用户名: 密码: 验证码:
东昆仑东段沟里金矿集区典型矿床地质地球化学及成矿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东昆仑造山带位于青藏高原东北缘,是中央造山带的重要组成部分。其复杂的地质演化历史造就了该区丰富的矿产资源,金、盐类及铜多金属矿产资源丰富,而沟里金矿集区位于东昆仑造山带的东段,目前区内已经发现了果洛龙洼金矿床(大型)、阿斯哈金矿床(中型)、按纳格金矿床(中型)、瓦勒尕金矿(小型)及达里吉格塘金矿点,研究区初步显现了特大型金矿田的潜力。本论文在充分搜集和整理前人资料的基础上,从沟里金矿集区典型矿床的成矿地质背景、矿床地质特征入手,结合研究区的构造演化历史,以微量元素、稀土元素、流体包裹体、同位素地球化学(S、Pb、H-O)、岩浆岩岩石学、地球化学和成岩成矿年代学为研究手段,本论文分析了果洛龙洼和阿斯哈金矿床地质特征,成矿物质来源,成矿流体性质、来源与演化,成矿过程和成矿流体的运移方向,成岩成矿时代,初步厘定了矿床成因类型,并构建切合实际的成矿模式。取得主要成果如下:
     1.对区域成矿地质背景研究表明,沟里金矿集区内构造形迹复杂,岩浆作用强烈,变形变质广泛,具备形成大型—特大型金矿床的地质条件,其中昆仑造山运动和印支期的中—酸性岩浆是区域金矿床的重要控矿因素。
     2.对果洛龙洼和阿斯哈金矿床地质特征研究表明:
     ①果洛龙洼金矿床矿体产于纳赤台群变质岩中,赋矿岩性主要为动力变质作用形成的千糜岩,次为绿泥石英千枚岩、灰黑色角闪片岩、硅质板岩、含炭绢云石英千糜岩、绢云母绿泥石千枚岩及凝灰杂色砾岩等。受昆中断裂及矿区内EW向的构造的控制,矿区内基性岩脉发育,常与矿体空间相伴。矿体走向近EW,向南倾,倾角陡、缓变化大,多在45°~75°之间,产状与地层基本一致。矿石类型有石英脉型、千枚岩型、破碎带型(氧化破碎带型和构造破碎带型)及蚀变岩型。围岩蚀变有硅化、绢云母化、黄铁矿化、绿泥石化、碳酸岩化(方解石化)、黄铜矿化、高岭土化等。热液成矿期包括石英脉硅化阶段(Ⅰ)、石英—多金属硫化物阶段(Ⅱ)、石英—贫硫化物阶段(Ⅲ)和石英—碳酸盐(Ⅳ)4个阶段。
     ②阿斯哈金矿床矿体产于花岗岩闪长岩—闪长岩体的构造破碎带中,受昆中断裂及矿区内NNE向及NNW-NW向断裂带的控制。矿体走向NNE向及NNW-NW向,倾向多为SE至NE向,倾角一般在75°左右。矿石类型有构造蚀变岩型和石英脉型(少量),围岩蚀变有硅化、绢云母化、黄铁矿化、绿泥石化、碳酸岩化(方解石化)、黄铜矿化、高岭土化等。热液成矿期包括石英-黄铁矿-毒砂阶段(Ⅰ)、石英-多金属硫化物阶段(Ⅱ)、石英-贫硫化物阶段(Ⅲ)和石英-碳酸盐(Ⅳ)4个阶段。
     3.对果洛龙洼和阿斯哈金矿床地球化学特征的研究表明:
     ①成矿元素分析显示:不同时代地层及各类侵入岩Au含量各不相同,均低于地壳丰度值或同类岩石,即普遍发生贫化,可能为成矿提供部分金属。此外,因子和聚类分析显示不同元素组合特征,表明成矿存在多样性。
     ②稀土元素研究表明:中-酸性岩浆岩(闪长岩)、酸性岩浆岩(花岗斑岩)、纳赤台群变质岩、矿石及含金蕙铁矿中,稀土元素具有轻稀土富集和Eu负异常特征,它们的配分模式也相似,果洛龙洼和阿斯哈金矿床可能经历了相似的成矿过程,其可能具有相同的成矿物质来源。
     ③流体包裹体岩相学、显微测温及成分分析结果表明:成矿期石英流体包裹体十分发育,主要有气液两相、富CO2三相、纯CO2单相三种类型。成矿流体为一套中高温(130~425.6℃)、中低盐度(1.83~20.1lwt%NaCl.eqv)、低密度(0.14~1.03g.cm3)的H2O-CO2-NaCl-CH4±N2体系,暗示成矿流体来源于中高温、中低盐度的流体体系。
     ④氢、氧同位素测试结果表明:矿石石英中水的6D值为-117.7~-59.6‰,δ18Ov-SMOW为11.3~19.1‰,计算获得的热液流体的δ18OH20为2.7-10.7‰。表明成矿流体中的水以岩浆水为主,并混入大气降水。
     ⑤S同位素测试结果表明:果洛龙洼金矿硫化物634s值为-5.95‰~+5.23‰,阿斯哈金矿硫化物634S值为+5.0‰~+7.6‰,成矿流体中硫以酸性岩浆硫为主,并混入海水硫。
     ⑥果洛龙洼和阿斯哈金矿床矿石和硫化物Pb同位素测试结果表明:样品的的208pb/204pb、207Pb/204PPb及208Pb/204Pb分别介于18.057~18.235、15.524~15.605及37.901~38.321之间,为典型的放射性成因铅。在Zartman R E and Doe B R(1981)的铅构造图解上,所有样品均落入地幔演化线与造山带演化线之间,且靠经造山带演化线一侧,表明成矿流体中的铅主要来源于古老的地壳。
     ⑦岩浆岩岩石学、地球化学和年代学研究表明:果洛龙洼金矿基性岩脉属于蚀变较强的碱性玄武岩系,形成于416.2Ma,产于原特提斯洋消减俯冲作用背景下,与果洛龙洼金矿床形成没有直接的成因联系。阿斯哈金矿闪长岩属高钾钙碱性岩石,具壳幔混合特征,形成于洋壳俯冲环境,岩石结晶年龄为232.6Ma,其可能仅作为赋矿围岩为成矿提供空间。阿斯哈金矿花岗斑岩属高钾钙碱性过铝质花岗岩,岩浆侵位于228.5Ma,略晚于阿斯哈闪长岩,产于碰撞造山晚期向造山后伸展的力学性质转换期,其侵位不仅可能为成矿提供热动力,还有可能提供部分成矿物质。成矿年代学研究得出:果洛龙洼和阿斯哈金矿形成于210~232Ma,属印支期。
     4.在成矿地质背景、典型矿床地质-地球化学特征深度剖析的基础上,揭示了矿床的成矿机理:
     沟里金矿集区金矿床的成矿物质主要来自下地壳,并萃取了所流经岩石或赋矿围岩中的部分成矿物质。成矿流体以岩浆水为主,并混入了部分大气降水。成矿流体为H2O-CO2-NaCl-CH4±N2体系,并含有N2、CH4及Cl-、SO42-、NO3-、F-等还原性气体和阴离子。
     金主要以硫氢络合物的形式迁移,果洛龙洼金矿床中的Au可能以一种比较单一的AuHS(H2S)30、Au(HS)2-或硫代硫酸盐络合物如Au(S2O3)]-、[Au(S2O3)]3-的形式运移,阿斯哈金矿床中的Au的以Au(AsS2)0、Au(AsS3)2-及Au(Sb2S4)等络合物形式运移。流体不混溶(沸腾作用)是主要沉淀机制,成矿流体的主要驱动力为印支期的构造热事件。
     在晚华力西期一印支期(约210-232Ma),研究区强烈的俯冲及碰撞造山运动,不但形成了一系列区域性大断裂、大型剪切带及次一级的褶皱和断裂—裂隙控矿构造,而且还促使了成矿流体的活化迁移和成矿物质的富集。由于研究区内大型韧性剪切带往往经历由韧性向韧—脆性和脆性构造环境的转变,在此过程中,大量各类中—酸性岩浆经过同熔或重熔作用生成及上侵定位且伴随深部流体向上运移,在向上运移的过程中与变质水及大气降水等其它来源流体汇合,在流体运移过程当中,不断萃取围岩、侵入岩中的成矿物质,当携带大量成矿物质的流体进入有利的构造部位时,由于构造环境及温度、压力等物理化学条件的改变,流体的不混溶性、不同性质流体的混合及水—岩反应等因素的共同作用,最终促使金物质的沉淀,从而形成金矿床。
     5.在对成矿地质背景、两个典型金矿床地质—地球化学特征和岩浆岩岩石学、地球化学和成岩成矿年代学分析的基础上,通过比较矿床学研究,以详实的证据重新厘定了研究区的金矿床成因类型为造山过程中形成的、与印支期中—酸性岩浆岩有关的热液脉型金矿床,属造山型金矿床。并构建了切合本地实际的构造演化与金矿床成矿模式。
