用户名: 密码: 验证码:
利用染色体片段置换系剖析水稻籼粳亚种间产量相关农艺性状杂种优势的遗传基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa)是世界主要粮食作物之一,在世界上一百二十个国家和地区广泛栽培种植,全球一半以上的人口以稻米为主食,而在中国有60%以上的人口以稻米为日常生活的主食。随着人口的不断增长以及可利用耕地面积的逐年减少,粮食安全问题日益严峻,因此提高水稻产量显得尤为重要。其中,水稻杂种优势利用是增加稻谷产量的重要途径之一。
     近百年来,杂种优势遗传机理的研究水平一直落后于对其在生产上的利用程度,这种杂种优势理论研究滞后于生产实践的局面势必影响杂种优势在现实中的进一步大规模利用。研究水稻的杂种优势形成机理,不仅对水稻杂交种的选育具有重要的指导意义,同时,水稻作为单子叶植物基因组研究的模式植物,将为研究禾谷类作物杂种优势理论提供模式借鉴。因此,广泛开展水稻杂种优势遗传基础的研究和探讨具有十分重要的理论价值和现实意义。
     水稻籼/粳亚种间的杂种优势强于籼/籼或粳/粳亚种内的杂种优势,利用籼粳亚种间杂种优势是进一步提高水稻单产的重要技术策略。本研究利用来自日本的典型粳稻品种Asominori和国际水稻所(IRRI)育成的典型籼稻品种IR24为双亲构建的互为受体(遗传背景)和供体(置换片段)的两套染色体片段置换系群体及其与各自对应背景亲本杂交构建的两套杂种F1群体共四套材料,在两年两点四个环境(2007、2008年南京和南昌)对水稻籼粳亚种间组合产量构成性状和穗形相关性状等与产量密切相关的农艺性状进行了杂种优势的研究,利用SSR标记重新构建的染色体片段置换系基因型图谱检测产量相关农艺性状增(减)效杂种优势位点(Heterotic loci, HL),并通过利用染色体片段置换系群体检测到的具有加性效应的QTL和对应杂种F1群体检测到的具有显性效应的QTL之间的加显性效应剖析了产量相关农艺性状杂种优势形成的遗传基础。主要研究结果如下:
     1、利用SSR标记重新鉴定了以Asominori为受体亲本,IR24为供体染色体片段置换系(简称AIS)和以IR24为受体亲本,Asominori为供体的染色体片段置换系(简称IAS)的基因型。利用全基因组筛选到的137个SSR多态性标记构建了AIS置换系基因型图谱和132个SSR多态性标记构建了IAS置换系基因型图谱,获得了QTL分析所需要的室内分子标记数据。
     2、两套染色体片段置换系大部分农艺性状表现出明显的超亲分离现象;各农艺性状杂种优势均表现出变幅极大的分离,但不同农艺性状杂种优势的表现程度不一;不同农艺性状年度间均表现出显著差异,部分性状基因型与环境显著互作。
     3、无论是高值亲本,还是低值亲本,都包含有对性状表现型起增效或者起减效作用的等位基因;这些数量性状位点分散在双亲的基因组中,个别区段有连锁。
     4、采用基于逐步回归和极大似然比估计相结合的完备区间作图法,利用QTL IciMapping软件为检测平台,以经验阈值LOD≥3.0作为判断产量相关农艺性状杂种优势QTL存在与否的标准,对8个产量相关性状杂种优势效应进行了QTL定位。在四个环境中利用AIS和IAS对应杂种F1群体,分别定位了83个和53个与产量构成性状相关的增(减)效杂种优势标记位点。其中AIS对应杂种F1群体中发现13个标记位点能在多个环境重复检测到,有些位点能同时影响多个性状的表现,位于第5和7染色体上的RM267和RM82标记位点杂合状态下减少杂种F1代单株产量、每穗实粒数和结实率RM82标记位点还同时增加杂种F1代单株库容和株高。来自第2染色体上的RM5390标记位点杂合状态下能同时增加单株产量、每穗实粒数和结实率的表现。来自第4和6染色体上的RM252和RM217标记位点杂合状态下降低杂种F1的株高。IAS对应杂种F1群体中只发现1个标记位点能在多个环境重复检测到,来自第1染色体上的RM488标记位点杂合状态下增加杂种F1的株高。从HL效应的方向来看,AIS对应F1群体中检测到39个增效位点,占总位点数的46.99%;IAS对应F1群体中检测到22个增效位点,占总位点数的41.51%;两套F1群体还分别检测到44个和31个减效位点,这些减效位点主要集中在单株产量、每穗实粒数和结实率等与籼粳不育基因密切相关的性状,通过广亲和材料的应用或者染色体片段置换技术可以消除减效位点的负向效应。
     5、利用AIS和IAS对应杂种Fl群体四个环境中的田间表型数据结合QTL分析软件,分别定位了40个和22个与穗形性状相关的增(减)效杂种优势标记位点。其中AIS对应杂种F1群体中发现2个增(减)效杂种优势标记位点能在多个环境重复检测到,来自第8染色体上的RM284标记位点能增加杂种F1的穗长,来自第8染色体上的标记位点RM331能增加杂种F1的一次枝梗数;IAS对应杂种F1群体中未发现能在多个环境重复检测到的增(减)效杂种优势标记位点。两套群体在第8染色体上检测到相同的杂种优势标记位点RM284,杂合状态下都表现增加杂种F1的穗长性状。从HL效应的方向来看,AIS对应F1群体中有27个增效位点,占总位点数的67.50%;IAS对应F1群体中有12个增效位点,占总位点数的54.55%;两套F1群体还分别检测到13个和10个减效位点。育种过程中可根据不同育种目标灵活利用穗形相关性状增(减)杂种优势位点来改良穗形性状。
     6、利用AIS及其对应F1群体在四个环境分别检测到99个和79个与产量性状相关的加性与显性效应的QTL,其中具有加性效应的QTL分布在全部12条染色体上具有显性效应的QTL分布在除了Chr.9和Chr.11外的10条染色体上。而利用IAS及其对应F1群体在四个环境分别检测到116个和125个与产量性状相关的加性与显性效应的QTL,其中加性与显性效应的QTL都分布在全部12条染色体上。通过产量构成性状QTL的显性效应值D和加性效应值A的比值(平均显性度,|D/A|)分析,发现粳稻背景下共有52个QTL表现超显性效应,约占全部QTL的34.44%;61个QTL表现部分显性效应,约占全部QTL的40.40%;22个QTL表现显性效应,约占全部QTL的14.57%;16个QTL表现加性效应,约占全部QTL的10.60%;籼稻背景下,共有61个QTL表现超显性效应,约占全部QTL的33.70%;69个QTL表现部分显性效应,约占全部QTL的38.12%;32个QTL表现完全显性效应,约占全部QTL的17.68%;19个QTL表现加性效应,约占全部QTL的10.50%。因此,可以看出,QTL的超显性效应和显性效应(主要是部分显性)可能是水稻产量构成性状杂种优势形成的重要原因。
     7、利用AIS及其对应F1群体在不同环境中分别检测到52个和55个与穗形性状相关的加性与显性效应的QTL,其中具有加性效应的QTL分布在除了第9和11染色体外的10条染色体上,具有显性效应的QTL分布在除了第5,9和11染色体外的9条染色体上。而利用IAS及其对应F1群体在不同环境中分别检测到75个和62个与穗形性状相关的加性与显性效应的QTL,都分布在于12条染色体上。通过穗形相关性状QTL平均显性度(|D/A|)的比较分析,发现粳稻背景下共有18个QTL表现超显性效应,约占全部QTL的21.95%;45个QTL表现部分显性效应,约占全部QTL的54.88%;11个QTL表现显性效应,约占全部QTL的13.41%;8个QTL表现加性效应,约占全部QTL的9.76%;籼稻背景下,共有26个QTL表现超显性效应,约占全部QTL的24.76%;47个QTL表现部分显性效应,约占全部QTL的44.76%;18个QTL表现完全显性效应,约占全部QTL的17.14%;17个QTL表现加性效应,约占全部QTL的16.19%。因此,可以看出,QTL的显性效应(主要是部分显性)可能是水稻穗形相关性状杂种优势形成的重要原因。
     8、从产量相关农艺性状杂种优势位点以及加性和显性效应的QTL在染色体上的分布来看,发现在第1,2,3,4,6,7,8,9和12染色体上存在QTL的“簇状”分布现象,并对QTL簇与产量相关农艺性状的遗传关系进行了分析,发现各相关农艺性状普遍存在QTL的多效性,因此认为QTL的多效性可能是产量相关农艺性状以及杂种优势的遗传基础之一
