用户名: 密码: 验证码:
带钢热连轧精轧厚度—活套综合控制系统的设计与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带钢热连轧精轧是钢铁工业的重要生产过程,其产品在表面质量、几何尺寸及机械性能等方面都有严格的要求。由于其生产过程工艺复杂,工况恶劣,现代热连轧生产线往往装备昂贵的高精设备,且由多种自动控制系统联合工作,包括自动厚度控制系统,自动宽度控制系统,自动板形控制系统等。另一方面,由于各类扰动的存在,前一轧机带钢出口速度和后一轧机带钢入口速度往往并不相等,这样的速差必然导致前后轧机间带钢长度与张力的波动。为保证在恒定张力情况下进行轧制,目前绝大多数热连轧生产线在前后两轧机间都安装了活套装置。由于传统的控制方法将厚度、活套及张力,作为独立的子系统进行控制,不能协调处理系统间的耦合,控制性能很难满足市场对热轧带钢产品日益苛刻的要求。本文以厚度、活套及张力综合系统为研究对象,在滑模控制,H∞控制,几乎干扰解耦控制及预测控制方面做了相关探索性研究。主要内容包括以下几个方面:
     (1)提出了基于线性模型及滑模方法的活套张力控制方案,采用耦合项对消的方法,实现了系统在滑模面上的解耦,增加了系统鲁棒性,提高了控制性能。另外,针对传统滑模控制无法处理非匹配扰动的缺点,提出了积分滑模和H∞控制相结合的方法,积分滑模方法处理匹配扰动,H∞控制处理非匹配扰动,进一步提高了活套张力控制系统性能,获得了比单独使用一种方法更好的效果。
     (2)针对活套张力系统固有的非线性特性,提出了基于非线性模型及滑模方法的解耦控制方案和基于反馈线性化的几乎干扰解耦控制,在活套张力系统非线性模型的基础上,对系统的非线性控制方法做了探索性研究。滑模控制能实现非线性耦合项的对消,并能较好地抑制匹配扰动,对执行器的未建模动态具有较好的鲁棒性。基于反馈线性化的几乎干扰解耦控制,则能实现参数化控制器的设计,系统对扰动的抑制能力可调,且参数调节直观方便。非线性控制器具有全局稳定,可运行范围大的优点,能有效解决线性控制方案由于运行区域有限、需要随工作点变化切换控制器的问题。
     (3)针对现代热连轧生产线大都通过数字可编程逻辑控制器进行系统控制,离散控制器更适合实际应用的特点,并针对厚度系统与活套张力系统间的强耦合,建立了厚度-活套综合系统状态空间模型,并在其基础上,设计约束离散预测控制器,通过加权矩阵的调节,协调厚度、活套与张力的响应动态,提高了综合控制系统性能。
     (4)以实际生产过程数据为基础进行仿真分析,采用实际扰动作为仿真输入,验证了基于厚度-活套综合系统状态空间模型的仿真程序的可信性。并进一步,对本文提出的约束预测控制算法进行仿真,证明了新算法的有效性,可充分提高综合控制系统的性能。
Hot strip finishing mills (HSFMs) are important processes of the iron and steel industry. The specifications which should be satisfied in HSFMs are surface and dimensional quality, mechanical properties and so on. The process is rather complicated and challenging, and modern HSFMs are equipped with expensive equipments with high accuracy. The dimension quality is guaranteed by dedicated control systems such as AGC (Automatic Gauge Control), AWC (Automatic Width Control), ASC (Automatic Shape Control) and so on. On the other hand, the strip speed leaving the upstream mill usually doesn’t equal the the strip speed entering the downstream mill due to various disturbances, which will cause the deviations of the strip length and tension between the mills. Looper is equipped between each pair of mills to guarantee stable operation of the process with constant strip tension. Gauge, looper and tension are controlled independly in the conventional control strategies, which are not able to deal with the interactions between subsystems and are not suitable for the demanding market. In this paper, gauge, looper and tension control systems are studied from the SMC (Sliding Mode Control), nonlinear control and MPC (Model Predictive Control) aspect, including:
     (1) Looper-tension control strategy based on linearized model and SMC method is proposed to improve the robustness and performances of the system, and the looper-tension system is decoupled on the sliding manifold by interaction item canceling. And H∞control strategy based on ISMC (Integral SMC) is proposed to deal with both matching and mismatching disturbances, which achieves better performances than adopting H∞control strategy alone.
