用户名: 密码: 验证码:
多年生黑麦草(Lolium perenne L.)对菲的吸收和生理响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃污染是近年来受到广泛关注的一个环境问题,但是由于相关研究开展较晚,目前对于多环芳烃污染的植物修复、农产品安全等方面的机理研究仍不充分。
     本文以多年生黑麦草(Lolium perenne L.)为研究对象,以菲为多环芳烃的代表,采用溶液培养的手段,探讨了植物对多环芳烃的吸收、积累和体内运输以及植物生长、根系分泌、体内解毒酶的响应,研究结果如下:
     (1)黑麦草对菲的吸收、积累、运输:黑麦草能够从溶液中吸收菲,并且能够将根系吸收的菲向地上部分运输;黑麦草根系和地上部分吸收菲的浓度与溶液中菲的浓度有关,处理浓度越高,黑麦草体内菲的浓度也越高;黑麦草体内菲的积累与处理时间也有关系,处理6d后地上部分和根系菲的浓度都比处理3d时显著降低,进一步研究其积累的绝对量发现,处理6d后黑麦草地上部分菲积累量较3d处理减少,说明在黑麦草地上部分存在明显的菲降解、而处理6d后,黑麦草根系积累菲的绝对量较3d处理仍有上升,说明黑麦草根系持续吸收溶液中的菲,并且吸收速率远高于根系将菲向地上部分运输的速率,从而造成根系内菲的不断积累:通过计算菲在黑麦草体内的富集系数和传导系数发现,菲在黑麦草体内传导系数小,不超过0.0262,说明黑麦草吸收的菲主要被根部积累,能够在体内向地上部分运输的量很有限;经过一段时间的培养,黑麦草生长的溶液中菲的含量显著降低,但进一步分析黑麦草积累菲对溶液中菲消散的贡献率发现,黑麦草的积累对溶液中菲的消散贡献不大,不超过0.724%,由此得出,植物吸收不是溶液中菲消失的主要原因,推测是由于黑麦草存在下,溶液中微生物与植物的共同作用导致溶液中菲含量显著下降。
     (2)菲对黑麦草根系分泌物的影响:菲处理下,黑麦草根系分泌的低分子量有机分泌物含量发生变化,低浓度菲处理能够刺激根系分泌氨基酸和总糖,但浓度升高后,根系分泌的氨基酸和总糖含量下降,而菲对根系有机酸的分泌都表现为促进作用;分析了根系分泌的低分子量有机物组成后发现,低分子量有机酸是根系分泌的主要低分子量有机物,而草酸又是黑麦草分泌的主要低分子量有机酸;在对黑麦草根系积累的有机酸进行分析后发现,黑麦草根系内部积累的低分子量有机酸在组成上与根系分泌的低分子量有机酸一致,在菲处理下,黑麦草根系有机酸总量变化不大,推测黑麦草根系有机酸的代谢受菲的影响较小;随着菲处理浓度的升高,黑麦草根系有机酸分泌、积累比持续上升,结合其他研究推测,这种促进作用可能对土壤中菲的解吸附有重要意义;各浓度的菲处理均没有引起黑麦草根系活力的下降,黑麦草根系对菲表现出了较强的抗性。
     (3)菲对黑麦草萌发生长的影响:从萌发率的角度看,当菲处理浓度不超过8 mg/L时,黑麦草的种子萌发率与空白对照无显著差异;从种子萌发的时间看,在萌发前4天,菲对黑麦草种子的萌发有显著的延迟作用,但是到了6天后,这种延迟现象消失;从黑麦草幼苗的生长情况来看,幼苗根长和生物量受菲处理的影响表现相同,均在低浓度菲处理下升高,而随着处理浓度继续上升,表现出下降趋势;从黑麦草叶绿素含量来看,菲处理下,黑麦草的叶绿素含量没有下降,且叶绿素a/b的值保持稳定;综合以上各指标发现,黑麦草对菲具有一定的耐受能力。
     (4)黑麦草体内与菲代谢相关的生理响应:由于进入体内的菲代谢产生氧自由基,诱导了黑麦草的超氧化物歧化酶活性在高浓度菲处理6d后显著提高,以清除自由基,避免细胞损伤;在菲处理3d后,最高浓度(8 mg/L)处理下,黑麦草谷胱甘肽—S—转移酶(GST)活性较对照组显著上升、在菲处理6d后,菲处理组的GST活性均显著高于对照组,而各个菲处理浓度组GST活性又随处理浓度升高显示出上升趋势;菲处理下,还原型谷胱甘肽(GSH)在植物体内含量增加,且增加趋势随处理时间延长和处理浓度升高而愈加明显:这些生理指标显示:黑麦草吸收到体内的菲进行了代谢,并且刺激相关代谢生理指标的上升。
Polycyclic Aromatic Hydrocarbons (PAHs) pollution is an environmental problem which is focused by many researchers in recent years. But due to the short research history, many aspects in this field such as phytoremediation mechanism and the safety of agricultural products are not sufficiently discussed.
     In this research, we chose perennial ryegrass (Lolium perenne L.) as our research material and phenanthrene as a typical PAH, and a solution culture experiment was performed to discuss such problems: the absorption, transfer and accumulation of phenanthrene by ryegrass; the response of plant growth, root exudates and detoxification enzymes to phenanthrene. Our main results were listed as below:
     (1) The absorption, transfer and accumulation of phenanthrene by ryegrass: ryegrass was able to absorb phenanthrene from culture solution, and phenanthrene which had been absorbed by ryegrass root could been transferred to the overground part; the concentrations of phenanthrene in ryegrass root, overground part were related to both the concentration of phenanthrene in culture solution and the exposure time, the higher concentration of phenanthrene in culture solution, the more phenanthrene in plant tissue. After been exposed to phenanthrene for 6 days, the phenanthrene concentrations in plant root and over ground part were all lower then the plant which were exposed for 3 days, considering the plant growth during exposure time, we found that the content of phenanthrene in overground part declined which meant phenanthrene degradation happened in overground part, however, the content in root kept increasing which meant the root was continuously absorbing phenanthrene from culture solution. Plant Concentration Factor and Translocation Factor were all calculated to understand the transfer of phenanthrene in ryegrass; we found that the transfer of phenanthrene in plant was quite limited; the phenanthrene uptake by plant was mainly absorbed in root. Plant uptake and accumulation of phenanthrene was not the main reason which induced the decline of phenanthrene concentration.