With the development of social economy, greater demand was put on world food production due to the decreasing arable lands and increasing global population. The yield increase of rice, a main staple for a large fragment of the world population (amounting to half global population and 60%of population in our country), would contribute significantly to cope with the increasing global food crisis. Heterosis application was the principal way to improve rice grain yield.
     However, since the advancement of research on the genetic basis of heterosis was lagged behind the utilization in the field production in last century, which limited a larger scale of heterosis utilization in crop production. The research of heterosis in rice is not only meaningful to guide the rice hybrid breeding, but also provide a theoretical model for the research of heterosis in the other cereal crops because rice is a model plant in monocotyledonous genomic research. Therefore, it is very important to conduct the research of heterosis and dissect its genetic basis for the theoretical value and realistic meaning in hybrid breeding of rice.
     The extent of heterosis expressed in inter-subspecific crosses follows the general trend: indica/japonica> indicalindica> japonica/japonica. The extensive exploitation of inter-subspecific heterosis derive from indica/japonica is a very important strategy to enhance the yield level in rice production. The inter-subspecific cross between a japonica cv. Asominori and an indica cv. IR24 demonstrated huge heterosis in F1 hybrid. In our study, we conducted our experiments across four environments (2007,2008 in Nanjing; 2007, 2008 in Nanchang), mainly focus on the dissection and discussion of the genetic basis of heterosis about yield-related agronomic traits using two sets of chromosome segment substitution lines (CSSLs) derived from Asominori (a japonica cultivar) and IR24 (an indica cultivar) as reciprocal donor parent and recipient parent (background parent) and F1 derivatives from these two set of CSSLs population. QTL were detected by statistical software QTL IciMapping using two new different SSR map. The main conclusions are as follows:
     1. Genotypes of these two sets of 66 CSS lines (one is indica c.v. IR24 chromosome segment substitution lines with Japonica c.v. Asominori genetic background; the other is japonica c.v. Asominori chromosome segment substitution lines with indica c.v. IR24 genetic background) were rescreened by 137 and 132 good polymorphism SSR markers, replacing 82 original RFLP markers. The purpose of replacing with SSR markers was to simplify the procedure of experiments by using RFLP markers and to enhance the efficiency of QTL detection using new maps with higher density of SSR markers.
     2. Most of the agronomic traits showed transgressive segregation phenomenon in two CSSLs population; Heterosis of each agronomic trait exhibited a huge range of segregation, however different traits showed different level of heterosis; The studied traits also showed significant difference between years and genotypes, the interaction between genotypes and environments also exhibited a significance level.
     3. Not only the high value parent but also the low value parent has detected many alleles at QTL with positive or negative effects in the whole genome, some chromosome segments were tightly linked.