     (2) Nonlinear control strategies are proposed to deal with the nonlinear nature of the looper-tension system. SMC strategy is considered for its well-known robustness withstand matching disturbances and uncertainties, and with the help of nonlinear interaction canceling, the looper and tension interaction could be greatly reduced. A more systematic method: looper-tension almost disturbance decoupling control based on feedback linearization, is proposed and results in parameterized controllers which are easy to tune. Nonlinear controllers are global stable and can work within a wide range, whereas the linear controllers only can work within a limited range and usually needs to change according to the work point.
     (3) Most of the modern HSFMs are controlled based on PLC (Programmbale Logic Controller) which means discrete control strategies will be more adequate for application. For the strong interaction between the gauge system and looper-tension system, state space model of gauge-looper integrated system is propsed. Based on the integrated model, CDMPC (Constraint Discrete-time MPC) strategy is suggest to control the integrated system coordinately and systematicly, which is easy to deal with constraints on inputs and outputs of the intergral system, and convenient to adjust weight matrices to improve the performances of the overall system.
     (4) The reliability of the simulation program, which is built based on the state space model of the gauge-looper integrated system, is verified through simulations of disturbances of the integrated system with real plant data. And the effectiveness of the proposed CDMPC is thereby proved through numerical simulations based on the verified program.
引文
[1] Kotera, Y., Watanabe, F.“Multivariable control of hot strip mill looper,”Proceedings of 8th IFAC World Congress, XVIII, pp. 1-6, 1981.
    [2]张振山,柴天佑,李小平,邓长辉,宋贤武.棒材连轧机立式活套的多变量自适应解耦控制.自动化学报, vol. 27, no. 6, pp. 744-751, 2001.
    [3]李伯群,张克君,傅剑,孙一康.活套高度和张力系统的神经网络自适应解耦控制.控制与决策, vol. 21, no. 1, 46-50, 2006.
    [4]傅剑,杨卫东,李伯群.基于LMI的H∞解耦及活套高度张力控制.控制与决策, vol. 20, no.8, pp. 883-886, 2005.
    [5] Janabi-Sharifi, F. A neuro-fuzzy system for looper tension control in rolling mills. Control Engineering Practice, vol. 13, pp. 1-13, 2005.
    [6] Jung, J. Y., Im, Y. T. Fuzzy algorithm for the prediction of tension variations in hot rolling. Journal of Materials Processing Technology, vol. 96, pp. 163-172, 1999.
    [7] Konishi, M., Imajo, S., Imai, J., Nishi, T.“Modelling of gain tuning operation for hot strip looper controller by recurrent neural network,”Proceedings of the 2004 IEEE International Conference on Control Applications, pp. 890-895, 2004.
    [8] Hoshino, I., Okamura, Y., Kimura, H. Observer-based multivariable tension control of aluminum hot rolling mills. Proceedings of the 35th Conference on Decision and Control, pp. 1217-1222, 1996.
    [9] Hoshino, I., Kimura, H. Observer-based multivariable control of rolling mills. Proceedings of 8th IFAC Symposium on Automation in Mining, Mineral and Metal Processing, pp. 251-256, 1998.
    [10] Asano, K., Yamamoto, K., Kawase, T., Nomura, N. Hot strip mill tension–looper control based on decentralization and coordination. Control Engineering Practice, no. 8, pp. 337-344, 2000.
    [11] Asano, K., Morari, M. Interaction measure of tension–thickness control in tandem cold rolling. Control Engineering Practice, no. 6, pp. 1021-1027, 1998.
    [12] Umeno, T., Kaneko, T., Hori, Y. Robust servosystem design with two degrees of freedom and its application to novel motion control of robot manipulators. IEEE Transactions on Industry Electronics, vol. 40, pp. 473-485, 1993.
    [13] Imanari, H., Morimatsu, Y., Sekiguchi, K., Ezure, H., Matuoka, R., Tokuda, A., Otobe, H. Looper H-Infinity control for hot strip mill. IEEE Transactions on Industry Applications, vol. 33, pp. 790-796, 1997.
    [14] Shioya, M., Yoshitani, N., Ueyama, T.“Noninteracting control with disturbance compensationand its application to tension looper control for hot strip mill,”Proceedings of the 1995 IEEE Industrial Electronics Conference, pp. 229-234, 1995.