     (2) The impact of phenanthrene on root exudates: phenanthrene affected the organic contents in ryegrass root exudates, relatively lower concentration of phenanthrene stimulated the secretion of amino acids and saccharide, but under high concentration of phenanthrene treatment, the secretion of amino acids and saccharide were restrained. Organic acids were the main part of organic content in ryegrass root exudates, and oxalic acid was the dominant organic acids secreted by ryegrass, under all treatments of phenanthrene in this experiment, oxalic acid secretion were stimulated compared with control. In ryegrass root, oxalic acid was also the dominant organic acid accumulated in root, after calculation we found that the total organic acid ( organic acids in root exudates + organic acids accumulated in root) seemed to be stable under phenanthrene treatments, while the organic acids secretion was enhanced with the phenanthrene concentration increased. The root activity also tested, data showed that, in all treatment the activity of plant root didn't decline. Considering other researches in this field, we speculated that the stimulated organic acids secretion may play an import part in the absorption-desorption of phenanthrene in soil.
     (3) The effect of phenanthrene on ryegrass growth: the germination rate of ryegrass wasn't affected by phenanthrene when its concentration didn't exceed 8 mg/L, while all concentration of phenanthrene showed delay effect on ryegrass germination at the first 4 days of germination. Phenanthrene had the same effect on the root length and biomass, at relatively low concentrations, the root elongation and seedling growth were stimulated by phenanthrene, but at relatively high concentrations, they were restrained by phenanthrene. Under all treatments, the chlorophyll contents and chlorophyll a/b maintained stability. All these indexes showed that ryegrass had a certain degree of tolerance to phenanthrene.
     (4) The physiological response related to the phenanthrene metabolism in ryegrass under phenanthrene treatment: the plant could metabolize phenanthrene, and oxygen radicals were the by-product in this procedure. In this study, we found that the SOD activity rose significantly after treated by relatively high concentration of phenanthrene for 6 days. GST activity significantly rose under 8 mg/L treatment for 3 days, after 6 days, GST activity of all the samples treated by phenanthrene were higher than control. Phenanthrene also could induce the increasing of GSH in plant. These physiological responses indicated that the ryegrass could metabolize phenanthrene in its tissues.
引文
[1]余刚,牛军峰,黄俊等.持久性有机污染物-新的全球性环境问题[M].北京:科学出版社,2005:1.
    [2]Menzie C A,Potoki B B,Santodonato J.Exposure to carcinogenic PAHs in the environment[J].Environ.Sci.Tech.,1992,26(7):1278-1284.
    [3]Wilson S C,Jones K C.Bioremediation of soil contaminated with polycyclic aromatic hydrocarbons(PAHs):a review[J].Environ.Pollut.,1993,81:229-249.
    [4]Carmichael L M,Christman R F,Pfaender F K.Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soil[J].Environ.Sci.Tech.,1997,31:126-132.
    [5]杨若明.环境中有毒有害化学物质的污染和监测[M].北京:中央民族大学出版社,2001:178.
    [6]周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单[J].中国监测,1990,6(4):1-3.
    [7]Christian M.Bioremediation and phytoremediation of industrial PAH-polluted soils[J].Polycyclic Aromatic Compounds,2002,22:1011-1043.
    [8]Soren T,Gerhard W B.Bioformation of polycyclic aromatic hydrocarbons in soil under oxygen deficient conditions[J].Soil Bio.Biochem.,2002,34:733-735.
    [9]Eisler R.Polycyclic aromatic hydrocarbon hazards to fish,wildlife,and invertebrates:A synoptic review[J].Serv.Biol.Rep.,1987,85:1-11.
    [10]Newsted J L,Giesy J P.Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to Daphnia magna,Strauss (Cladocera,Crustacea)[J].Environ.Toxicol.Chem.,1987,6:445-461.
    [11]朱利中.土壤及地下水有机污染的化学与生物修复[J].环境科学进展.1999,7:65-71.
    [12]Wiltse C C,Rooney W L,Chen Z,et al.Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes[J].J.Environ.Qual.,1998,27:169-173.
    [13]Susan C W,Kevin C J.Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons(PAHs):A review[J].Environ Pollut.,1993,81(3):229-249.
    [14]Aprill W,Sims R C.Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil[J].Chemosphere,1990,20:253-265.
    [15]Erik J J,Corinne L.Rhizosphere Gradients of Polycyclic Aromatic Hydrocarbon(PAH) Dissipation in Two Industrial Soils and the Impact of Arbuscular Mycorrhiza[J].Environ.Sci.Tech.,2003,37(11):2371-2375.
    [16]Gao Y Z,Zhu L Z.Plant uptake,accumulation and translocation of phenanthrene and pyrene in soils[J].Chemosphere,2004,55(9):1169-1178.
    [17]Gao Y Z,Ling W T,Wong M H.Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant[J].Chemosphere,2006,63(9):1560-1567.
    [18]周启星,宋玉芳等.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [19]Singh O V,Jain R K.Phytoremediation of toxic aromatic pollutants from soil[J].Appl.Microbiol.Biotechnol.,2003,63:128-135.