     4. We have detected 83 and 53 heterotic loci (HL) affecting yield component traits in Fi derivatives of AIS and IAS population, respectively. Of all the HL, only 13 HL could be detected repeatedly in two environments at least which reflected heterosis of yield component traits were very sensitive to environmental influence. Chances were the effect of pleiotropism, chromosome segments RM267 and RM82 on Chr.5 and Chr.7 could negatively affect grain weight plant-1 (GWP), grains per panicle (GPP) and seed-setting rate (SSR), simultaneously. RM82 could enhance the performance of sink capacity plant-1(SCP) and plant height (PH) as well. Chromosome segment RM5390 as an enhancing heterotic locus on Chr.2 could positively affect GWP, GPP and SSR traits simultaneously. RM252 and RM217 on Chr.4 and Chr.6 could decrease PH of F1 hybrids. Considering the effect of heterotic loci,39 with positive heterosis (amounting to 46.99%) and 44 (53.01%) with negative heterosis in AIS F1 derivative; 22 HL (41.51%) with positive and 31 (58.49%) with negative effect of heterosis in IAS F1 derivative. Possibly, we could create high-yield cultivar through pyramiding HL with positive effect and deleting HL negative effect by molecular tools such as SSR polymorphism markers.
     5. We have detected 40 and 22 HL affecting panicle morphological traits in F1 derivatives of AIS and IAS population, respectively. Of all the HL were detected,27 with positive heterosis (67.50%) and 13 (32.50%) with negative heterosis in AIS F] derivative; 12 HL (54.55%) with positive and 10 (45.45%) with negative effect of heterosis in IAS F1 derivatives. Only 2 HL in AIS F1 derivative could be detected repeatedly in two more environments which reflected heterosis of panicle morphological traits were very sensitive to environment, too. Chromosome segments RM284 and RM331 on Chr.8 could increase the performance of panicle length (PL) and primary branches number (PBN), respectively. None HL could be detected in IAS F1 derivative. But we found that RM284 on Chr.8 could be detected in two sets of F1 derivatives, simultaneously.
     6. Through mapping additive QTL and dominance QTL affecting yield component traits, we could dissect the genetic basis of heterosis. Eighty-nine additive QTL and 79 dominance QTL affecting eight yield component traits (grains weight per plant, GWP; sink capacity per plant, SCP; spikelets per panicle, SPP; grains per panicle, GPP; seed-setting rate, SSR; thousand-grain weight, TGW; panicles per plant, PPP; plant height, PH) were detected across four environments in AIS and F1 derivative population; 117 additive QTL and 125 dominance QTL located on all 12 chromosomes affecting eight yield-related traits were detected across the four same environments in IAS and F1 derivative population. Through comparing dominance effects and additive effects of those 151 QTL totally affecting eight yield-related traits in AIS and its corresponding F1 population, we found 52 QTL with over-dominance effect (amounting to 34.44%),61 QTL with partial dominance effect (amounting to 40.40%),22 QTL with complete dominance (amounting to 14.57%), 16 QTL with additive effect (amounting to 10.60%); we also detected 181 QTL totally affecting five panicle traits in IAS and its corresponding F1 population, of all the QTL with additive and dominance effect,61 QTL were identified with over-dominance effect (amounting to 33.70%),69 QTL with partial dominance effect (amounting to 38.12%),32 QTL with complete dominance effect (amounting to 17.68%),19 QTL with additive effect (amounting to 10.50%). Results indicated that both dominance (mainly were partial dominance) and over-dominance effects of QTL may be as the major reason in underlying the genetic basis of heterosis of yield component traits in rice hybrids.
     7. We detected 52 QTL with additive effects and 55 QTL with dominance effects affecting five panicle morphological structural traits (panicle length, PL; density of spikelets per panicle, DSP; primary branches number, PBN; secondary branches number, SBN; density of secondary branches number, DSBN) across different environments in AIS and F1 derivative population. We found 72 additive QTL and 62 dominance QTL affecting five panicle morphological structural traits were detected across three same environments in IAS and F1 population. Comparing dominance effect and additive effect of those 82 QTL affecting five panicle morphological structural traits in AIS and its corresponding F1 population, we found 18 QTL with over-dominance effect (amounting to 21.95%),45 QTL with partial dominance effect (amounting to 54.88%),11 QTL with complete dominance (amounting to 13.41%),8 QTL with additive effect (9.76%); we also detected 108 QTL affecting five panicle traits in IAS and its corresponding F1 population, of all the QTL with additive and dominance effect,26 QTL were identified with over-dominance effect (amounting to 24.76%),47 QTL with partial dominance effect (amounting to 44.76%),18 QTL with complete dominance effect (amounting to 17.14%),17 QTL with additive effect (amounting to 16.19%). Results indicated that dominance (mainly were partial dominance) of QTL plays an important role in underlying the genetic basis of heterosis of panicle traits in rice hybrids.
     8. We have detected many QTL clusters affecting agronomic traits located on chromosome 1,2,3,4,6,7,8,9 and 12 maybe because of pleiotropic effects of QTL or close linkage of some markers. We also analyzed the genetic relationships between QTL clusters and yield-related agronomic traits and found pleiotropic QTL was a common phenomenon which exhibited the pleiotropic phenomenon might be one of the genetic bases of yield-related traits and heterosis.
引文
Abdelkhalik A F, Shishido R, Nomura K, et al. QTL-based analysis of heterosis for grain shape traits and seedling characteristics in an indica-japonica hybrid in rice (Oryza sativa L.). Breeding Sci.,2005, 55:41-48.
    Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:A major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. ScL USA.,1996,93:15503-15507.
    Andorf S, Selbig J, Altmann T, et al. Enriched partial correlations in genome-wide gene expression profiles of hybrids (A. thaliana):a systems biological approach towards the molecular basis of heterosis. Theor.Appl. Genet.,2010,120:249-259.
    Austin D F, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait local for grain yield and yield components in maize. Theor. Appl. Genet.,1996,92:817-826.
    Ayman A D, Beatric T M, Dominique T, et al. Identification of drought-inducible genes and differentially expressed sequence tags in barly. Theor.Appl. Genet.,2004,109:1417-1425.