    [15] Seki, Y., Sekiguchi, K., Anbe, Y., Fukushima, K., Tsuji, Y., Ueno, S.“Optimal multivariable looper control for hot strip finishing mill,”IEEE Transactions on Industry Applications, vol. 27, pp. 124-130, 1991.
    [16] Jamaa, Z. B., Petit, B., Borne, P. Multivariable controls of a hot strip finishing mill interstand. Studies in Informatics and Control, vol. 5, no. 1, pp. 41-48, 1996.
    [17] Okada, M., Murayama, K., Urano, A., Iwasaki, Y., Kawano, A., Shiomi, H. Optimal control system for hot strip finishing mill. Control Engineering Practice, no. 6, pp. 1029-1034, 1998.
    [18] Fujisaki, Y., Kitamura, A., Asada, H. Robust control of looper angle for hot strip mills. Transactions of Society of Instrument and Control Engineers, vol. 23, pp. 723-725, 1991.
    [19] Asada, H., Kitamura, A., Nishino, S., Konishi, M. Adaptive and robust control method with estimation of rolling characteristics for looper angle control at hot strip mill. ISIJ International, vol. 43, pp. 358-365, 2003.
    [20] Hesketh, T., Jiang, Y. A., Clements, D. J., Butler, D. H., Laan, R. Controller design for hot strip finishing mills. IEEE Transactions on Control Systems Technology, vol. 6, no. 2, pp. 208–219, 1998.
    [21] Furlan, R., Cuzzola, F. A., Parisini, T. Friction compensation in the interstand looper of hot strip mills: A sliding-mode control approach. Control Engineering Practice, vol. 16, no. 2, pp. 214–224, 2008.
    [22] Cuzzola, F. A., Parisini, T. Nonlinear control of the interstand looper in hot strip mills: a back-stepping approach. Proceedings of 16th World Congress of IFAC, Prague, 2005.
    [23] Hwang, I. C., Park, C. J. Nonlinear looper-tension control for hot strip finishing mill using feedback linearization. Proceedings of 17th World Congress of IFAC, Seoul, pp. 1659–1660, 2008.
    [24] Bulut, B., Ordys, A. W., Grimble, M. J. Application of efficient nonlinear predictive control to a hot strip finishing mill. Proceedings of the 2002 IEEE International conference on Control Applications, pp. 373-378, 2002.
    [25] Bulut, B., Greenwood, D., Grimble, M. J. Load distribution ration as a benchmark for flatness using predictive control. Proceedings of the 41st IEEE Conference on Decision and Control, TuM05-5, pp. 555-560, 2002.
    [26] Uduehi, D., Ordys, A. W., Grimble, M. J. A generalized predictive control benchmark index for MIMO systems. Proceedings of the 2002 IEEE International Conferences in Control Applications, pp. 1213-1218, 2002.
    [27] Grimble, M. J., Martin, P. Restricted structure adaptive predictive control of nonlinear systems. Proceedings of the 2002 International Symposium on Computer Aided Control SystemsDesign, pp. 663-668, 2002.
    [28] Schuurmans, J., Jones, T. Control of mass flow in a hot strip mill using model predictive control. Proceedings of the 2002 IEEE International Conference on Control Applications, pp. 379-384, 2002.
    [29] Choi, I. S., Rossiter, J. A., Fleming, P. J. An application of the model based predictive control in a hot strip mill. Proceedings of the 11th IFAC Symposium on Automation in Mining, Mineral and Metal Processing, Wed-C1, 2004.
    [30] Rossiter, J. A., Kouvaritakis, B., Rice, M. J. A numerically robust statespace approach to stable predictive control strategies. Automatica, vol. 34, pp. 65-73, 1998.
    [31] Rossiter, J. A. Model-based predictive control: A practical approach, CRC Press, 2003.
    [32] Nakagawa, S., Miura, H., Fukushima, S., Amasaki, J. Gauge control system for a hot strip finishing mill. Proceedings of the 29 Conference on Decision and Control, Honolulu, Hawaii, pp. 1573-1578, 1990.
    [33]张文雪,张殿华,闫丹,李旭,陈丰,李光明,何景军.板带热连轧机液压AGC系统.轧钢, vol. 26, no. 3, pp. 42-45, 2009.
    [34]居兴华,赵厚信,杨晓臻,王琦.宝钢2050热轧板带厚度控制系统的研究.钢铁. vol. 35, no. 1, pp. 60-62, 2000.
