipid nanoparticles containing paclitaxel [J]. Acta Pharmaceutica Sinica,2002,37(1):54.
    [7]MA Ying-long,LI Shu-hong.Advanceon Application of Nano Technique to TCM[J].Anhui Agricultural Science Bulletin,2007,13(9):192-194.
    [8]HE Jun,HOU Shi-xiang,FNG Jian-fang.et al.Elect of particle size on oral absorption of silymarin-loaded solid lipid nanoparticles [J]. China Journal of Chinese Materia Medica 2005,30(21):1651-1653.
    [9]ZHOU Rong,AI Li,YU Ri-li,et al.Application of Nano Delivery Systems in TCM[J].Asia-Pacific Traditional Medicine,2007,3(8):41.
    [10]Yangde Zhang.NanoBiotechnology[M].Beijing:Science Press.2007,1:143.
    [11]SHI Yan,LUO Jia-bo,XI Rong-gan,et al. Application of Nanotechnology in Chinese medicine preparation [J] Journal of Pharmaceutical Practice,2007, 25(2):65-67.
    [12]LIU Ming-xing,DONG Jing,YANG Ya-jiang,et al. Preparation and toxicity of triptolide-loaded Poly(D,L-Lactic acid)nanopurticles[J].Acta Pharmaceutica Sinica, 2004,39(7):556-560.
    [13]LI Jun-chan,SHA Xian-yi,ZHANG Li-jun,et al.9-Nitrocamptothecin nanostructured Lipid carrier system:in vitro releasing characteristics,uptake by cells,andtissue distribution[J]. Acta Pharmaceutica Sinica,2005,40(11):970-975.
    [14]ZHANG DR,REN TC,LOU HX,et al.Thetissue distribution mice and pharmacokinetics in rabbits of oridonin solid lipid[J]. Acta Pharmaceutica Sinica,2005,40(6):573-576.
    [15]CHEN Ying,PING Qi-neng,GUO Jian-xin,et al.Absorption behavior of cyclosporine nanoliposome by in situ circulation method in rats[J].Chinese Journal of New Drugs and clinical Remedies.2003,22(6):331-334.
    [16]LIU Jian-ping,DU Yong-zhi.ZHU Li. Studies on drug release in vitro and rat intestinal absorption of tashinone ⅡA solid lipid nanoparticles[J].Chinese Pharmacological Bulletin,2005,21 (2):186-190.
    [17]XU Bi-hui,YANG Xiang-liang.HUANG Kai-xun. Tentative study on the size effect of red orpiment inhibiting mice with S180 [J]. Journal of Wuhan University (Natural Science Edition),2000,46(3):288.
    [18]GUO Yi-ming,ZHAO Jing-zhe,YU Kai-feng,et al.Components analysis and antibacterial activity of calamine[J].Chemical Journal of Chinese Universities, 2005,26(2):209-212.
    [19]GUO Yi-ming,SUN Yu,SHENG Ye,et al.The primary study on antibacterial of nanoslzed calamine jel[J]. Chinese Journal of Modern Applied Pharmacy. 2006,23(1):7-9.
    [20]MA Guo,DENG Sheng-qi.Progress on the study and application of nanotechnology in pharmaceutical field[J]. World Notes on Antibiotics.2004, 25(5):233.
    [21]SUN Ming,ZHU Zhen-yan,YU Mei-li,et al. Experimental research on the anti-tumor efect of nanoparticle control-releasing preparation of norcantharidin [J].Journal of Oncology,2001,7(6):321-325
    [22]QI Qi,HU Ding-bang,WANG Yong-yan. Studing on the basic idea of Modernization of Chinese Herbai Medicine [J].China Journal of Traditional Chinese Medicine and Pharmacy,2000,15(2):57.
    [23]FAN Lei,WANG Xue-jun,WU Qing-tian,et al.Preliminary study of Nano-TCML as MAILUOTONG in treatment of Myocardial infarction [J]. HeilongJiang Medicine and Pharmacy,2006,29(5):53-54.
    [24]FAN Lei,CUI Guo-li,WANG Xue-jun,et al.Study of Nano-TCML XINJIGUBENSAN in Promoting Myocardial cell proliferation [J]. Journal of Mudanjiang Medical College,2007,28(4):27-28.
    [25]JU Bao-ling,LU Ye.TANG Xiao-yun,et al.Study on the regulation of Decoctoinog of four Noble Drugs and the Nano-TCM in intestinal microbiology dysbiosis mice[J].Chinese Journal of Microecology,2007,19(1):6-8.
    [26]YAN Dong-mei,WANG Lin,ZHU li-lin,et al.Effect of Nano-SIJUNZITANG on Antioxidant and Immune Function in Aging mice induced by Galactose [J].Chinese Journal of Gerontoligy,2007,27(6):1134-1136.
    [27]WANG Xiao-yan,LI Li-qiu,YANG Jing-yun,et al.Study on the effects of Nano-TCML on intestinal flora in mice with S180 tumor and its preventive and therapeutic effect[J].Chinese Journal of Microecology,2007,19(5):417-421.
    [28]QU Ying,HU Da-kang.Observation on the effect of nano traditional Chinese medicine on experimental rat with ulcerative colitis model[J].CHINA TROPICAL MEDICINE,2007,7(9):1552-1553.
    [29]SU Ya-juan,YANG Jing-yun,LIU Zhu,et al.The investigation of Nano-herbs suoyang on hepatic encephalopathy rats with flora imbalance and immune function.[J].Chinese Journal of microecology,2006,18(6):438-440.
    [30]SHI Zhong-kai,HU Xiao-li,DI Zhi-yong,et al.TO study the Nano-TCML as the complex bolus Long Dan Cao curing the epilepsy rats by injecting the bifidobacterium [J].Chinese Journal of Microecology.2007.19(1):14-15.
    [31]CAO Wen-bing,WANG Wen-kui. Talk on the sustainable development of traditional Chinese medicines [J].Jilin Animal Husbandry and Veterinary Medicine,2006,(4).
    [32]KOU Zheng-yong, REN Feng-mei,HUI Li-bo,et al. Nano-traditional Chinese-medicine-A New Modernization Way of Traditional Chinese-medicine[J]. Journal of Changchun Normal University(Natural Science),2007,26(2):96-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700