    Barbosa A M M, Geraldi I O, Benchimol L L, et al. Relationship of intra-and inter-population tropical maize single cross hybrid performance and genetic distances computed from AFLP and SSR markers. Euphytica,2003,130:87-99.
    Basunanda P, Radoev M, Ecke W, et al. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.).Theor. AppL Genet,2010, 120:271-281.
    Bauman L F. Evidence of non-allelic gene action in determining yield ear height and kernel row number in corn. Agron. J.,1959,57:531-534.
    Boppenmaier J, Melchinger A E, Seitz G, et al. Genetic diversity for RFLPs in European maize inbreds (Ⅲ). Performance of crosses within versus between heterotic groups for grain traits. Plant Breeding, 1993,111:217-226.
    Bruce A B. The Mendelian theory of heredity and the augmentation of vigor. Science,1910,32:627-628.
    Crow J F. Alternative hypotheses of hybrid vigor. Genetics,1948,33:477-487.
    Crow J F. Dominance and overdominance, pp.282-297 in Heterosis, edited by J. W. Gowen. Iowa State College Press, Ames, IA.1952.
    Crow J F, Dominance and overdominance, pp.49-58 in The Genetics and Exploitation of Heterosis in Crops, edited by J. G. Coors and S. Pandey. American Society of Agronomy, Madison, WI.1999.
    Davenport C B. Degeneration, albinism and inbreeding. Science,1908,28:454-455.
    Dellaporta S, Wood J, Hicks J. A plant DNA minipreparation:version Ⅱ. Plant Molecular Biology Reporter,1983,1:19-21.
    De Vicente M C, Tanksley S D. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics,1993,134:585-596.
    Dwivedi D K, Pandey M P, Pandey S K, et al. Heterosis in inter and intrasubspecific crosses over three environments in rice. Euphytica,1998,99:155-165.
    East E M, Inbreeding in corn, pp.419-428 in Reports of the Connecticut Agricultural Experiment Station for Years.1908,1907-1908.
    East E M. Heterosis. Genetics,1936,21:375-397.
    Elisabetta F, Maria A C, Pierangelo L, et al. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics,2007,176:625-644.
    Eshed Y, Zamir D. An introgression line population of lycopersicon pernellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics,1995,141: 1147-1162.
    Frascaroli E, Cane M A, Landi P, et al. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics,2007,176:625-644.
    Garcia A F, Wang S C, Melchinger A E, et al. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics,2008,180:1707-1724.
    Goodnight C J. Epistasis and heterosis, pp.59-68 in The Genetics and Exploitation of Heterosis in Crops, edited by J. G. Coors and S. Pandey. American Society of Agronomy, Madison, WI.1999.
    Gorsline G W. Phenotypic epistasis for ten quantitative characters in maize.Crop Sci.,1961,1:55-58.
    Graham G I, Wolff D W, Stuber C W. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci.,1997,37:1601-1610.
    Hospital F, Charcosset A. Marker-assisted introgression of quantitative trait loci. Genetics,1997,147: 1469-1485.
    Hua J P, Xing Y Z, Xu C G, et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002,162:1885-1895.
    Hua J P, Xing Y Z, Wu W R, et al. Single-locus heterotic effects and dominace by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Genetics, 2003,100:2574-2579.
    Hull F H. Recurrent selection and over-dominance. In:Gowen, J.W.(ed). Heterosis. Iowa state Univ. Press,1952,451-473.
    James A, Birchler, Donald L, et al. In search of the molecular basis of heterosis. The plant cell,2003,15: 2236-2239.
    Jones D F. Dominance of linked factors as a means of accounting for heterosis. Genetics,1917,2: 466-479.
    Khush G S, Peng S. Breaking the Yield Frontier of Rice. Geo. Journal,1995,35:329-332.
    Koltunow A M, Bichnell R A, Chaudhury A M. Apomixis:molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol.,1995,108:1345-1352.
    Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet. Newslett.,1999,16:104-106.
    Kubo T, Eguchi M, Yoshimura A. A new gene for F1 pollen sterility in Japonica/Indica cross of rice. Rice Genet. Newslett.,1999,17:63-64.
    Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L). Breeding Sci.,2002,52:319-325.
    Kusterer B, Muminovic J, Utz HF, et al. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics,2007,175:2009-2017.
    Kwon Y S, Eun M Y, Sohn J K. Marker-assisted selection for identification of plant regeneration ability of seed-derived calli in rice (Oryza sativa L.). Mol. Cells,2001,12:103-106.
    Lamkey K R, Hallauer A R, Robertson D S. Contribution of the long arm chromosome 10 to the total heterosis observed in five maize hybrids. Crop Sci.,1988,28:896-901.
    Lee M, Godshalk E B, Lamkey K R, et al. Association of RFLPs among maize inbreds with agronomic performance of their crosses. Crop Sci.,1989,29:1067-1071.
    Li B, Zhang D F, Jia G Q, et al. Genome-wide comparisons of gene expression for yield heterosis in Maize. Plant Mol. BioL Rep.,2009,27:162-176.
    Li H H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics,2007,175:361-374.
    Li H H, Ribaut J M, Li Z L, et al. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor. Appl. Genet.,2008,116:243-260.
    Li L Z, Lu K Y, Chen Z M, et al. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics,2008,180:1725-1742.
    Lippman ZB and Zamir D. Heterosis:revisiting the magic. Trends in Genet.,2007,23:60-66.
    Li W, Lei C L, Cheng Z J, et al. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20 (t) for marker-assisted breeding. Mol. Breeding,2008,22:141-149.
    Li Z K, Pinson S R M, Stansel J W, et al. Identification of QTL for heading date and plant height in rice using RFLP marker. Theor.AppL Genet,1995,91:374-381.