    [35]张进之.动态设定型变刚度厚控方法的效果分析.重型机械, no. 1, pp. 30-33, 1998.
    [36]谭树彬,钟云峰,徐心和.压力AGC与监控AGC相关性研究.东北大学学报(自然科学版), vol. 27, no. 3, pp. 256-259, 2006.
    [37] Kugi, A., Haas, W., Schlacher, K., Aistleitner, K., Frank, H. M., Rigler, G. W. Active compensation of roll eccentricity in rolling mills. IEEE Transactions on Industry Applications, vol. 36, no. 2, pp. 625-632, 2000.
    [38] Ohta, T., Washikita, Y. Adaptive Control for the head-end Strip Gauge Using Recursive Least Squares at Hot Strip Mill. Proceedings of the 1999 IEEE International Conference on Control Applications, Munich, Germany, pp. 1831-1836, 2006.
    [39] Grimble, M. J., Hearns, G. LQG Controllers for State-Space Systems with Pure Transport Delays Application to Hot Strip Mills. Automatica, vol. 34, no. 10, pp. 1169-1184, 1998.
    [40] Bhowal, P, Mukherjee, S. K. Modeling and Simulation of Hydraulic Gap Control System in a Hot Strip Mill. ISIJ International, vol. 36, no. 5, pp. 553-562, 1996.
    [41]王正林,童朝南,孙一康,彭开香.带钢热连轧AGC系统实时仿真.北京科技大学学报, vol. 27, no. 5, pp. 600-603, 2005.
    [42]陈建华,吴光蜀,李冰,张其生,付卫国,张殿华,王君,胡贤磊.轧钢自动化AGC系统高精度厚度计公式的工程研究.轧钢, vol. 19, no. 5, pp. 42-45, 2002.
    [43]孟文旺,孙彤彤.基于精轧压靠数据的轧机刚度测量方法.重型机械, no. 11, pp. 54-57, 2009.
    [44]徐庆宁,武仁户.厚度计AGC技术在梅钢的应用.冶金自动化, no. S2, pp. 475-477, 2008.
    [45] Hearns, G., Reeve, P., Bilkhu, T. S., Smith, P. Multivariable gauge and mass flow control for hot strip mills. Proceedings of the 11th IFAC Symposium on Automation in Mining, Mineral and Metal Processing, Wed-C1, 2004.
    [46] Takahashi, R. State of the art in hot rolling process control. Control Engineering Practice, no. 9, pp. 987-993, 2001.
    [47] Okada, M., Iwasaki, Y., Murayama, K., Urano, A., Kawano, A., Shiomi, H. Optimal Control System for Hot Strip Finishing Mill. Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, pp. 1236-1241, 1996.
    [48] Hearns, G., Grimble, M. J. Robust multivariable control for hot strip mills. ISIJ International, vol. 40, no. 10, pp. 995-1002, 2000.
    [49] Hearns, G., Reeve, P., Smith, P., Bilkhu, T. Hot strip mill multivariable mass flow control. IEE Proceedings of Control Theory & Applications, vol. 151, no. 4, 2004.
    [50] Cuzzola, F. A. A Multivariable and Multi-Objective Approach for the Control of Hot-Strip Mills. Journal of Dynamic Systems, Measurement, and Control, vol. 128, pp. 856-868, 2006.
    [51] Kadoya, Y., Ooi, T., Washikita, Y., Seki, Y. Strip gage and tension control at cold tandem mill based on ILQ design theory. Proceedings of the 1999 IEEE International Conference on Control Applications, MA4-5, pp. 23-28, 1999.
    [52]何虎,孙一康.热连轧活套系统分析与控制方式比较.北京科技大学学报, vol. 22, no. 5, pp. 482-485, 2000.
    [53]葛平,栾晓冬,李晓凌,何虎,孙一康.基于H∞鲁棒控制方法的AGC-活套综合控制.北京科技大学学报, vol. 23, no. 6, pp. 557-558, 2001.
    [54]曲蕾,王京.多变量非线性厚度-活套系统的鲁棒逆控制.控制理论与应用, vol. 26, no. 5, pp. 562-566, 2009.
    [55]曲蕾,王京,宗胜悦.热连轧AGC-LP多变量系统解耦控制策略.钢铁, vol. 43, no. 10, pp. 55-58, 2008.
    [56]刘玠,杨卫东,刘文仲.热轧生产自动化技术,北京:冶金工业出版社, 2006.