    [20]Gao J,Carrison A W,Hochamer C,et al.Uptake and phytotransformation of o,p'-DDT and p,p'-DDT by axenically cultivared aquatic plants[J].J.Agric.Food Chem.,2000,48:6121-6127.
    [21]Suresh B,Sherkhane P D.Uptake and degradation of DDT by hairy root cultures of Cichorium intybu sand Brassica juncea[J].Chemosphere, 2005, 61 (9): 1288-1292.
    [22] Aslund M L W, Zeeb B A. In situ phytoextraction of poly-chlorinated biphenyl-(PCB) contaminated soil[J] Sci. Total Environ., 2007,374(1): 1-12.
    [23] Raveton M, Ravanel P, Serre A M. Kinetics of uptake and metabolism of atrazine in model plant[J]. Pestic. Sci., 1997,49:157-163.
    [24] Burken J G, Schnoor J L. Uptake and metabolism of atrazine by poplar trees[J]. Environ. Sci. Technol., 1997,31:1399-1406.
    [25] Harms H, Langebartels C. Standardized plant cell suspension test systems for an ecotoxicologic evaluation of the metabolic fate of xenobiotics[J]. Plant Sci., 1986,5:157-165.
    [26] Schroll R, Bierling B, Cao C X, et al. Uptake of organic chemicals from soil by agricultural plants[J]. Chemosphere, 1994,28:297-303.
    [27] Schnoor J L, Lich L A, McCutcheon S C, et al. Phytoremediaiton of organic and nutrient contaminants[J]. Environ. Sci. Technol., 1995,29:318-323.
    [28] Raskin L, Smith R D, Salt D E. Phytoremediation of metals: using plants to remove pollutants from the environment [J]. Current Opinion in Biotech., 1997,8:221-226.
    [29] Newman L A, Strand S E, Choe N, et al. Uptake and biotransformation of trichloroethylene by hidrid poplars[J]. Environ. Sci. Technol., 1997,31:1062-1067.
    [30] Field J A, Thurman E M. Glutathione conjugation and contaminant transformation[J]. Environ. Sci. Technol., 1996,30:1413-1418.
    [31] Fismes J, Perrin G C, Empereur B P. Soil to root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soil[J]. J. Environ. Qual., 2002,31:1649-1656.
    [32] Mclachlan M S. Bioaccumulation of hydrophobic chemicals in agricultural food chains[J]. Environ. Sci. Technol., 1996,30:252-259.
    [33] Patryk O, Stanisaw B. Polycyclic Aromatic Hydrocarbons Content in Shoots and Leaves of Willow (Salix viminalis) Cultivated on the Sewage Sludge-Amended Soil[J]. Water Air Soil Pollut., 2005, 168:1-4.
    [34] Chiou C T, Sheng G Y, Manes M. A partition-limited model for the plant uptake of organic contaminants from soil and water[J]. Environ. Sci. Technol., 2001,35(7):1437-1444.
    [35] Barbour J P, Smith J A, Chiou C T. Sorption of Aromatic Organic Pollutants to Grasses from Water[J]. Environ. Sci. Technol., 2005,39: 8369-8373.
    [36] Li H, Sheng G Y, Chiou C T, et al. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants[J]. Environ.Sci. Technol., 2005,39:4864-4870.
    [37] Zhang Q Z, Davis L C, Erickson L E. Transport of methyl tertibutylether through alfalfa plants[J]. Environ. Sci. Technol., 2001,35:725-731.
    [38] Topp E, Scheunert L, Attar A, et al. Factors affecting the uptake of ~(14)C-labelled organic chemical by plants from soil[J]. Ecotoxicol. Environ. Safety, 1986,11:219-228.
    [39] Wild E, Dent J, Thomas G 0, et al. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots[J]. Environ. Sci. Technol., 2005,39:3695-3702.
    [40] Barber J L, Thomas G O, Kerstiens G, et al. Current issues and uncertainties in the measurement and modeling of air-vegetation exchange and within-plant processing of POPs[J]. Environ. Pollut., 2004,128:99-138.
    [41]Simonich S L,Hites R A.Organic pollution accumulation in vegetation[J].Environ.Sci.Technol.,1995,29:2905-2913.
    [42]Ryan J A,Bell R M,Davidson J M,et al.Plant uptake of non-ionicorganic chemicals from soils[J].Chemosphere,1988,17:2299-2323.
    [43]Briggs G G,Bromilow R H,Evans A A.Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley[J].Pestic.Sci.,1982,13:495-504.
    [44]Briggs G G,Bromilow R H,Evans A A.Relationships between lipophilicity and the distribution of non-ionized chemicals in barley shoots following uptake by the roots[J].Pestic.Sci.,1983,14:492-500.
    [45]Burken J G,Schnoor J L.Predictive relationships for uptake of organic contaminants by hybrid poplar trees[J].Environ.Sci.Technol.,1998,32:3379-3385.
    [46]Duarte D R,Jones K C.Screening the environmental fate of organic contaminants in sewage sludge applied to agricultural soils.2.The potential for transfer to plants and grazing animals[J].Sci.Total Environ.,1996,185:59-70.
    [47]Wang M,Jones K C.Uptake of chlorobenzenes by carrots from spiked and sewage sludge-amended soil[J].Environ.Sci.Technol.,1994,28:1260-1267.
    [48]戴树桂,刘小琴,徐鹤.污染土壤的植物修复技术进展[J].上海环境科学,1998,17:25-27.
    [49]孙铁珩,周启星,李培军.污染生态学.北京:科学出版社,2001.
    [50]Meredith M L,Hites R A.Polychlorinated biphenyl accumulation in tree bark and wood growth rings[J].Environ.Sci.Technol., 1987,21:709-712.