Eastern Kunlun orogenic belt, located in the northeastern margin of Qinghai-Tibet Plateau, is an important part of the Central Orogenic belt. Its complex geological evolutionary history contributed the study area with rich mineral resources, gold, salt and copper polymetallic minerals. Gouli gold metallogenic district is in the east of Eastern Kunlun orogenic belt, at present, some gold deposits have been found in this region such as Guoluolongwa gold deposit (large), Asiha deposit (medium), Annage gold deposit (medium), Walega gold deposit (small) and Dalijigetang gold point, and it shows there are the potential of super large gold fields in the study area. In this paper, based on the collection and sorting out the previous data, starting from some aspects of the typical gold deposit in Gouli gold metallogenic district:the ore-forming geological background, geological characteristics of the deposit, and combined with the structural evolution history in the study area, taking trace and rare earth elements, fluid inclusions, isotope geochemical (S, Pb, H-O), Magmatic rock's petrology and geochemistry, diagenesis and mineralization chronology as research methods, This paper analysed that Guoluolongwa and Asiha gold deposits'geological features, metallogenic material source, property of mineralizing fluid, origin and evolution, ore-forming processes and the migration direction of the ore-forming fluid, metallogenic epoch and preliminary determined the genetic type of ore deposit, established a practical metallogenic model. The main results are as follows:
     1. The study on the regional metallogenic background shows that the Gouli gold metallogenic district, with complex tectonic features, intensive magmatism, mostly metamorphism and deformation, has the geological conditions for the formation of superlarge gold deposits. The Kunlun orogenic movement and the medium-acid magma in Indosinian played an important role in ore controlling factors of regional gold deposits.
     2. The study on the geological characteristics of Guoluolongwa and Asiha gold deposits shows that:
     ①Guoluolongwa gold deposit is hosted in the Nachitai Group metamorphic rocks, and ore bearing lithology is mainly formed by dynamic metamorphism phyllonite, secondary with green mud quartz phyllite, black hornblende schist, siliceous slate, carbonaceous sericite quartz phyllonite, sericite chlorite phyllite and ash mixed color conglomerate. The deposit is controlled by Kunlun central large fault and NW-trending structure in the mining area, with well developed basic dykes and often accompanied by ore bodies. Orobodies occur as nearly EW, south bending, dip angles between45°~75°differently, and occurrence is consistent with the strata. Ore types are quartz vein type, phyllite type, fracture zone type (oxidation broken fracture zone type, belt type and tectonic altered rock type) and altered rock type. Wall rock alterations are silicification, sericitization, pyritization, chlorite, carbonate rock (calcilization), brass mineralization, kaolin etc. Hydrothermal mineralization periods include four stages:quartz vein silicification stage (Ⅰ), quartz polymetallic sulfide stage (Ⅱ), quartz lean sulphide stage (III) and quartz carbonate (IV).
     ②Asiha gold deposit is hosted in granite diorite-diorite structure fracture zone, controlled by the Kunlun central lagre fault and NNE and NNW-NW trending fault zone in the mining area. Orobodies occur as nearly NNE and NNW-NW, mostly SE to NE, dip angles generally75°. Ore types are altered rock type and quartz vein type (A few). Wall rock alterations are silicification, sericitization, pyritization, chlorite, carbonate rock (calcilization), brass mineralization, kaolin etc.. Hydrothermal mineralization periods include four stages:quartz pyrite arsenopyirite stage (Ⅰ), quartz polymetallic sulfide stage (Ⅱ), quartz sulfide stage (Ⅲ) and quartz carbonate (Ⅳ).