    [57]孙一康.带钢热连轧的模型与控制,北京:冶金工业出版社, 2002.
    [58]康永林.轧制工程学,北京:冶金工业出版社, 2004.
    [59]王延溥,齐克敏.金属塑性加工学-轧制理论与工艺,北京:冶金工业出版社, 2001.
    [60] Bezvodinskaya, T. A., Sabayev, E. F. Stability conditions in large for variable structure systems. Automation and Remote Control, vol. 35, no. 10, 1974.
    [61] Wai, R. J., Shih, L. C. Design of Voltage Tracking Control for DC–DC Boost Converter Via Total Sliding-Mode Technique. IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2502-2511, 2011.
    [62] Chang, F. J., Chang, E. C., Liang, T. J., Chen, J. F. Digital-signal-processor- based DC/ACinverter with integral-compensation terminal sliding-mode control. IET Power Electronics, vol. 4, no. 1, pp. 159-167, 2011.
    [63] Jafarian, M. J., Nazarzadeh, J. Time-optimal sliding-mode control for multi-quadrant buck converters. IET Power Electronics, vol. 4, no. 1, pp. 143-150, 2011.
    [64] Sharma, R., Aldeen, M. Fault and disturbance reconstruction in non-linear systems using a network of interconnected sliding mode observers. IET Control Theory & Applications, vol. 5, no. 6, pp. 751-763, 2011.
    [65] Iqbal, M., Bhatti, A. I., Ayubi, S. I., Khan, Q. Robust Parameter Estimation of Nonlinear Systems Using Sliding-Mode Differentiator Observer. IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 680-689, 2011.
    [66] Rubagotti, M., Raimondo, D. M., Ferrara, A., Magni, L. Robust Model Predictive Control With Integral Sliding Mode in Continuous-Time Sampled-Data Nonlinear Systems. IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 556-570, 2011.
    [67] Xi, Z. Y., Feng, G., Hesketh, T. Piecewise Integral Sliding-Mode Control for T–S Fuzzy Systems. IEEE Transactions on Fuzzy Systems, vol. 19, no. 1, pp. 65-74, 2011.
    [68] Doyle, J. C., Khargonekar, P. P., Francis, B. A. State-space solutions to H2 and H∞control problems. IEEE Transactions on Automatic Control, vol. 34, no. 8, pp. 831-847, 1989.
    [69]俞立.鲁棒控制-线性矩阵不等式方法,北京:清华大学出版社, 2002.
    [70] Van der Schaft, A. J. L2-gain analysis of nonlinear systems and nonlinear state feedback H∞control. IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 770-784, 1992.
    [71] Isidori, A., Astolfi, A. Disturbance attenuation and H∞control via measurement feedback in nonlinear systems. IEEE Transactions on Automatic Control, vol. 37, no. 9, pp. 1283-1293.
    [72] Shen, B., Wang, Z., Hung, Y. S., Chesi, G. Distributed H∞Filtering for Polynomial Nonlinear Stochastic Systems in Sensor Networks. IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1971-1979, 2011.
    [73] Ping, L., Lam, J., Zhan, S. H∞Positive Filtering for Positive Linear Discrete-Time Systems: An Augmentation Approach. IEEE Transactions on Automatic Control, vol. 55, no. 10, pp. 2337-2342, 2010.
    [74] Petersen, I. R., Robust adaptive H∞control using integral quadratic constraints. Automatica, vol. 44, no. 10, pp. 2661-2668, 2008.
    [75] Yaesh, I., Boyarski, S., Shaked, U. Probability-guaranteed robust H∞performance analysis and state-feedback design. Systems & Control Letters, vol. 48, no. 5, pp. 351-364, 2003.
    [76] Huang, C., Bai, Y., Liu, X. H∞State Feedback Control for a Class of Networked Cascade Control Systems With Uncertain Delay. IEEE Transactions on Industrial Informatics, vol. 6, no. 1, pp. 62-72, 2010.
    [77] Cohen, A., Shaked, U. Linear discrete-time H∞optimal tracking with preview. IEEETransactions on Automatic Control, vol. 42, no. 2, pp. 270-276, 1997.
    [78] Du, D., Jiang, B. Robust H∞output feedback controller design for uncertain discrete-time switched systems via switched Lyapunov functions. Journal of Systems Engineering and Electronics, vol. 18, no. 3, pp. 584-590, 2007.