    [51] Hermanson M H, Hites R A. Polychlorinated biphenyls in tree bark[J]. Environ. Sci. Technol., 1990, 24:666-671.
    [52] Simonich S L, Hites R A. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J]. Environ. Sci. Technol., 1994, 28:939-943.
    [53] Paterson S, Mackay D D, Shiu W Y. Uptake of organic chemicals by plants: a review of processes, correlationsand models[J]. Chemosphere, 1990,20:297-331.
    [54] Horstmann M, McLachlan M S. Atmospheric desposition of semivolatile organic compounds to two forest canopies [J]. Atmospheric Environ., 1998, 32:1799-1809.
    [55] Howsam M, Jones K C, Ineson P. PAHs associated with the leaves of three deciduous tree species -concentrations and profiles [J]. Environ. Pollut., 2000,108:413-424.
    [56] Bakker M I, Toll J, Kolloffel C. Atmospheric deposition of SOCs to plants[C]. American Chemical Symposium Series, 2000, 16:218-236.
    [57] Monteith J L, Unsworth M H. Principles of environmental physics 2nd Edition[M]. Edward Arnold London, 1990.
    [58] Trapp S, McFarlane J C. Plant Contamination Modeling and Simulation of Organic Chemical Process[M]. Lewis London, 1995.
    [59] Rauret G, Llaurado M, Tent J, et al. Deposition on holm oak leaf surfaces of accidentally released radionuclides[J]. Sci. Total Environ., 1994,157:7-16.
    [60] Barthlott W, Neinhuis C. Purity of the sacred lotus or escape from contamination in biological surfaces[J]. Planta, 1997, 202:1-2.
    [61] Neinhuis C, Barthlott W. Characterisation and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals Botany, 1997,79: 667-677.
    [62] Anderson T A, Guthrie E A, Walton B T. Bioremediation in the rhizosphere[J]. Environ. Sci. Technol., 1993, 27(13):2630-2636.
    [63] Gunther T, Dornberger U, Fritsche W. Effects of ryegrass on biodegradation of hydrocarbons in soil[J]. Chemosphere. 1996, 33(2):203-21
    [64] Anderson T A, Coats J R. Bioremediation through rhizosphere technology[M]. Washington D. C., 1994.
    [65] Anderson T A, Kruger E L, Coats J R. Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant [J]. Chemosphere. 1994, 28(8):1551-1557.
    [66] Perkovich B S, Anderson T A , Kruger E L, et al. Enhance mineralization of [~(14)C]Atrazine in kochia scopariarhizospheric soil from a pecticide-contaminated site[J]. Pestic. Sci., 1996, 46:391-396.
    [67] Ferro A M, Sims R C, Bugbee B. Hycrest wheatgrass accelerates the degradation of pentachlorophenol insoil[J]. J. Environ. Qual. 1994,23:272-279.
    [68] Walton B T, Anderson T A. Microbial degration trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites[J]. Appl. Environ. Microbio., 1990, 56(4):1012-1016.
    [69] Banks M K, Lee E, Schwab A P. Evaluation of dissipation mechanisms for benzo [a] pyrene in the rhizosphere of tall fescue [J]. J. Environ. Qual., 1999,28:294-298.
    [70] Binet P, Portal J M, Leyval C. Application of GC-MS to the study of anthracene disappearance in the rhizosphere of ryegrass[J]. Organic Geochem.,2001,32:217-222.
    [71] Joner E J, Corgie S C, Amellal N, et al. Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere[J]. Soil Biol. Biochem., 2002, 34:859-864.
    [72] Lynch J M, Whipps J M. Substrate flow in the rhizosphere [J]. Plant Soil, 1990,129:1-10.
    [73] Garrison S, Davis L C, Erickson L E. Plant enhanced remediation of glycol-based aircraft deicing fluids[J]. Waste Management, 2001, 5 (3): 141-152.
    [74] Macek T, Mackova M. Exploitation of plants for the removal of organics in environmental remediation[J]. Biotech. Advances, 2000, 18(1):23-34.
    [75] Schnoor J L, Licht L A, McCutcheon S C, et al. Phytoremediation of organic and nutrient contaminants[J]. J. Environ. Sci., 2003, 15(3):302-310.
    [76] Steer J, Harris J. Shift in themicrobial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera[J]. Soil Biol. Biochem. ,2000, 32(6):869-878.
    [77] Nichol T D. Rhizosphere microbial populations in contaminated soils[J]. Water, Air Soil Pollut., 1997, 95:165-176.
    [78] Jodahl J L, Foster L, Schnoor J L. Effect of hybrid trees on microbial populations important to hazardous waste bioremediation[J]. Environ. Toxicol. Chem., 1997, 16:1318-1321.
    [79] Donnelly P K, Hegde R S, Fletcher J S. Growth of PCB-degrading bacteria on compounds from photosynthetic[J]. Chemosphere, 1984,28:981-988.
    [80] Fletcher J S, Hedge R S. Release of phenols by perennial plant roots and their potential importance in bioremediation[J]. Chemosphere, 1995,31:3009-3016.
    [81] Weissenfels W D, Klewer H J, Langhoff J. Adsorption of polycyclicaromatic hydrocarbons(PAHs) by soil particles:Influence on biodegradability and biotoxicity[J]. Appl. Microbio. Biotech., 1992,36:689-696.
    [82] Reilley K A, Banks M K, Schwab A P. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere[J]. J. Environ. Qual., 1996, 25:212-219.
    [83] Nardi S, Reniero F, Concheri G. Soil organic matter mobilization by root exudates of three maize hybrids[J]. Chemosphere, 1997, 35:2237-2244.
    [84] Jones D L. Organic acid in the rhizosphere-a critical review[J]. Plant Soil, 1998,205:25-44.