    Li Z K, Pinson S R M, Stansel J W, et al. Identification of quantitative trait loci (QTL) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor.Appl. Genet.,1995,91:374-381.
    Li Z K, Pinson S R M, Paterson A H, et al. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics,1997,145:453-465.
    Li Z K, Luo L J, Mei H W et al., Overdominance epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅰ. Biomass and grain yield. Genetics,2001,158: 1737-1753.
    Lin H X, Qian H R, Zhuang J Y, et al. RFLP mapping of QTL for yield and related characters in rice (Oryza sativa L.). Theor. Appl. Genet.,1996,92:920-927.
    Lu C, Shen L, Tan Z, et al. Comparative mapping of QTL for agronomic traits of rice across environments using a doubled haploid population. Theor.Appl. Genet.,1996,93:1211-1217.
    Lu H, Romero-Severson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor. Appl. Genet.,2003,107:494-502.
    Luo L J, Li Z K, Mei H W, et al. Overdominance epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅱ. Grain yield components. Genetics,2001,158: 1755-1771.
    Maruthachalam R, Marimuthu M P A, Imran Siddiqi. Gamete formation without meiosis in Arabidopsis. Nature,2008,451:1121-1125.
    Maroof S M A, Yang G P, Zhang Q F, et al. Correlation between molecular marker distance and hybrid distance in U.S. southern long grain rice. Crop ScL,1997,37:145-150.
    Marson P A, Castiglioni P, Fusari F. Genetic diversity and its relationship to hybrid performance in maize as revealed by RELP and AFLP markers. Theor. Appl. Genet.,1998,96:219-227.
    Mather I C, Jinks J L. Biometrical Genetics, Ed.3. Chapman and Hall, London.1982.
    McCouch S R, Chen X, Panaud O, et al. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol. Biol.,1997,35:89-99.
    McCouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice(Oryza sativa L.). DNA Res.,2002,9:199-207.
    Mei H W, Luo L J, Ying C S, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor. Appl. Genet.,2003,107: 89-101.
    Mei H W, Li Z K, Shu Q Y, et al. Gene actions of QTL affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor. AppL Genet.,2005,110: 649-659.
    Melchinger A E, Lee M, Lamkey K R, et al. Genetic diversity for restriction fragment length polymorphism:relation to estimated genetic effects in maize inbreds. Crop Sci.,1990,30: 1033-1040.
    Melchinger AE, Piepho H-P, Utz HF, et al. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics,2007,177:1827-1837.
    Melchinger A E, Dhillon BS, Mi X F. Variation of the parental genome contribution in segregating populations derived from biparental crosses and its relationship with heterosis of their Design Ⅲ progenies. Theor.Appl. Genet,2010,120:311-319.
    Meyer R C, Torjek O, Becher M, et al. Heterosis of biomass production in Arabidopsis establishment during early development. Plant Physiol.,2004,134:1813-1823.
    Meyer R C, Kusterer B, Lisec J, et al. QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor. AppL Genet.,2010,120:227-237.
    Monforte A J, Tanksley S D. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits:breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor. AppL Genet,2000,100: 471-479.
    Moreau L, Charcosset A, Hospital F, et al. Marker-assisted selection efficiency in populations of finite size. Genetics,1998,148:1353-1365.
    Omholt S W, Plahte E, Oyehaug L, et al. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics,2000,155:969-980.
    Paterson A H, DeVerna J W, Lanini B, et al. Fine mapping of quantitative traits loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics,1990,124: 735-742.
    Paschold A, Marcon C, Hoecker N, et al. Molecular dissection of heterosis manifestation during early maize root development. Theor. Appl. Genet.,2010,120:383-388.
    Radoev M, Becker H C, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics,2008,179:1547-1558.
    Romagnoli S, Maddaloni M, Livini C, et al. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zee may. L.) plantlets. Theor. Appl. Genet.,1990,80:769-775.
    Sanguinetti C, Dias Neto E, Simpson A. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques,1994,17:914.
    Schnell F W, Cockerham C C. Multiplicative vs. arbitrary gene action in heterosis. Genetics,1992,131: 461-469.
    Schon CC, Dhillon BS, Utz H F, et al. High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor. Appl. Genet.,2010,120:321-332.
    Senanayake N, Naylor R E L, de Datta S K, et al. Variation in development of contrasting rice cultivars. J.Agric. Sci.,1994,123:35-39.
    Shi C H, Zhu J, Zang R C, et al. Genetic and heterosis analysis for cooking quality traits of indica rice in different environments. Theor. Appl. Genet.,1997,95:294-300.
    Shull G H, The composition of a field of maize. Ann. Breeders'Assoc. Rep.,1908,4:296-301.
    Shull G H. What is "Heterosis". Genetics,1948,33:439-446.
    Slafer G A et al., Generation of yield components and compensation in wheat:opportunities for further increasing yield potential. In:Reynolds, M. P., Rajaram, S., Mcnab, A. (Eds.), Increasing Yield Potertial in wheat:Breaking the Barriers. International Maiza and wheat Improvement Center, Mexico, D. F.,1996:110-133.
    Smith O S, Smith J S C, Bowen S L, et al. Similarities among a group of elite inbreds as measured by pedigree, F, grain yield heterosis and RFLPs. Theor. Appl. Genet.,1990,80:833-840.
    Song X, Ni Z F, Yao Y Y, et al. Identification of differentially expressed proteins between hybrid and parents in wheat (Triticum aestivum L.) seedling leaves. Theor. Appl. Genet.,2009,118:213-225.
    Sprague G E, Russell W A, Penny L H, et al. Effect of epistasis on grain yield on maize. Crop Sci.,1962, 2:205-208.
    Spelman R, Bovenhuis H. Genetic response from marker assisted selection in an outbred population for differing marker bracket sizes and with two identified quantitative trait loci. Genetics,1998,148: 1389-1396.