    [79] Da Rocha, P. H., Ferreira, H. C., Porsch, M. C., Sales, R. M. Fixed-point DSP implementation of nonlinear H∞controller for large gap electromagnetic suspension system. Control Engineering Practice, vol. 17, no. 10, pp. 1148-1156, 2009.
    [80] Ingram, G. A., Franchek, M. A., Balakrishnan, V., Surnilla, G. Robust SISO H∞controller design for nonlinear systems. Control Engineering Practice, vol. 13, no. 11, pp. 1413-1423, 2005.
    [81]陈杰. Matlab宝典,北京:电子工业出版社, 2008.
    [82] Edwards, C., Spurgeon, S. K. Sliding mode stabilization of uncertain systems using only output information. International Journal of Control, vol. 62, pp. 1129-1144, 1995.
    [83] Bag, K., Spurgeon, S. K., Edwards, C. Output feedback sliding mode design for linear uncertain systems. Proceedings of IEE Control Theory & Applications, vol. 144, pp. 209-216, 1997.
    [84] Edwards, C., Akoachere, A., Spurgeon, S. K. Sliding-mode output feedback controller design using linear matrix inequalities. IEEE Transactions on Automatic Control, vol. 46, no. 1, pp. 115-119, 2001.
    [85] Levant, A. Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, vol. 76, pp. 924-941, 2003.
    [86] Stessel, Y. B. Nonlinear output tracking in conventional and dynamic sliding manifolds. IEEE Transactions on Automatic Control, vol. 42, no. 9, pp. 1282-1286, 1997.
    [87] Poznyak, A., Stessel, Y. B., Jiménez, C. Mini-max sliding mode control for multimodel linear time varing systems. IEEE Transactions on Automatic Control, vol. 48, no. 12, pp. 2141-2150, 2003.
    [88] Orlov, Y., Perruquetti, W., Richard, J. Sliding mode control synthesis of uncertain time-delay systems. Asian Journal of Control, vol. 5, pp. 568-577, 2003.
    [89] Choi, H. H. An LMI-based switching surface design method for a class of mismatched uncertain systems. IEEE Transactions on Automatic Control, vol. 48, no. 9, pp. 1643-1638, 2003.
    [90] Matthews, G. P., DeCarlo, R. A. Decentralized tracking for a class of interconnected nonlinear systems using variable structure control. Automatica, vol. 24, pp. 187-193, 1988.
    [91] Utkin, V., Shi, J. Integral sliding mode in systems operating under uncertainty conditions. Proceedings of Conference on Decision and Control, Kobe, Japan, pp. 4591-4596, 1996.
    [92] Poznyak, A., Fridman, L., Bejarano, F. J. Mini-max integral sliding mode control formultimodel linear uncertain systems. IEEE Transactions on Automatic Control, vol. 49, no. 1, pp. 97-102, 2004.
    [93] Fridman, L., Poznyak, A., Bejarano, F. J. Mini-max multimodel optimal problem via integral sliding mode control. Proceedings of American Control Conference, Boston, MA, pp. 620-625, 2004.
    [94] Xu, J., Pan, Y., Lee, T. Analysis and design of integral sliding mode control based on Lyapunov’s direct method. Proceedings of American Control Conference, Denver, CO, pp. 192-196, 2003.
    [95] Basin, M., Rodríguez-González, J., Fridman, L., Acosta, P. Integral sliding mode design for robust filtering and control of linear stochastic time-delay systems. International Journal of Robust Nonlinear Control, vol. 15, pp. 407-421, 2005.
    [96] Castanos, F., Fridman, L. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 853-858, 2006.
    [97] Isidori, A. Nonlinear Control Systems, London: Springer-Verlag, 1992.
    [98] Nijmeijer, H., Van der Schaft, A. J. (1990). Nonlinear Dynamical Control Systems, New York: Springer-Verlag, 1990.
    [99] Marino, R., Tomei, P. Nonlinear Control Design: Geometric, Adaptive and Robust, London: Prentice Hall, 1995.
    [100] Bodson, M., Chiasson, J., Novotnak, R. High-performance induction motor control via input-output linearization. IEEE Control Systems Magazine, vol. 14, no. 4, pp. 25–33, 1994.
    [101] Lee, H. D., Kang, S. J., Sul, S. K. Efficiency-optimized direct torque control of synchronous reluctance motor using feedback linearization. IEEE Transactions on Industrial Electronics , vol. 46, no. 1, pp. 192–198, 1999.