    [85] White JC. Differential bioavailability of field-weathered p, p' -DDE to plants of the Cucurbita and Cucumis genera[J]. Chemosphere, 2002,49:143-152.
    [86] Luo L, Zhang S Z, Shan X Q, et al. Oxalate and root exudates enhance the desorption of p, p' -DDT from soils[j]. Chemosphere, 2006,63:1273-1279.
    [87] Buhler D R, Williams D E. The role of biotransformation in the toxicity of chemicals[J]. Aquat. Toxicol.,1988,11:19-28.
    [88] Porter T D, Coon M J. Cytochrome P450: multiplicity of isoforms, substrates and catalytic and regulatory mechanisms[J]. J. Biol. Chem., 1991,266:13469-13472.
    [89] Warshawsky D, Keenan T H, Reilman R, et al. Conjugation of benzo[a]pyrene metabolites by freshwater green alga Selenastrum capricornutum[J].Chemico-Biological Interactions,1990,74:93-105.
    [90]Yang S,Wu R S S,Kong R Y C.Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol[J].Aqua.Toxico.,2002,59:191-200.
    [91]Elizabeth P S.Phytoremediation[J].Annu.Rev.Plant Biol,2005,56:15-39.
    [92]Rentz J A,Chapman B,Alvarez P J,et al.Stimulation of hybrid poplar growth in petroleum-contaminated soils through oxygen addition and soil nutrient amendments[J].Int.J.Phytorem.,2003,5:57-72.
    [93]Henner P,Schiavon M,Druelle V,et al.Phytotoxicity of ancient gaswork soils:Effect of polycyclic aromatic hydrocarbons PAHs on plant germination[J].Org.Geochem.,1999,30:275-284.
    [94]Baek K H,Kim H S,Oh H M,et al.Effects of crude oil,oil components,and bioremediation on plant growth[J].J.Environ.Sci.Health,2004,39:2473-2484.
    [95]Maliszewska K B,Smreczak B.Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons PAHs-effect on plants[J].Environ.Technol.,2000,21:1099-1110.
    [96]Ren L,Huang X D,Mcconkey B J,et al.Photoinduced toxicity of three polycyclic aromatic hydrocarbons(fluoranthene,pyrene,and naphthalene)to the duckweed[J].Ecoto.Environ.Saf.,1994,28(2):160-171.
    [97]Ren L,Zeiler L F,Dixon D G.Photoinduced effects of polycyclic aromatic hydrocarbons onBrassica napus(Canola) during germination and early seedling development[J].Ecoto.Environ.Saf.,1996,33:73-80.
    [98]陆志强.多环芳烃对秋茄幼苗的生理生态效应及其在九龙江口红树林湿地的含量与分布[D].厦门:厦门大学,2002
    [99]孙娟,郑文教,赵胡.萘胁迫对白骨壤种苗萌生及抗氧化作用的影响[J]. 厦门大学学报:自然科学版,2005,44(3):436
    [100]刘宛,李培军,周启星等.短期菲胁迫对大豆幼苗超氧化物歧化酶活性及丙二醛含量的影响[J].应用生态学报,2003,14(4):581-584.
    [101]刘建武,林逢凯,王郁等.多环芳烃(萘)污染对水生植物生理指标的影响[J].华东理工大学学报:自然科学版,2002,28(10):520-524.
    [102]Paskova V,Hilscherova K,Feldmannova M,et al.Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives[J].Environ.Toxicol.Chem.,2006,25(12):3238-3245.
    [103]Alkio M,Tabuchi T M,Wang X C,et al.Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like system[J].J.Experiment Botany,2005(56):2983-2994.
    [104]Roy S,Hanninen O.Pentachlorophenol:uptake/elimination kinetics and metabolism in an aquatic plant,Eichhornia crassipes[J].Environ.Toxico.Chem.,1994(13):763-773.
    [105]Roy S,Lindstroem S P,Huuskonen S,et al.Responses of biotransformation and antioxidant enzymes in Lemna minor and Oncorhynchus mykiss exposed simultaneously to hexachlorobenzene[J].Chemosphere,1995(30):1489-1498.
    [106]施卫民.根系分泌物与土壤有效性[J].土壤,1993,25(5):252-256.
    [107]Marshner H,Romheld V,Cakmak I.Mineral Nutrition of Higher Plants [M].London:Academic Press,1995.
    [108]熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(2):145-148.
    [109]Rovira A D.Plant root exudates[J].Botanical Reviews,1969,35-57.
    [110]刘芷宇.根际研究法[M].江苏:科学技术出版社,1997.
    [111]Ma J F.Specific secretion of citric acid induced by Al stress in Cassia tora L.[J].Plant Cell Physiol.,1997,38:1019-1025.
    [112]Shen H.Isolation and identification of specific root exudates in elephant grass(Pennis lium L.)in response to aluminum-and iron-bound phosphates[J].J.Plant Nutri.,2001,24(7):1131-1144.
    [113]Pronin V A.The technique for investigation of root exudates of higher plants[J].Fiziologiya-Rastenii,1973,20(1):210-214.
    [114]Tang C S.Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss(Hemarthria altissima)[J].Plant Physiol.,1982,69:155-160.
    [115]刘秀芬.根际区他感化学物质的分离、鉴定与生物活性的研究[J].生态学报,1996,16(1):1-10.
    [116]Knopp D,Martin S,Virpi V,et al.Determination of polycyclic aromatic hydrocarbons in contaminated water and soil samples by immunological and chromatographic methods[J].Environ.Sci.Technol.,2000,34:2035-2041.
    [117]陈晓秋,苏鹏起,废水及土壤中多环芳烃监测时样品的预处理[J],中国环境监测,1994,10(6):27-28.