    Stuber C W, Edwards M D, Wendel J F. Molecular marker-facilitated investigation of quantitative trait loci in maize. Ⅱ. Factors influencing yields and its component traits. Crop Sci.,1987,27:639-648.
    Stuber C W, Lincln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis from two elite maize inbred lines using molecular markers. Genetics,1992,132:823-839.
    Stuber C W. Heterosis in plant breeding. Plant Breeding Reviews,1994,12:227-251.
    Stuber C W. Mapping and manipulating quantitative traits in maize. Trends in Genet.,1995,11: 477-481.
    Sun Q X, Ni Z F, Liu ZY. Differntial gene expression between wheat hybrids and their parental inbreds in seeding leaves. Euphytica,1999,106:11-17.
    Syed N H, Chen Z J. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity,2005,94:295-304.
    Tang J H, Yan J B, Ma XQ, et al. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor. Appl. Genet,2010,120:333-340.
    Tanksley S D and Nelson J C. Advanced backcross QTL analysis method for the simultaneous discovery and transfer of valuable QTL from unadapted germplasm into elite breeding lines. Theor. Appl. Genet,1996,92:191-203.
    Teng S, Qian Q, Zeng D L, et al. QTL analysis of rice peduncle vascular bundle system and panicle trait. Acta Botanica Sinica,2002,44:301-306.
    Tsaftaris A S, Polidoros A N. Studying the expression of genes in maize parental inbreeds and their heterotic and non-heterotic hybrids. In:Proc Eucarpia Maize and Sorghum Conference, Bergarno, Italy.1993,283-292.
    Tsaftaris A S, et al. Molecular aspects of heterosis in plants. Physiol. Plant.,1995,94:362-370.
    Tuberosa R, Salvi S, Sanguineti M C, et al. Mapping QTL regulating morpho-physiological traits and yield:case studies, shortcomings and perspectives in drought-stressed maize. Ann. Bot,2002,89: 941-963.
    Visscher P M, Haley C S, Thompson R. Marker assisted introgression in backcross breeding programs. Genetics,1996,144:1923-1932.
    Wan J L, Zhai H Q, Wan J M, et al. Mapping QTL for traits associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.) using japonica chromosome segment substitution lines. Acta Genetica Sinica,2003,30:893-898.
    Wan J M, Yamaguchi Y, Kato H, et al. Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.). Theor. Appl. Genet.,1996,92:183-190.
    Wan X Y, Wan J M, Su C C, et al. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor. Appl. Genet.,2004,110:71-79.
    Wan X Y, Wan J M, Weng J F, et al. Stability of QTL for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor. Appl. Genet.,2005,110:1334-1346.
    Wan X Y, Wan J M, Jiang L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor. AppL Genet,2006,112:1258-1270.
    Wang J K, Wan X Y, Crossa J, et al. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res. Camb.,2006,88:93-104.
    Wang J K, Wan X Y, Li H H, et al. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor. Appl. Genet.,2007,115:87-100.
    Wei G, Tao Y, Liu G Z, et al. A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc. Natl. Acad. Sci., USA.,2009,19:7695-7701.
    Wei X J, Liu L L, Xu J F, et al. Breeding strategies for optimum heading date using genotypic information in rice. Mol. Breeding,2010,25:287-298.
    Wright S. Evolutions and genetics of populations. Univ. of Chicago Press,1968,23-28.
    Wu K S, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet.,1993,241:225-235.
    Xiao J H, Li J, Yuan L, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics,1995,140:745-754.
    Xiao J H, Grandillo S, Ahn S N, et al. Genes from wild rice improve yield. Nature,1996,384:223-224.
    Xiao J H, Li J, Yuan L P, et al. Identification of QTL affecting traits of agronomic importance in a recombinant inbred population from a subspecific rice cross. Theor. Appl. Genet.,1996,92: 230-244.
    Xiong L Z, Yang G P, Xu C G, et al. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Molecular Breeding,1998,4:129-136.
    Xue Y, Wan J M, Jiang L, et al. QTL Analysis of aluminum resistance in rice (Oryza sativa L.). Plant Soil,2006,287:375-383.
    Xue Y, Jiang L, Su N, et al. The genetic basic and fine-mapping of a stable quantitative-trait loci for aluminum tolerance in rice. Planta,2007,227:255-262.
    Yamagishi J, Nemoto K, Mu C S. Diversity of the rachis-branching system in a panicle in japonica rice. Plant Prod. Sci.,2003,6:59-64.
    Yamagishi J, Miyamoto N, Hirotsu S, et al. QTL for branching, floret formation and pre-flowering floret abortion of rice panicle in a temperate japonicaxtropical japonica cross. Theor. Appl. Genet.,2004, 109:1555-1561.
    Yamasaki M, Yoshimura A, Yasui H. Genetic basis of ovicidal response to whitebacked planthopper (Sogatella furcifera Horvath) in rice(Oryza sativa L.). Mol. Breeding,2003,12:133-143.
    Yano M, Sasaki T. Genetic and molecular dissection of quantitative trais in rice. Plant Mol. Biol.,1997, 35:145-153.
    Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. A cad. Sci., USA.,1997,94:9226-9231.
    Zhang Q F, Zhou Z Q, Yang G P, et al. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor. Appl. Genet.,1996,93:1218-1224.
    Zhao Z G, Jiang L, Zhang W W, et al. Fine mapping of S31, a gene responsible for hybrid embryo-sac abortion in rice (Oryza sativa L.). Planta,2007,226:1087-1096.
    Zhuang J Y, FanY Y, Rao Z M, et al. Analysis on additive effects and additive-by-additive epistatic effects of QTL for yield traits in a recombinant inbred line population of rice. Theor. Appl. Genet, 2002,105:1137-1145.
    白书农,肖翊华.对杂种优势机理研究的一点看法[J].杂交水稻,1989,1:44.