    [102] Guzzella, L., Schmid, A. M. Feedback linearization of spark-ignition engines with continuously variable transmissions. IEEE Transactions on Control Systems Technology , vol. 3, no. 1, pp. 54–60, 1995.
    [103] Del Re, L., Isidori, A. Performance enhancement of nonlinear drives by feedback linearization of linear-bilinear cascade models. IEEE Transactions on Control Systems Technology, vol. 3, no. 3, pp. 299–308, 1995.
    [104] Singh, S. N., Yim, W. Feedback linearization and solar pressure satellite attitude control. IEEE Transactions on Aerospace Electronic Systems, vol. 32, no. 2, pp. 732–741, 1996.
    [105] Akhrif, O., Okou, F. A., Dessaint, L. A., Champagne, R. Application of a multivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Transactions on Power Systems, vol. 14, no. 2, pp. 620–628, 1999.
    [106] Lee, D. C., Lee, G. M., Lee, K. D. DC-bus voltage control of threephase AC/DC PWMconverters using feedback linearization. IEEE Transactions on Industrial Applications , vol. 36, no. 3, pp. 826–833, 2000.
    [107] Matas, J., de Vicuna, L. G., Miret, J., Guerrero, J. M., Castilla, M. Feedback Linearization of a Single-Phase Active Power Filter via Sliding Mode Control. IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 116–125, 2008.
    [108] Kim, D. E., Lee, D. C. Feedback Linearization Control of Three-Phase UPS Inverter Systems. IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 963–968, 2010.
    [109] Lindlau, J. D., Knospe, C. R. Feedback linearization of an active magnetic bearing with voltage control. IEEE Transactions on Control Systems Technology, vol. 10, no. 1, pp. 21–31, 2002.
    [110] Chen, M., Knospe, C. R. Feedback linearization of active magnetic bearings: current-mode implementation. IEEE/ASME Transactions on Mechatronics, vol. 10, no. 6, pp. 632–639, 2005.
    [111] Hajjaji, A. E., Ouladsine, M. Modeling and nonlinear control of magnetic levitation systems. IEEE Transactions on Industrial Electronics, vol. 48, no. 4, pp. 831–838, 2001.
    [112] Spong, M., Corke, P., Lozano, R. Nonlinear control of the inertia wheel pendulum. Automatica , vol. 37, pp. 1845–1851, 2001.
    [113] Bodson, M., Chiasson, J. N., Novotnak, R. T., Rekowski, R. B. High-performance nonlinear feedback control of a permanent magnet stepper motor. IEEE Transactions on Control System Technology, vol. 1, no. 1, pp. 5–14, 1993.
    [114] Chiasson, J., Bodson, M. Nonlinear control of a shunt DC motor. IEEE Transactions on Automatic Control, vol. 38, no. 11, pp. 1662–1666, 1993.
    [115] Ho, M., Tu, Y., Lin, H. Controlling a ball and wheel system using full-state-feedback linearization. IEEE Control Systems Magazine, vol. 29, no. 5, pp. 93–101, 2009.
    [116] Marino, R., Respondek, W., Van der Schaft, A. J., Tomei, P. Nonlinear H∞almost disturbance decoupling. System & Control Letters, vol. 23, pp. 159–168, 1994.
    [117] Schwartz, B., Isidori, A., Tarn, T. J. Global normal forms for MIMO nonlinear systems with application to stabilization and disturbance attenuation. Proceedings of 35th Conference on Decision Control, Kobe, pp. 1041–1046, 1996.
    [118] Lin, Z. H∞-almost disturbance decoupling with internal stability for linear systems subject to input saturation. IEEE Transactions on Automatic Control, vol. 42, no. 7, pp. 992–995, 1997.
    [119] Marino, R., Tomei, P. Nonlinear output feedback tracking with almost disturbance decoupling. IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 18–28, 1999.
    [120] Qian, C., Lin, W. Almost disturbance decoupling for a class of high-order nonlinear systems. IEEE Transactions on Automatic Control, vol. 45, no. 6, pp. 1208–1204, 1999.
    [121] Chien, T. L., Chen, C. C., Huang, Y. C., Lin, W. J. Stability and Almost DisturbanceDecoupling Analysis of Nonlinear System Subject to Feedback Linearization and Feedforward Neural Network Controller. IEEE Transactions on Neural Networks, vol. 19, no. 7, pp. 1220–1230, 2008.