    [118]刘德全,周展明.土壤中多环芳烃的高效液相色谱测定研究及应用[J].分析实验室,1996,15(6):73-75.
    [119]Hartmann R.Polycyclic aromatic hydrocarbons in forest soil:critical evaluation of a new analytical procedure[J].J.Environ.Anal.Chem.,1996,62:161-173.
    [120]Cuypers C,Tim G,Jan J,et al.Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments[J].Environ.Sci.Technol.,2000,34:2057-2063.
    [121]宋玉芳,区自清,孙铁晰.土壤、植物样品中多环芳烃分析方法研究[J].应用生态学报,1995,6(1):92-96.
    [122]Busettif,Heitz A.Determination of Sixteen Polycyclic Aromatic Hydrocarbons in Aqueous and Solid Samples from an Italian Waste water Treatment Plant[J].J.Chromatogr.A,2006,1102:104-115.
    [123]Xie M X,Xie F,Deng Z W.Determination of Polynuclear Aromatic Hydrocarbons in Aerosol by Solid-phase Extraction and Gas Chromatography/mass Spectrum[J].Talanta,2003,60:1245-1257.
    [124]Cortazar E,Bartolome L,Deusto M,et al.Comparison of Solid Phase Extraction Saponification and Gel Permeation Chromatography for the Clean-up of Microwave-assisted Biological Extracts in theAnalysis of Polycyclic AromaticHydrocarbons[J].J.Chromatogr.A,2006,1128:10-16.
    [125]Lagadec A J M,David J M,Alan V L,et al.Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon and pesticide-contaminated soil[J].Environ.Sci.Technol.,2000,34:1542-1548.
    [126]翁建华,黄连芬.超临界二氧化碳萃取-GC/MS测定土壤中的多环芳烃[J].中国环境监测,1996,12(2):9-12.
    [127]Shimmoa M,Anttila P,Hartonen K.Identification of Organic Compounds in Atmospheric Aerosol Particles by On-line Supercritical Fluid Extraction-liquid Chromatography-gas Chromatography-mass Spectrometry[J].J.Chromatogr.A,2004,1022:151-159.
    [128]Librando V,Hutzinger O,Tringali G,et al.Supercritical Fluid Extraction of Polycyclic Aromatic Hydrocarbons from Marine Sediments and Soil Samples[J].Chemosphere,2004,54:1189-1197.
    [129]Lage Y A,Cortizo D J.Supercritical Fluid Extraction and High-performance Liquid Chromatography-fluorescence Detection Method for Polycyclic Aromatic Hydrocarbons Investigation in Vegetable oil[J].Food Contro.,2005,16:59-64.
    [130]Vlorica L A.微波法萃取土壤和沉积物标准参比物料中的有机化合物[J].国外分析仪器,1996,3:40-46. 颗粒物中16种多环芳烃[J].环境监测管理与技术,2004,12:6.
    [132]中国农业百科全书总编辑委员会农作物卷编辑委员会,中国农业百科全书编辑部.中国农业百科全书.农作物卷上[M].北京:农业出版社.1991.
    [133]Meharg A A,Killham K.Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms[J],Plant Soil,1995,170:345-349.
    [134]Stegeman J J,Brouver M,et al.Molecular responses to envronmental contamination:enzyme and protein synthesis as indicators of chemical exposure and effects[M].Florida:Lewis Publishers,1992.
    [135]Choi J,Oris J T.Evidence of oxidative stress in bluegill sunfish (Lepomis macrochirus) liver microsomes simultaneously exposed to solar ultraviolet radiation and anthracene[J].Environ.Toxicol.Chem.,2000,19:1795-1799.
    [136]Babu T S,Marder J B,Tripuranthakam S,et al.Synergistic effects of a photooxidized polycyclic aromatic hydrocarbon and copper on photosynthesis and plant growth:evidence that in vivo formation of reactive oxygen species is a mechanism of copper toxicity[J].Environ.Toxicol.Chem.,2001,20:1351-1358.
    [137]Oris J T,Giesy J P.The Photo-induced toxicity of polycyclic aromatic hydrocarbons to larvae of the fathead minnow (Pimephalespromelas)[J].Chemosphere,1987,16(7):1395-1404.
    [138]Bowling J W,Leversee G J,Landrum P F,et al.Acute mortality of anthracene contaminated fish exposed to sunlight[J].Aqua.Toxicol.,1983,3:79-90.
    [139]Geram T,Steve B,Ian R.PolyaromaticHydrocarbon and PAH Metabolite Burdens in Oiled Common Guillemots(Uriaaalge) Stranded on the East Coast of England(2001-2002)[J].Environ.Sci.Techno.,2006,40:7938-7943.
    [140]Burchiel S W,Luster M I.Signalingby environmentalpolycyclic aromatic hydrocarbons in human lymphocytes[J].Clin.Immuno.,2001,98:2-10.
    [141]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.
    [142]Mishra A,Choudhurt M A.Monitoringof phytotoxicityof lead and mercury from germination and early seedling growth indices in two rice cultivators.Water[J].Air Soil Pollut.,1999,110:340-345.
    [143]Gong P,Wilke B,Strozzi M,et al.Evaluation and refinement of a ontinuous seed germination and early seedling growth test for the use in the Eco-toxicological assessment of soils[J].Chemosphere,2001,44:491-500.
    [144]宋松泉,程红焱,龙春林等.种子生物学研究指南[M].北京:科学出版社,2005.
    [145]杨敏文.快速测定植物叶片叶绿素含量方法的探讨[J].光谱实验室,2002,19(4):478-481.
    [146]Wild S R,Jones K C,Johnston A E,The polynuclear aromatic hydrocarbon(PAH) content of herbage from a long-term grassland experiment,Atmos.Environ.A-Gen.,1992,26:1299-1307.