     3. The study on the geochemical characteristics of Guoluolongwa and Asiha gold deposits shows that:
     ①The metallogenic elements analysis shows:The varied strata and intrusive rock have varied Au content, lower than that of the crustal abundance or similar rocks, namely common dilution, which may provide part of the metal ore. In addition, the factor and cluster analysis show that the different assemblages indicate the diversity of mineralization.
     ②The study on rare earth elements shows:Medium-acid magmatic rock (diorite), acidic magmatic rocks (granite porphyry), Nachitai group metamorphic rocks, ores and gold-bearing pyrite, rare earth elements possess the characters of LREE enrichment and negative Eu anomalies and their distribution patterns are similar. Therefore, Guoluolongwa and Asiha gold deposits may underwent similar mineralization processes with same ore-forming materials source.
     ③The fluid inclusion petrography, microthermometry and component analysis results show that:Fluid inclusions in quartz crystals are well developed in the mineralization period and can be classified into aqueous two-phase, CO2-rich three-phase inclusions and CO2-pure single-phase inclusions. The ore-forming fluids of main mineralizing stage belonged to the H2O-CO2-NaCl-CH4±N2system of medium-high temperature (130~425.6℃), medium-low salinity(1.83to20.1lwt%NaCl.eqv), low density (0.14-1.03g.cm3) which suggests the origin of ore-forming fluid is related with medium-high temperature and medium-low salinity fluids system.
     ④The hydrogen, oxygen isotope test results indicates that:the8D value of water in the ore's quartz is from-117.7%o to-59.6%o,518OV-SMOW of11.3~19.1‰, calculated hydrothermal fluid result of δ18OH2o2.7~10.7‰. It indicates that the ore-forming fluid is dominated by magmatic water, and mixed with meteoric water.
     ⑤The sulfur isotope test results show that:The δ34S value of the sulfide in Guoluolongwa gold deposit is range from-5.95%o to+5.23%o, and is range from+5.0%o to+7.66%o in Asiha deposit. The sulfur in ore-forming fluids is dominantly acidic magma sulfur and is mixed with seawater's sulfur.
     ⑥The lead isotope of the ore and sulfide test results in Guoluolongwa and Asiha gold deposits show that:The samples'206Pb/204Pb,207Pb/204Pb and208Pb/204Pb are separately between18.057-18.235,15.524-15.605and37.901-38.321, typical for radiogenic plumbum. In the Zartman R E and Doe B R (1981) plumbum structure diagrams, all samples fall into the mantle evolution and the evolution of an orogenic belt line, and by the evolution of orogenic side of the line, which show that the ore-forming fluids in the plumbum is mainly originated from the ancient crust.
     ⑦Petrology, geochemistry and geochronology of magmatic rock study shows that:Formed in the416.2Ma, Guoluolongwa gold deposit basic dykes belong to the altered strong alkaline basalt series, produced in the proto Tethys ocean subtractive subduction background, and no direct genetic link to Guoluolongwa gold deposit. Asiha gold deposit diorite belongs to high potassium calc alkaline rocks, with crust and mantle mixing characteristics, produced in the oceanic crust subduction environment, rock crystallization age of232.6Ma, which may provide space for ore-forming only as the ore bearing rock. Asiha gold deposit granite porphyry belongs to high potassium calc alkaline peraluminous granite, magma emplaced in the228.5Ma, a little later than Asiha diorite, produced in the mechanical properties transition of late collisional orogenic, orogenic stretch back. Its emplacement may not only provide heat power for mineralization, but also can provide some ore-forming materials. Study on metallogenic chronology shows that:Guoluolongwa and Asiha gold deposits were formed in the210-232Ma, belonging to the Indo Chinese epoch.
     4. Based on the analysis of ore-forming geological background, geological and geochemical characteristics of typical deposits, reveals the deposit mineralization mechanism:
     The gold deposits'ore-forming materials of Gouli gold metallogenic district is mainly from the lower crust, also extracting some ore-forming materials from flowing through rock and ore-bearing country rock. The ore-forming fluid is dominated by magmatic water and is partly mixed with meteoric water. The ore-forming fluids belong to the H2O-CO2-NaCl-CH4±N2system, containing N2, CH4and Cl-, SO42-, F,-NO3reducing gas and anion.
     Gold migrates often in the form of sulfur hydrogen complexes.The Au in Guoluolongwa gold deposit transports in the form of single AuHS(H2S)30, Au(HS)2-or thiosulfate complexes, such as [Au(S2O3)]-,[Au(S2O3)]3-.The Au in Asiha gold deposit is in Au(AsS2)0, Au(AsS3)2-and Au(Sb2S4) and other complex forms. Fluid immiscibility (boiling) is the main precipitation mechanism of ore-forming fluid, and the main driving force is the Indosinian tectonic thermal events.
     From late Variscan to Indosinian (about210-232Ma), the strong subduction and collision orogenic effect in the study area, not only formed a series of regional faults, large shear zones, folds and faults-fractured level ore control structure, but also promoted the enrichment of ore-forming fluid migration and activation metallogenic material.The large ductile shear zone often changed from toughness to ductile brittle and brittle tectonic environment in the study area, in this process, a large number of various medium acidic magma underwent emplacement generated with the melting or anatexis and accompanied by deep fluid migration, in the process of migration, extracting metamorphic water and atmospheric precipitation and other sources of fluid confluence continuously. When the fluid carrying a lot of ore-forming material intruded into the favorable tectonic area, due to tectonic environment and temperature, pressure and the physical and chemical conditions changed, fluid immiscibility, mixed different properties of fluid and water rock reaction and other factors, prompted the gold material deposition and formed gold deposits.
     5.On the basis of the analysis of the metallogenic geological background, two typical gold deposits geological-geochemical characteristics, magma petrology, geochemistry and geochronology, through a comparative study of mineral deposit, with detailed evidence, determined the genetic type of gold deposit in the study area are hydrothermal vein type gold deposit in acid formation in the orogenic process, and Indosinian intermediate magmatic rocks related, belongs to the orogenic type gold deposit. Meanwhile, tectonic evolution and metallogenic model of gold deposit in line with local realities are established.