    鲍文奎.机会与风险—40年育种研究的思考[J].植物杂志,1990,4:4-5.
    陈庆全,穆俊祥,周红菊,等.利用基础导入系分析粳稻丛因的遗传效应[J].中国农业科学,2007,40(11):2387-2394.
    陈绍栋,杨仁崔.籼稻穗部性状的相关遗传力分析[J].福建农业大学学报,1996,25(3):266-267.
    陈温福,徐正进,张龙步.水稻不同穗型对灌层特性及群体光分布和物质生产的影响[J].作物学报,1995,21(1):83-89.
    程宁辉,高燕萍,杨金水等.水稻杂种一代与亲本幼苗基因表达差异的分析[J].植物学报,1997,39(4):379-382.
    程宁辉,杨金水,高燕萍等.玉米杂种一代与亲本基因表达差异的初步研究[J].科学通报,1996,41(5):451-454.
    程式华,闵绍楷.中国水稻品种:现状与展望[J].中国稻米,2000,(1):13-16.
    邓启云,袁隆平,梁凤山,等.野生稻高产基因及其分子标记辅助育种研究[J].杂交水稻,2004,19(1):6-10.
    邓化冰,邓启云,陈立云,等.野生稻增产QTL导入9311之近等基因系的构建[J].杂交水稻,2005,20(6):52-56.
    邓化冰,邓启云,陈立云,等.野生稻增产QTL导入超级杂交中稻父本9311的增产效果[J].杂交水稻,2007,22(4):49-52.
    邓化冰,邓启云,陈立云,等.野生稻增产QTL导入明恢63之回交近交系的构建[J].湖南农业大学学报(自然科学版),2007,33(2):127-131.
    顾铭洪.水稻广亲和丛因的遗传及其利用[J].江苏农学院学报,1988,9(2):19-26.
    何光华,唐梅,裴炎,等.四川省主要杂交稻恢复系的DNA多态性初步研究[J].杂交水稻,1999a,14(6):39-40.
    何光华,唐梅,裴炎,等.四川省主要杂交水稻组合的DNA差异性研究[J].西南农业学报,1999b,12(四川省高新技术专辑):81-85.
    何光华.水稻杂种优势及其相关特性的分子生物学研究.博士学位论文,西南农业大学,2001.
    贺浩华,元生朝.两系杂交水稻的研究与应用[M].南昌:江西科学技术出版社,1993.
    黄英金,刘宜柏,孙义伟,等.杂交水稻超高产育种中性状选择的研究[J].江西农业大学学报,1992,14(1):65-71.
    黄育民,陈启锋,李义珍.我国水稻品种改良过程库源特征的变化[J].福建农业大学学报,1998,27(3):271-278.
    江良荣.分子标记辅助渗入佳辐占基因组约800kb区间定向改良珍汕97B外观品质[J].分子植物育种,2004,2(3):453-454.
    兰进好.玉米强优势组合重要性状杂种优势遗传基础研究.博士学位论文,沈阳农业大学,2005.
    李成荃.三系和两系杂交水稻育种进展[J].作物杂志,1998,3:3-6.
    李任华,徐才国,何予卿,等.水稻亲本遗传分化程度与籼粳亚种间杂种优势的关系[J].作物学报,1998,24(5):564-575.
    廖伏明,袁隆平.水稻光温敏核不育系起点温度遗传纯化的策略探讨[J].杂交水稻,.1996,6:1-4.
    梁康迳.基因型x环境互作效应对水稻穗部性状杂种优势的影响[J].应用生态学报,1999,10(6):683-688.
    梁康迳.籼粳杂交稻穗部性状的遗传效应及其与环境互作[J].应用生态学报,2000,11(1):78-82.
    刘冬成,张爱民.作物杂种优势基础研究的进展[J].中国科学院院刊,2001,5:334-338.
    刘永胜,周开达,阴国大.水稻(Oryza sativa L.)亚种间杂交穗部性状的双列分析[J].四川农业大学学报,1992,10(3):391-399.
    卢庆善,孙毅,华泽田主编.农作物杂种优势[M].北京:中国农业科技出版社,2001.
    卢兴桂,袁潜华,徐宏书.我国两系法杂交水稻中试开发的实践与经验[J].杂交水稻,1998,13(5):1-2.
    卢兴桂,顾铭洪,等.两系杂交水稻理论与技术[M].北京:科学技术出版社,2001.
    吕川根,邹江石.水稻亚种间亲和性的研究进展[J].江苏农业学报,2000,16(1):50-56.
    罗闰良.水稻杂种优势利用的成就与展望[J].湖南农业科学(湖南省农业科学院百年院庆特刊)2002:11-14.
    罗彦长,王守海,李成荃,等.应用分子标记辅助选择培育抗白叶枯病光敏核不育系3418S[J].作物学报,2003,29(3):402-407.
    马均,周开达.亚种间重穗型杂交稻穗颈维管束与穗部性状的关系[J].西南农业学报,2001,14(3):1-5.
    毛昌祥,万宜珍,马国辉,等.中国杂交水稻发展现状分析[J].杂交水稻,2006,21(6):1-5.
    倪中福,孙其信,吴利民.普通小麦不同优势杂交种及其亲本之间基因表达差异比较研究[J].中国农业大学学报,2000,5(1):1-8.
    倪大虎,易成新,李莉,等.利用分子标记辅助选择聚合水稻丛因Xa2l和Pi9(t)[J].分子植物育种,2005,3(3):329-334.
    倪大虎,易成新,杨剑波,等.利用分子标记辅助选择聚合Pi9(t)和Xa23基因[J].分子植物育种,2007,5(4):491-496.
    潘家驹主编.作物育种学总论[M],北京:中国农业出版社,2000,82-107.
    石明松.晚粳自然两用系选育及应用初报[J].湖北农业科学,1981,7:1-3.