    [122] Chen, C. C., Lin, Y. F. Application of feedback linearisation to the tracking and almost disturbance decoupling control of multi-input multi-output nonlinear system. IEE Proceedings of Control Theory and Applications, vol. 153, no. 3, pp. 331–341, 2006.
    [123] Chen, B., Liu, X. Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes. IEEE Transactions on Fuzzy Systems, vol. 13, no. 6, pp. 832–847, 2005.
    [124] Chen, B. M., Lee, T. H., Hang, C. C., Guo, Y., Weerasooriya, S. An H∞almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis. IEEE Transactions on Control Systems Technology, vol. 7, no. 2, pp. 160–174, 1999.
    [125] Zarchi, H. A., Soltani, J., Markadeh, G. A. Adaptive input-output feedback-linearization-based torque control of synchronous reluctance motor without mechanical sensor. IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 375–384, 2010.
    [126] Castilla, M., Vicuna, L. G., Guerrero, J. M., Matas, J., Miret, J. Sliding-mode control of quantum series-parallel resonant converters via input-output linearization. IEEE Transactions on Industrial Electronics, vol. 52, no. 2, pp. 566–575, 2005.
    [127]席裕庚.预测控制,北京:国防工业出版社, 1993.
    [128] Wang, L. Model predictive control system design and implementation using MATLAB, London: Springer-Verlag London Limited, 2009.
    [129] Cutler, C. R., Ramaker, B. L. Dynamic matrix control-a computer control algorithm. Meeting of the American Institute of Chemical Engineers, Houston, Texas, 1979.
    [130] Garcia, C. E., Morshedi, A. M. Quadratic programming solution to Dynamic Matrix Control (QDMC). Chemical Engineering Communication, vol. 46, pp. 73–87, 1986.
    [131] Peterka, V. Predictor-based self tuning control. Automatica, vol. 20, pp. 39–50, 1984.
    [132] Clarke, D. W., Mohtadi, C., Tuffs, P. S. Generalized predictive control. part 1: The basic algorithm. part 2: Extensions and interpretations. Automatica, vol. 23, pp. 137–160, 1987.
    [133] Ordys, A. W., Clarke, D. W. A state-space description for GPC controllers. International Journal of Systems Science, vol. 24, pp. 1727–1744, 1993.
    [134] Ricker, N. L. Model-predictive control: state of the art. Proceedings of Fourth International Conference on Chemical Process Control, Padre Island, Texas, pp. 271–296, 1991.
    [135] Rawlings, J. B., Muske, K. R. The stability of constrained receding horizon control. IEEE Transactions on Automatic Control, vol. 38, pp. 1512–1516, 1993.
    [136] Rawlings, J. B. Tutorial overview of model predictive control. IEEE Control SystemsMagazine, vol. 20, pp. 38–52, 2000.
    [137] Maciejowski, J. M. Predictive Control with Constraints. Pearson Education Limited, 2002.
    [138] Mayne, D. Q., Rawling, J. B., Rao, C. V., Scokaert, P. O. M. Constrained model predictive control: stability and optimality. Automatica, vol. 36, no. 6, pp. 789-814, 2000.
    [139] Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E. N. The explicit linear quadratic regulator for constrainted systems. Automatica, vol. 38, no. 1, pp. 3-20, 2002.
    [140]杜晓宁,席裕庚.预测控制优化变量的集结策略.控制与决策, vol. 17, no. 5, pp. 563-566, 2002.
    [141] Scattolini, R. Architectures for distributed and hierarchical Model Predictive Control–A review. Journal of Process Control, vol. 19, pp. 723-731, 2009.
    [142]郑毅.加速冷却过程的模型预测控制.上海:上海交通大学博士学位论文, 2010.
    [143] Luenberger, D. G. Linear and Nonlinear Programming. Second edition. Addison- Wesley Publishing Company, 1984.
    [144] Fletcher, R. Practical Methods of Optimization, Volume 2, Constrained Optimization. New York: John Wiley and Sons, 1981.
    [145] Boyd, S., Vandenberghe, L. Convex Optimization. Cambridge University Press, 2004.
    [146] Wismer, D. A., Chattergy, R. Introduction to Nonlinear Optimization, a Problem Solving Approach. New York: North-Holland, 1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700