引文
[1]青海省有色地质八队和中南大学.青海省都兰县果洛龙洼地区金矿成矿规律研究及成矿预测(R),2008,1-182
    [2]丰成友.青海东昆仑地区的复合造山过程及造山型金矿床成矿作用:[博士学位论文].北京:中国地质科学院矿产资源研究所,2002
    [3]赵俊伟.青海东昆仑造山带造山型金矿床成矿系列研究:[博士学位论文].吉林:吉林大学,2008
    [4]丁清峰.东昆仑造山带区域成矿作用与矿产资源评价:[博士学位论文].吉林:吉林大学,2004
    [5]孙丰月.新疆-青海东昆仑成矿规律和找矿方向综合研究(R),2003,I-146
    [6]胡正国,刘继庆,钱壮志,等.东昆仑区域成矿规律分析—关于找矿工作的战略思考[J].西安工程学院学报,1999,21(4):46-50
    [7]钱壮志,胡正国,刘继庆,等.古特提斯东昆仑活动陆缘及其区域成矿[J].大地构造与成矿学,2000,24(2):134-139
    [8]钱壮志,胡正国,李厚民.东昆仑中带印支期浅成-超浅成岩浆岩及其构造环境[J].矿物岩石,2000,20(2):14-18
    [9]钱壮志,胡正国,苏春乾,等.东昆仑中带闪长玢岩脉与金矿成矿关系-以石灰沟金矿床为例[J].西安工程学院学报,1999,21(1):1-4
    [10]石金友.青海省都兰县五龙沟金矿成矿地质特征及找矿标志[J].前寒武纪研究进展,1997,20(2):29-36
    [11]闫臻,胡正国,刘继庆,等.东昆仑开荒北金矿床地质特征及控矿条件[J].西安工程学院学报,2000,22(1):23-27
    [12]张德全,丰成友,李大新,等.柴北缘-东昆仑地区的造山型金矿床[J].矿床地质,2001,20(2):137-146
    [13]丰成友,张德全,王富春,等.青海东昆仑造山型金(锑)矿床成矿流体地球化学研究[J].岩石学报,2004,20(4):949-960
    [14]李文渊,董福辰,姜寒冰,等.西北地区重要金属矿产成矿特征及其找矿潜力.西北地质,2006,39(2):1-16
    [15]王云山,陈基娘.青海省及毗邻地区变质地带与变质作用[M].北京:地质出版社,1987
    [16]青海省地质矿产局.青海省区域地质志[M].北京:地质出版社,1991
    [17]邓昌文,郑延中,王增寿,等.青海省区域矿产总结[M].青海省区调综合地质大队,1990,1-987
    [18]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质山版社,1992,183-217
    [19]孙崇仁.青海省岩石地层[M].武汉:中国地质大学出版社,1997,1-340
    [20]中国地质科学院矿产资源研究所.东昆仑地区综合找矿预测与突破报告(R),2000
    [21]青海省有色矿勘院、青海省有色地质八队和长安大学.青海省都兰县沟里地区魏日、园以、塔妥煤矿、沟里乡四幅1:5万矿产地质、水系沉积物测量综合调查成果报告(R),2007
    [22]陈树民.青海省果洛龙洼金异常区成矿特征及找矿方向[J].地质与资源,2002,11(2):83-87
    [23]陈旺,陈树民,杨晓斌,等.青海东昆仑造山带沟里地区金矿找矿前景[J].矿产与地质,2003,17(4):386-388
    [24]杨小斌,刘洪川.东昆仑造山带都兰县沟里地区金矿成矿特征及找矿潜力分析[J].青海国土经略,2005,4:32-35
    [25]杨小斌,杨宝荣,王晓云.青海果洛龙洼金矿床金的赋存状态研究[J].地质与勘探,2006,42(5):57-59
    [26]杨小斌,李永娜,冶玉娟.青海省果洛龙洼金矿床矿石及矿物特征研究[J].黄金科学技术,2007,15(1):14-18
    [27]刘孝忠,刘继顺,潘彤.青海省都兰县果洛龙洼金矿的发现-化探找矿实例[J].矿产与地质,2006,20(4,5):484-488
    [28]文雪峰,王怀超.青海省都兰县果洛龙洼金矿床地质特征及成因探讨[J].黄金科学技术,2006,14(5):27-29
    [29]李月隆,雷迅.化探在果洛龙洼金矿找矿中的作用[J].黄金科学技术,2007,15(4):51-53
    [30]肖静.东昆仑东段果洛龙洼金矿韧性剪切带显微构造研究[J].西部探矿工程,2007,(9):146-149
    [31]杨宝荣,杨小斌.青海都兰果洛龙洼金矿床地质特征及控矿因素浅析[J].黄金科学技术,2007,15(1):26-30
    [32]胡荣国.青海省果洛龙洼金矿地质地球化学特征及矿床成因研究:[硕士学位论文].长沙:中南大学,2008
    [33]周晓中,范丽琨,中勇胜.沟里地区地质地球化学特征及找矿方向[J].黄金科学技术,2009,17(3):17-19
    [34]赵万顺,李彦林,高钢锁.青海省都兰县果洛龙洼金矿的成因及找矿标志[J].陕西地质,2009,27(2):34-52
    [35]胡荣国,赖健清,张绍宁,等.青海省都兰县果洛龙洼金矿床地质地球化学特征[J].地质与勘探,2010,46(5):931-941
    [36]周凤.青海省果洛龙洼金矿区流体包裹体研究:[硕士学位论文].长沙:中南大学,2010
    [37]郭跃进.青海东昆仑东段沟里地区金矿(化)集区果洛龙洼金矿床地球化学特征与成矿模式:[硕士学位论文].昆明:昆明理工大学,2011
    [38]刘心开,高建国,周家喜.青海东昆仑果洛龙洼金矿床东区Ⅰ矿体群稀土元素地球化学[J].地球化学,2013,42(2):131-142
    [39]岳维好,高建国,周家喜.青海果洛龙洼金矿区基性岩脉锆石U-Pb年龄及地球化学[J].矿物岩石,2013,4,待刊
    [40]王冠.青海果洛龙洼金矿床地质特征及成因探讨:[硕士学位论文].吉林:吉林大学,2012
    [41]李碧乐,孙丰月,于晓飞,等.东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J].岩石学报,2012,28(4):1163-1172
    [42]李碧乐,沈鑫,陈广俊,等.青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因[J].吉林大学学报(地球科学版),2012,42(6):1676-1687
    [43]祁月清,刘瑞雪.都兰县阿斯哈金矿地质特征及找矿远景浅析[J].西部探矿工程,2012,(6):140-149
    [44]沈鑫.青海东昆仑阿斯哈金矿矿床地质特征及成因研究:[硕士学位论文].吉林:吉林大学,2012
    [45]沈小荣,朱谷吕,孙丰月,等.青海省东昆仑成矿带矿产资源综合调查报告(R),2006
    [46]袁万明,王世成,王兰芬.东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据[J].地球学报,2000,21(4):389-395
    [47]青海省地质局.1:20万加鲁河幅区域地质调查报告,1973
    [48]张德全,党兴彦,余宏全,等.柴北缘-东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义[J].矿床地质,2005,24(2):87-98
    [49]许志琴,杨经绥,陈方远.阿尼玛卿缝合带及“俯冲-碰撞”动力学.见:张旗主编,蛇绿岩与地球动力学研究.北京:地质出版社,1996,185-189
    [50]古凤宝.东昆仑地质特征及晚古生代-中生代构造演化[J].青海地质,1994,3(1):4-14
    [51]潘桂棠.全球洋-陆转换中的特提斯演化[J].特提斯地质,1994,(18):23-40
    [52]许志琴,姜枚,杨经绥.青藏高原北部隆升的深部构造物理作用-以“格尔木-唐古拉山”地质及地球物理综合剖面为例[J].地质学报,1996,70(3):195-206
    [53]莫宣学,邓晋福.东昆仑中段成矿地质背景与找矿方向的框架研究(R).中国地质大学等,科研报告,1998
    [54]殷鸿福,张克信,陈能松,等.中华人民共和国区域地质调查报告(比例尺:1:250000),冬给措纳湖幅(I47C001002).武汉:中国地质大学出版社,2003.1-457
    [55]张德全,张慧,丰成友,等.柴北缘-东昆仑地区造山型金矿床的流体包裹体研究[J].中 国地质,2007,34(5):843-854