    [147]Wan C K,Wong J W,Fang M.Effect of organic waste amendments on degradation of PAHs in soil usingthermophillic composting[J].Environ.Technol.,2003,24(1):23-30.
    [148]王树安.作物栽培学各论[M].北京:中国农业出版社,1995.
    [149]Marie K,Lucie V,Jana K,et al.The use of physiological characteristics for comparison of organic compounds phytotoxicity[J].Chemosphere.in press.
    [150]沈小明,王梅农,代静玉.不同浓度条件下玉米吸收菲的水培实验研究[J]. 农业环境科学学报,2006,25(5):1148-1152.
    [151]Baker J M.The effects of oils on plant physiology[M].Applied Science Publishers Essex,England.1973:88-98.
    [152]Huang X D,ElAlawi Y,Penrose D M,et al.Responses of three grass species tocreosote duringphytoremediation[J].Environ.Pollut.,2004,130:453-463.
    [153]孙成芬.土壤萘污染对玉米生长发育的影响[D].东北师范大学,2007
    [154]Marie K,Jana K,Stepan Z,et al.Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence[J].Chemosphere,2006,65:489-496.
    [155]Simonich S L,Hites R A.Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere[J].Nature,1994,370:49-51.
    [156]Simonich S L,Hites R A.Organic pollution accumulation in vegetation[J].Environ.Sci.Technol.,1995,29:2905-2913.
    [157]Kipopoulou A M,Manoli E,Samara C.Bioconcentration of PAHs in vegetables grown in an industrial area.Environ.Pollut.,1999,106:369-380.
    [158]Kipopoulou A M,Manoli E,Samara C.Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area[J].Environ.Pollut.,1999,106:369-380.
    [159]凌婉婷,朱利中,高彦征等.植物根对土壤中PAHs的吸收作用及预测研究[J].生态学报,2005,25:2320-2325.
    [160]高彦征,朱利中,凌婉婷等.土壤和植物样品的多环芳烃分析方法研究[J].农业环境科学学报,2005,24:1003-1006.
    [161]Cuypers C,Tim G,Jan J,et al.Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments[J].Environ.Sci.Technol.,2000,34:2057-2063.
    [162]凌婉婷,高彦征,李秋玲等.植物对水中菲和芘的吸收[J].生态学报,2006,26(10):3332-3338.
    [163]Li H,Sheng G,Sheng W.Uptake of trifluralin and lindane fromwater by ryegrass[J].Chemosphere,2002,48:335-341.
    [164]Li Y,Yediler A,Ou Z,et al.Effects of a non-ionic surfacants on the mineralization,metabolism and uptake of phenanthrene in wheat-solution-lava microcosm[J].Chemosphere,2001,45:67-75.
    [165]姜霞,区自清,应佩峰.~(14)C-菲在“植物-火山石-营养液-空气”系统中的迁移和转化[J].应用生态学报,2001,12:451-454.
    [166]Edwards N T.Polycyclic Aromatic Hydrocarbons PAHs in the terrestrial environment A review[J].J.Environ.Qual.,1983,12:427-441.
    [167]高彦征.土壤多环芳烃污染植物修复及强化的新技术原理研究,[D],浙江大学,2004
    [168]Li H,Sheng G Y,Chiou C T,et al.Relation of organic contaminant equilibrium sorption and kinetic uptake in plants[J].Environ.Sci.Technol.,2005,39:4864-4870.
    [169]Schwab A P,Al-Assi A A,Banks M K.Adsorption of naphtalene onto plant roots[J].Environ.Qual.,1998,27:220-224.
    [170]Mattina M J I,Lannucci B W,Musante C,et al.Concurrent plant uptake of heavy metals and persistant organic pollutants from soils[J].Environ.Pollut.,2003,124:375-378.
    [171]Yaws C L.Chemical properties handbook[M].McGraw-Hill Book Co,1999.
    [172]Herratzt,Reglegog,Herratzm.Gas chromatographic analysis of free carboxytic acids in food using a micropackedcolumn[J].Food Chem.,1988,29:177-181.
    [173]Jianbo S,Fusuo Z,Qin H,et al.Determination of organic acids in root exudates by high performance liquid chromatography:Ⅰ.Development and assessment of chromatographic conditions[J].Phedosphere,1998,8(2):97-104.
    [174]Hees P A,Dahlen J,Lundstrom U S,et al.Determination of low molecular weight organic acids in soil solution by HPLC[J].Talanta,1999,48(1):173-179.
    [175]Lambers H,Juniper D,Cawthray G,et al.The pattern of carboxylate exudation in Banksia grandis(Proteaceae) is affected by the form of phosphate added to the soil[J].Plant Soil,2002,238(1):111-122.
    [176]Chen Z,Tang C,Yu J C.Simultaneous determination of inorganic anions and organic acids in environmental samples by capillary zone electrophoresis with indirect UV detection[J].J.High Resolution Chromatography.1999,22(7):379-385.[177]Qiu J.Statistics aided optimization for high-performance liquid chromatographic analysis of organic acids in tobacco[J].J.Chromatogr.A.1999,859(2):153-158.
    [178]达世禄.色谱学导论[M].武汉:武汉大学出版社.1999.
    [179]Anderson T A,Guthrie E A,Walton B T.Bioremediation in the rhizosphere[J].Environ.Sci.rechnol.,1993,27(13):2630-2636.
    [180]涂书新,孙锦荷,郭智芬等.根系分泌物与根际营养关系评述[J].土壤与环境,2000,19(1):64-67.
    [181]曹享云.营养胁迫与根系分泌物[J].土壤学进展,1994,22(3):27-32.