    [56]刘成东.东昆仑造山带东段花岗岩岩浆混合作用[M].北京:地质出版社,2008
    [57]黄汲清.对中国大地构造特点的一些认识并着重讨论地槽褶皱带的多旋回发展问题[J].地质学报,1979,53(2):99-111
    [58]张以弗,庞存廉,李长利,等.可可西里—巴颜喀拉三叠纪沉积盆地的形成和演化[M].西宁:青海人民出版社,1997
    [59]姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000
    [60]李延栋.青藏高原隆升的过程和机制[J].地球学报,1995,(4):1-9
    [61]李延栋.青藏高原地质科学研究新进展[J].地质通报,2002,21(7):370-376
    [62]殷鸿福,张克信.东昆仑造山带的一些特点[J].地球科学-中国地质大学学报,1997,22(4):339-342
    [63]殷鸿福,张克信.中央造山带的演化及其特点[J].地球科学-中国地质大学学报,1998,23(5):437-441
    [64]陆松年,王惠初,李怀坤,等.柴达木盆地北缘“达肯大坂群”的再厘定[J].地质通报,2002,21(1):19-23
    [65]阿成业,王毅智,任晋祁,等.东昆仑地区万保沟群的解体及早寒武世地层的新发现[J].中国地质,2003,30(2):199-205
    [66]罗照华,邓晋福,曹永清,等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化[J].现代地质,1999,13(1):51-56
    [67]陆松年,赵风清,李怀坤,等.青海柴达木盆地北缘“达肯大坂群”的重新厘定及其地质意义初探[C].见:第三届全国地层会议论文集,2000,13-18
    [68]青海省地质局区测队.金水口群.1971
    [69]庄庆兴.青海省东昆仑山前寒武系.青海省地质研究所,1986
    [70]朱志直,赵民,郑健康.东昆仑中段“纳赤台群”的解体与万宝沟群的建立[J].见:青藏高原地质文集(16).北京:地质出版社,1985,1-14
    [71]许志琴,张建新,徐惠芬,等.中国主要大陆山链韧性剪切带及动力学pM].北京:地质出版社,1997
    [72]潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化[J].中国科学(D辑),1996,26(4):302-307
    [73]Yang JS, Robinson P T, Jiang CF, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications [J]. Tectonophysics,1996,258:299-305
    [74]李光岑,林宝玉.昆仑山东段几个地质问题的探讨[C].青藏高原地质论文集1,1982,28-48
    [75]丰成友,张德全,党兴彦,等.青海格尔木地区驼路沟钴(金)矿床石英钠长石岩锆石SHRIMP U-Pb定年-对“纳赤台群”时代的制约[J].地质通报,2005,24(6):501-505
    [76]肖序常,汤耀庆,高延林,等.再论青藏高原的板块构造[J].中国地质科学院院报,1986,(4):7-20
    [77]高延林,吴向农,左国朝.东昆仑山清水泉蛇绿岩特征及其大地构造意义[J].地科院西安地矿所所刊,1988(21):17-29
    [78]朱云海,张克信,陈能松,等.东昆仑造山带不同蛇绿岩带的厘定及其构造意义[J].地球科学-中国地质大学学报,1999,24(2):134-138
    [79]莫宣学,罗照华,周肃,等.东昆仑造山带岩浆混合花岗岩儿期填图方法基础研究科研报告(R),2004
    [80]郭正府,邓晋福,许志琴,等.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):344-352
    [81]孙延贵,张国伟,郑健康,等.柴达木地块东南缘岩浆弧(带)形成的动力学背景[J].华南地质与矿产,2001,(4):16-21
    [82]郑健康.东昆仑区域构造的发展演化[J].青海地质,1992,1(1):15-25
    [83]解玉月.昆中断裂东段不同时代蛇绿岩特征及形成环境[J].青海地质,1998,7(1):27-35
    [84]黎彤,袁怀雨.大洋岩石圈和大陆岩石头的元素丰度[J].地球化学,2011,40(1):1-5
    [85]Turekian KK, Wedepohl KH. Distribution of the elements in some major units of the earth's crust [J]. Geological Society of America Bulletin,1961, (72):175
    [86]Vinogradov AP. Average content of chemical elements in the major types of igneous rocks of the earth's crust [J]. Geochemistry.1962, (7):641
    [87]青海省有色地质八队.青海省都兰县果洛龙洼金矿详查2011年工作总结及2012年工作安排,2012
    [88]刘英俊,马东升.金的地球化学[M].北京:科学出版社,1991,180-280
    [89]北京矿冶研究总院.青海果洛龙洼金矿矿物加工第一阶段试验研究报告[R],2011
    [90]青海省有色地质八队.青海省都兰县阿斯哈金矿区2011年工作总结及2012年普查设计,2012
    [91]陈骏,王鹤年.地球化学[M].北京:科学出版社,2004:35-136
    [92]Qi L, Hu J, Gregoire DC. Determination of trace elements in granites by inductively coupled plasma mass spectrometry [J]. Talanta,2000,51(3):507-513
    [93]Taylor SR and McLennan SM. The Continental Crust:Its Composition and Evolution. Oxford: Blackwell Scientific Publications,1985,1-328
    [94]毕献武,胡瑞忠.哀牢山金矿带成矿流体稀土元素地球化学[J].地质论评,1998,44(3):264-269
    [95]Sun SS and McDonough WF. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In:Saunders AD and Norry MJ(eds.). Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond.,1989,42:313-345
    [96]Chen YJ, Fu SG. Variation of REE patterns in early Precambrian sediments:Theoretical study and evidence from the southern margin of the northern China craton [J]. Chin Sci Bull,1991, 36(13):1100-1104
    [97]Ma YJ, Liu CQ. Trace element geochemistry during chemical weathering as exemplified by the weathered crust of granite, Longnan, Jiangxi [J]. Chinese Sci Bull,1999,44(24): 2260-2263
    [98]Mills RA, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound,26°N Mid Atlantic Ridge [J]. Geochim Cosmochim Acta,1995,59(17): 3511-3524
    [99]李厚民,沈远超,毛景文,等.石英、黄铁矿及其包裹体的稀土元素特征—以胶东焦家式金矿为例[J].岩石学报,2003,19(2):267-274
    [100]Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium [J]. Chem Geol,1991, 93(3/4):219-230
    [101]Zhou JX, Huang ZL, Zhou GF, et al. Trace elements and rare earth elements of sulfide minerals in the Tianqiao Pb-Zn ore deposit, Guizhou Province, China [J]. Acta Geol Sinica (English Ed),2011,85(1):189-199
    [102]卢焕章,范洪瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004
    [103]Hrstka T, Dubessy J, Zacharias J. Bicarbonate-rich fluid inclusions and hydrogen diffusion in quartz from the Libice orogenic gold deposit, Bohemian Massif [J]. Chemical geology, 2011,281:317-332
    [104]Hou ZQ, Zaw Khin, Rona Peter, et al. Geology, fluid inclusions and oxygen isotope geochemistry of the Baiyinchang Pipe-Style Volcanic Hosted Massive Sulfide Cu Deposit in Gansu Province, Northwestern China:evidence for sub-seafloor Replacement and Fluid Mixing [J]. Economic Geology,2008,103:269-292
    [105]范宏瑞,谢奕汉,翟明国,等.豫陕小秦岭脉状金矿床三期流体运移成矿作用[J].岩石学报,2003,19(2):260-266
    [106]Potter RW, Clynne MA, Brown DL. Freezing point depression of aqueous sodium chloride solutions [J]. Economic Geology,1978,73(2):284-285
    [107]Bozzo AT, Chen JR, Barduhn AJ. The properties of hydrates of chlorine and carbon dioxide [C]. DelyannisA. Delyannis E. Fourth International Symposium on Fresh Water from the Sea, 1973, (3):437-451
    [108]刘斌,段光贤NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-352
    [109]邵洁链,梅建明.浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因及找矿意义[J].矿物岩石,1986,6(3):101-111
    [110]张文淮,张志坚,伍刚.成矿流体及成矿机制[J].地学前缘,1996,3(3-4):245-252
    [111]张德会.成矿流体中金的沉淀机理研究述评[J].矿物岩石,1997,17(4):122-130
    [112]朱永峰.液态不混溶作用:成矿机制之一—以太行山地区的金矿为例[J].矿物岩石地球化学通报,1999,18(1):206-209
    [113]Guha J, Lu HZ, Gagnon M. Gas composition of fluid inclusions using solid probe mass spectrometry and its application to study of mineralizing process [J]. Geochimica et Cosmochimica Acta,1990,54(3):553-558
    [114]Guha J, Lu HZ, Dube B, et al. Fluid characteristics of vein and altered wallrock in Archean mesothermal gold deposits [J]. Economic Geology,1991,86(3):667-684
    [115]Craw D. Fluid evolution, fluid immiscibility and gold deposition during Cretaceous-Recent tectonics and uplift of the Otago and Alpine schist, New Zealand [J]. Chemical Geology, 1992,98(3-4):221-236
    [116]卢焕章.CO2流体与金矿化:流体包裹体的证据[J].地球化学,2008,37(4):321-328
    [117]李保华,顾雪祥,李黎,等.CO2-H2O流体不混溶对Au溶解度的影响—以贵州省贞丰县水银洞金矿床为例[J].地质通报,2011,30(5):766-772
    [118]胡芳芳,范宏瑞,沈昆,等.胶东乳山脉状金矿床成矿流体性质与演化[J].岩石学报,2005,21(5):1329-1338
    [119]Reed M H, Spycher N F. Boiling,cooling,and oxidation in epithermal systems:a numerical modeling approach [J]. Reviews in Economic Geology,1985(2):249-272
    [120]张理刚.湘西雪峰山隆起区钨锑金矿床稳定同位素地质学[J].地质与勘探,1985,25(11):24-28
    [121]王安建,许虹.脉状金矿成矿流体研究:现状与进展[J].岩石矿物,1995,16(3):88-103
    [122]Clayton RN, O'Neil JR, Mayeda TK. Oxygen isotope exchange between quartz and water [J]. Journal of Geophysical Research,1972,77:3057-3067
    [123]Taylor HP. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition [J]. Economic Geology,1974,69(6):843-883
    [124]Craig H. Isotopic variations in meteoric waters [J]. Science,1961,133(3465):1702-1703
    [125]Ohmoto H, Rye RO. Isotopes of sulfur and carbon. In:Bernes H L ed. Geochemistry of hydrothermal ore deposits.2nd Edition. New York:John Wiley and Sons,1979,509-611
    [126]田世洪,侯增谦,杨竹森,等.安徽铜陵马山金硫矿床稀土元素和稳定同位素地球化学研究[J].地质学报,2007,81(7):929-938
    [127]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000
    [128]周家喜,黄智龙,周国富,等.黔西北赫章天桥铅锌矿床成矿物质来源:S、Pb同位素和REE制约[J].地质论评,2010,56(4):513-524
    [129]Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Econ. Geol.,1972,67:551-578