    [182]Marschner H.Mineral Nutrion of Higher Plants[M].London:Academic Press,1995.
    [183]张福锁.土壤-植物营养研究新动态(第一卷)[C].北京:北京农业大学出版社,1992.
    [184]熊庆娥.植物生理学实验指导[M],成都:四川科学技术出版社,2003.
    [185]李合生.植物生理生化实验原理和技术[M],北京:高等教育出版社,2000.
    [186]郑炳松.现代植物生理生化研究技术[M].北京:气象出版社,2006
    [187]李德华,贺立源,刘武定.耐铝与对铝敏感的玉米自交系根系有机酸分泌[J].植物生理与分子生物学学报.2003,29(2):114-120.
    [188]田中民,李春俭,王晨.缺磷白羽扇豆排根与非排根区根尖分泌有机酸的比较[J].植物生理学报,2000,26(4):317-322.
    [189]Xu W H,Liu H,Ma Q F,et al.Root Exudates,Rhizosphere Zn Fractions,and Zn Accumulation of Ryegrass at Different Soil Zn Levels[J],Pedosphere 2007,17:389-396.
    [190]万大娟,贾晓珊,陈娴.多氯代有机污染物胁迫下植物某些根系分泌物的变化[J],中山大学学报(自然科学版),2007,46(1):110-113.
    [191]Landsberg E C.Organic acid synthesis and release of hydrogen ions in response to Fe deficiency stress of mono-and dicotyledonous plant species[J],J.Plant.Nutr.,1981,3:579-591.
    [192]Alhendawi R A,Romheld V,Romheld E A,et al.Influence of increasing bicarbonate concentrations on plant growth,organic acid accumulation in roots and iron uptake by barley,sorghum and maize[J].J.Plant Nutr.,1997,20:731-1753.
    [193]Yan H,Zhao W,Jiao X Q,et al.Analysis of Organic Acids Accumulated in Kochia Scoparia Shoots and Roots by Reverse-phase High Performance Liquid Chromatography Under Salt and Alkali Stress[J],Chem.Res.Chinese.,2006,22,315-318.
    [194] Rich P R, Mischis L A, Purton S, Wiskich, et al. The sites of interaction of triphenyltetrazolium chloride with mitochondrial respiratory chains[J]. FEMS Microbio. Letters, 2001, 202:181-187.
    [195] Tanaka C, Itagaki M, Shin S, Omokawa, et al. Triticeae plants preferentially responded to S-1-α-methylbenzyl-3-p-tolylurea in root growth and tetrazolium reduction assays[J], Weed Bio. Manage., 2005, 5: 62-68.
    [196] Upadhyaya A, Cladwell C R. Applicability of the triphenyl tetrazolium chloride reduction viability assay to the measurement of oxidative damage to cucumber cotyledons by bisulfite[J]. Environ. Exp. Bot., 1993,33:357-365.
    [197] Nayyar H, Bains T S, Kumar S. Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage[JL Environ. Exp. Bot., 2005, 54:275-285.
    [198] Haby P A, Crowley D E. Biodegradation of 3-chlorobenzoate as affected by rhizodeposition and selected carbon substrates[J]. J. Environ. Qual., 1996,25:304-310.
    [199] Burken J G, Schnoor J L. Phytoremediation: plant uptake of atrazine and role of root exudates[J]. J. Environ. Eng., 1996, 122:958-963.
    [200] Yoshitomi K J, Shann J R. Corn (Zea mays L.) root exudates and their impact on ~(14)C-pyrene mineralization[J]. Soil Biol. Biochem., 2001,33: 1769-1776.
    [201] Joner E J, Corgie S C, Amellal N, et al. Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere[J]. Soil Bio. Biochem., 2002, 34(2):859-864.
    [202] Ke L, Wong T W Y, Wong A H Y, et al. Negative effects of humic acid addition onphytoremediation of pyrene-contaminated sediments by mangrove seedlings[J].Chemosphere,2003,52:1581-1591.
    [203]Habig W H,Pabst M J,Jokoby W B.Glutathione S-transferase.The first enzymatic step in mercapturic acid formation[J].Biol.Chem.,1974,249:7130-7125.
    [204]Guri A.Variation in glutathione and ascorbic acid content among selected cultivars of phaseolus vulgaris prior to and after exposure to ozone[J].Canadian J.Plant Sci.,1983,63:733-737.
    [205]陆志强.不同浓度萘和芘处理对红树植物秋茄胚轴萌发和幼苗生长的影响[J].厦门大学学报,2005,4:580-583.
    [206]Debus R,Hund K.Development of analytical methods for the assessment of ecotoxicological relevant soil contamination[J].Chemosphere,1997,35(1/2):239-261.
    [207]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001.
    [208]宋雪英,宋玉芳,孙铁珩等.石油污染土壤植物修复后对陆生高等植物的生态毒性[J].环境科学.2006,27(9):1866-1871.
    [209]Alscher R G.Biosynthesis and antioxidant function of glutathione in plants[J].Physiol.Plant,1989,77:457-464.
    [210]Mannervi K B,Danielson U H.Glutathione transferases:structure and catalytic[J].Crc.Crit.Rev.Biochem.,1998,23:283-337.
    [211]Pickett C,Luayh B.Glutathione S-transferases:gene structure,regulation and biological function[J].Anna.Rev.Biochem.,1989,58:743-764.
    [212]Pflugmacher S,Schroder P,Sandermann H.Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics[J].Phytochemistry,2000,54(3):267-273.
    [213]Yang S,Wu R S S,Kong R Y C.Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2, 4-dichlorophenol[J]. Aqua. Toxicol., 2002, 59:191-200.
    
    [214] Giblin F J. Glutathione: a vital lens antioxidant[J]. Ocul. Pharmacol. Ther. ,2000,16:121-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700