    [130]Bouse RM, Ruiz J, Titley SR, et al. Lead isotope compositions of late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona:implications for the source of plutons and metals in porphyry copper deposits [J]. Eeon. Geol.,1999,94:211-244
    [131]Marcoux E, Grancea L, Lupulescu M, et al. Lead isotope signatures of epotermal and porphyry-type ore deposits from the Romanian Carpathian Mountainse [J]. Mineralium Deposita,2002
    [132]Rollinson HR. Using Geochemical Data:Evalution Presrntatatio,Interpretation. Longman Group UK Ltd.1993, pp:352
    [133]Zartman R E and Doe B R. Plumboteetonies the model[J]. TeetonoPhysies,1981,75(1-2): 135-162
    [134]朱炳泉.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化[M].北京:科学出版社,1998,1-330
    [135]Doe B R and Stacey. The application of lead isotopes to the problem of ore genesis and ore prospect evalution:a review[J]. Economic Geology,1974,69:757-776
    [136]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520
    [137]Liu YS, Hu ZC, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology,2008, 257(1-2):34-43
    [138]Liu YS, Hu ZC, Gao S, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths [J]. Journal of Perology,2010,51(1-2):537
    [139]Ludwig KR. User's manual for Isoplot 3.0:A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication,2003,4:70
    [140]Belousova EA, Griffin WL, O'Reilly SY. Igneous zircon:Trace element composition as an indicator of source rock type [J]. Contrib Mineral Petrol,2002,143:602-622
    [141]任军虎,柳益群,冯乔,等.东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年[J].岩石学报,2009,25(5):1135-1145
    [142]Jakes P, White AJR. Major and trace element abundances in volcanic rocks of orogenic areas [J]. Bull. Geol. Soc. Am.,1972,83:29-40
    [143]Melon WG, Vallier TL, Wright TL, et al. Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic and Indian Ocean Sea-Floor Spreading Centers. In:The Geophysics of the Pacific Ocean Basin and its Margin [M]. Washington D C:Am Geophys Union,1976,351-367
    [144]Wilson M. Igneous Petrogenesis [M]. London:Unwin Hyman,1989,1-466
    [145]Pearce JA. Role of the sub-continental lithosphere in magma genesis at active continental margins. In:Hawkesworth CJ and Norry MJ(eds.) Continental Basalts and Mantl Xenoliths [M]. Nantwich:Shiva Publishing,1982,158-185
    [146]Le Maitre RW, Bateman P, Dudek A, et al. A classification of igneous rocks and glossary of terms[M]. Oxford:Blackwell,1989
    [147]张本仁,傅家谟,赵振华,等.地球化学进展-微量元素地球化学研究进展[M].北京:化学工业出版社,2005
    [148]董国臣,莫宣学,赵志丹,等.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息[J].岩石学报,2008,24(2):203-210
    [149]张贵山,温汉捷,李石磊,等.闽北角闪辉长岩的地球化学特征及其地球动力学意义[J].矿物学报,2009,29(2):244-252
    [150]陈波,夏明哲,汪帮耀,等.新疆东天山黄山岩体岩石地球化学特征与岩石成因[J].矿物岩石,2011,31(1):11-21
    [151]蔡克大,袁超,孙敏,等.阿尔泰塔尔浪地区斜长角闪岩和辉长岩的形成时代、地球化学特征和构造意义[J].岩石学报,2007,23(5):877-888
    [152]李王晔,李曙光,郭安林,等.青海东昆南构造苦海辉长岩和德尔尼闪长岩锆石SHRIMP U-Pb年龄及痕量元素地球化学-对“祁-柴-昆”晚新元古代-早奥陶世多岛洋南界的制约[J].中国科学(D辑),2007,37:288-294
    [153]刘战庆,裴先治,李瑞保,等.东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动:来自锆石U-Pb测年及岩石地球化学证据[J].中国地质,2011,38(5):1150-1167
    [154]陆松年,于海峰,赵风清,等.青藏高原北部前寒武纪地质初探[M].北京:地质出版社,2002,1-130
    [155]冯建赞,裴先治,于书伦,等.东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄[J].中国地质,2010,37(1):28-38
    [156]张亚峰,裴先治,丁仨平,等.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石 LA-ICP-MS U-Pb年龄及其意义[J].地质通报,2010,29(1):79-85
    [157]刘战庆,裴先治,李瑞保,等.东昆仑南缘阿尼玛卿构造代布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J].地质学报,2011,85(2):185-194
    [158]陈能松,孙敏,张克信,等.东昆仑变闪长岩体的40Ar-39Ar和1U-Pb年龄:角闪石过剩Ar和东昆仑早古生代岩浆岩带证据[J].科学通报,2000,45(21):2337-2342
    [159]谌宏伟,罗照华,莫宣学,等.东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J].岩石矿物学杂志,2006,25(1):25-32.
    [160]刘成东,莫宣学,罗照华,等.2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据[J].科学通报,49(6):596-602
    [161]Waston EB and Harrison TM. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types [J]. Earth and Planetary Science Letters,1983, 64(2):295-304
    [162]Middlemost EAK. Naming materials in the magma/igneous rock system [J]. Earth-Science Reviews,1994,37:215-224
    [163]Maniar PD and Piccoli PM. Tectonic discrimination of granitoids [J]. Geological Society of America Bulletin,1989,101:635-643
    [164]Peccerillo R and Talor SR. Geochemistry of Eocene cal-alkaline vaocanic rocks from the Kastamonu area, northern Turkey [J]. Contrib. Mineral. Petrol.,1976,58:63-81
    [165]Wager LR and Brown GM. Layered Igneous Rocks. San Francisco:Freeman WH & Co., 1967,150-203
    [166]Mckenzie DP. Some remarks on the movement of small melt fractions in the mantle [J]. Earth and Planetary Science Letters,1989,95:53-72
    [167]Taylor SR and McLennan SM. The geochemical evolution of the continental crust [J]. Reviews of Geophysics,1995,33(2):241-265
    [168]邵拥军,彭省临,吴淦国,等.铜陵凤凰山岩体成岩机制探讨[J].地质与勘探,2003,39(5):39-43
    [169]Condie KC. Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary:Identification and significance [J]. Lithos,1989,23:1-18
    [170]Salters VJM and Hart SR. The mantle sources of ocean ridges, island arcs:The Hf-isotope connection [J]. Earth Planet. Sci. Lett.,1991,104:364-380
    [171]杨经绥,许志琴,李海兵,等.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J].岩石矿物学杂志,2005,24(5):369-379
    [172]熊富浩,马昌前,张金阳,等.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J].岩石学报,2011,27(11):3350-3364
    [173]Pearce JA, Harris NBW, Tidle G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,1984,25(4):956-983
    [174]Edward J. Mikucki hydrothermal transport and depositional processes in Archean lode-gold systems:Areview [J]. Ore Geology Reviews,1998,13:307-321
    [175]王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989,1-535
    [176]王秉璋,张森琦,张智勇等.东昆仑东端扎那合惹地区元古宙蛇绿岩[J].中国区域地质,2001,20(1):52-57
    [177]毛光周,华仁民,高剑峰等.江西金山金矿床含金黄铁矿的稀土元素和微量元素特征[J].矿床地质,2006,25(4):412-426
    [178]Bajwah ZU, Seccombe P, Offler R. Trance element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia [J]. Mineralium Deposita, 1987,22:292-303
    [179]Brill BA. Trance element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia [J]. Can Mineral,1989,27:263-274
    [180]Shenberger DM, Barnes HL. Solubility of gold in aqueous sulfides solution from 150℃ to 350℃ [J]. Geochimica et cosmochimica Acta,1989,53(2):269-278
    [181]陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,2007,23(9):2085-2108
    [182]陈衍景.造山型矿床、成矿模式及找矿潜力[J].中国地质,2006,33(6):1181-1196
    [183]Groves DI, Goldfarb RJ, Gebre-Mariam et al. Orogenic gold deposits:a proposed classfication in the context of their crustal distribution and relationship to other gold deposit types [J]. Ore Geology Reviews,1998,13:7-27
    [184]Kerrich R, Goldfarb R, Groves D, et al. The characteristies, origins, and geodynamic settings of super giant gold Metallogenic provinces [J]. Science in China(Series D),2000, 43(sup):1-68
    [185]Bierlein FP, Groves DI, Goldfarb RJ, etal. Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits [J]. Miner Deposita,2006,40:874-886
    [186]陈衍景.陆内碰撞造山体制的流体作用模式及成矿的关系—理论推导和东秦岭金矿床的研究结果[J].地学前缘,1996,3(34):282-289
    [187]Fan HR, Zhai MG, Xie YH, et al. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China [J]. Mineralium Deposita,2003,38:739-750
    [188]祁进平,陈衍景,倪培,等.河南冷水北沟铅锌银矿流体包裹体研究及矿床成因[J].岩石学报,2007,23(9):2119-2130
    [189]陈衍景,富士谷.豫西金矿成矿规律[M].北京:地震出版社,1992,234
    [190]Barton MD and Johnson DA. Evaporitic-source model for igneous-related Fe-oxide-(REE-Cu-Au-U) [J]. mineralization Geology,1996,24:259-262
    [191]Hitzman MW, Oreskes N, and Einaudi MT. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits [J]. Precambrian Research,1992,58: 241-287
    [192]Khashgerel BE, Rye RO, Hedenquist JW, et al. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia[J]. Economic Geology,2006,101(3):503-522
    [193]Baker T. Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits [J]. Economic Geology,2002,97:1111-1117
    [194]范宏瑞,谢奕汉,郑学正,等.河南祁雨沟热液角砾岩体型金矿床成矿流体研究[J].岩石学报,2000,16(4):559-563
    [195]徐光炽.成矿与找矿[J].石家庄:河北教育出版社,2003,454
    [196]张燕.云南哀牢山大坪喜马拉雅期碰撞造山型金矿矿床地球化学及成矿机制:[博士学位论文].广州:中山大学,2012
    [197]Mao J, Qiu Y, Goldfarb R J, et al. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China [J]. Miner Deposita,2002,37 (3-4):352-377
    [198]张作衡.西秦岭地区造山型金矿床成矿作用和成矿过程:[博士学位论文].北京:中国地质科学院,2002
    [199]Goldfarb RJ, Phillips GN and Nokleberg WJ. Teetonie setting of synorogenic gold deposits of the Pacific Rim. Ore Geol. Rev.,1998,13(1-5):185-218
    [200]Goldfarb RJ, Groves DI, Gardoll S. Orogenic gold and geologic time:a global synthesis[J]. Ore Geol. Rev.,2001,18 (1-2):1-75
    [201]Zaw K., Peters SG, Cromie P, et al. Nature, diversity of deposit types and metallogenic relations of South China [J]. Ore Geology Reviews,2007,31:3-47
    [202]Bierlein FP, Christie AB, Smith PK. A comparison of orogenic gold mineralisation in central Victoria(AUS), western South Island(NZ) and Nova Scotia(CAN):implications for variations in the endowment of Palaeozoic metamorphic terrains [J]. Ore Geology Reviews,2004,25: 125-168
    [203]Bager BR and Henley RW. Advances in the understanding of epithermal gold-silver deposits, with special reference to the western United States[J]. Economic Geology Monograph,1989, 6:405-423

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700