    孙其信,倪中福,陈希勇,等.冬小麦部分基因杂合性与杂种优势表达[J].中国农业大学学报,1997,2(1):64,116.
    汤述翥,李国生,程祝宽,等.水稻广亲和品种对不同细胞质不育系恢复力的鉴定研究[J].作物学报,1999,25(2):137-144.
    唐梅,裴炎,何光华,等.四川省籼型杂交水稻保持系的随机扩增多态性研究[J].西南农业学报,2000,13(1):12-16.
    田曾元,王懿波,王振华.利用RAPD进行玉米自交系种质类群划分的研究[J].华北农学报,2001,16(2):31-37.
    田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势[J].科学通报,2002,47(18):1412-1416.
    万向元,刘世家,江玲,等.利用CSSLs群体研究稻米粒型QTL的表达稳定性[J].遗传学报,2004,31(11):1275-1283.
    万向元.水稻品质性状QTL表达稳定性分析与精细定位.2005,博士学位论文.
    王得元,王鸣.杂种优势过程性研究的基本模型[J].陕西农业科学,1995,2:30.
    王得元,殷秋秒.作物杂种优势机理研究:遗传振动合成学说[J].江西农业大学学报,1999,21(3):314-319.
    王建康,Wolfgang H. Pfeiffer.植物育种模拟的原理和应用[J].中国农业科学,2007,40(1):1-12.
    王建康.数量性状基因的完备区间作图方法[J].作物学报,2009,35(2):239-245.
    王三良,许可.我国籼型杂交水稻育种现状、问题与对策[J].杂交水稻,1996,3:1-4.
    王章奎,倪中福,孟凡荣.小麦杂交种及其亲本拔节期根系基因差异表达与杂种优势关系的初步研究[J].中国农业科学,2003,36(5):473-479.
    吴利民,倪中福,孙其信.小麦杂交种及其亲本苗期叶片家族丛因差异表达及其与杂种优势关系的初步研究[J].遗传学报,2001,28(3):256-266.
    吴敏生,王守才,戴景瑞RAPD分子标记与玉米杂种产量预测的研究[J].遗传学报,1999,26(5):578-584.
    吴敏生,王守才,戴景瑞AFLP分子标记在玉米优良自交系优势群划分中的应用[J].作物学报,2000,42(6):600-604.
    吴敏生,高志环,戴景瑞.利用cDNA-AFLP技术研究玉米基因的差异表达[J].作物学报,2001,27(3):339-342.
    吴敏生,王守才,戴景瑞AFLP标记与玉米杂种产量、产量杂种优势的预测[J].植物学报,2001,26(1):9-13.
    吴秀菊,万向元,江玲,等.多环境下稻米粒重的QTL定位[J].作物学报,2007,33(11):1771-1776.
    武小金.提高水稻杂种优势水平的可能途径[J].中国水稻科学,2000,14(1):61-64.
    肖金华,袁隆平.水稻籼粳亚种间杂种一代优势及其与亲本关系的研究[J].杂交水稻,1988,1:5-9.
    熊立仲.基因表达水平上水稻杂种优势的分子生物学基础研究.博士学位论文,武汉,华中农业大学,1999.
    许凌,张亚东,朱镇,等.不同年份水稻产量性状的QTL分析[J].中国水稻科学,2008,22(4):370-376.
    徐建龙,薛庆中,罗利军,等.水稻单株有效穗数和每穗粒数的QTL剖析[J].遗传学报,2001,28(8):752-759.
    徐正进,张龙步,陈温福,等.从日本超高产品种(系)的选育看粳稻高产的方向[J].沈阳农业大学学报,1991,22(增刊)27-33.
    徐正进,陈温福,张龙步,等.直立穗水稻生理生态特性及其利用前景[J].科学通报,1996,41(19):1642-1648.
    徐正进,陈温福,张文忠,等.水稻的产量潜力与株型演变[J].沈阳农业大学学报,2000,31(6):534-536.
    徐正进,陈温福,张龙步,等.水稻理想穗型设计的原理和参数[J].科学通报,2005,1(50):1-4.
    许世觉.杂交水稻优良组合及其配套技术[M].北京:中国农业出版社,1998.
    薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系[J].浙江农业大学学报,1998,24(6):581-582.
    杨惠杰,李义珍,黄育民,等.超高产水稻的产量构成和库源结构[J].福建农业学报,1999,14(1):1-5.
    杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J].福建农业学报,2000,15(3):1-8.
    杨守仁,赵纪书.籼粳稻杂交育种研究[J].作物学报,1962,1(2):97-102.
    杨守仁.水稻超高产育种的新动向—理想株形与有利优势相结合[J].沈阳农业大学学报,1987,18(1):1-5.
    杨振玉,陈秋柏,陈荣芳.水稻粳型恢复系C57的选育[J].作物学报,1981,7(1):153-155.
    杨振玉,张忠旭,华泽田,等.不同类型籼粳亚种间杂种F1可利用和非可利用杂种优势的评价利用[J].中国水稻科学,1991,4(2):49-55.
    杨振玉,高勇,赵迎春,等.水稻杂种优势利用研究进展[J].作物学报.1996,22(4):422-428.
    杨振玉,张宗旭,魏耀林,等.粳型特异亲和恢复系C418的选育及其特性[J].杂交水稻,1998,13(3):31-32.
    杨振玉.北方杂交粳稻发展的思考与展望[J].作物学报,1998,24(6):840-846.
    尹燕枰,童玉森.玉米主要性状的基因效应与杂种优势关系的研究[J].山东农业大学学报,1987,18(1):19-32.
    应存山 主编.中国稻种资源[M].中国农业科技出版社,1993,p:530-531.
    余传源.水稻籼粳亚种间杂种优势利用的遗传丛础研究.2005,博士学位论文.
    余传元,刘裕强,江玲,等.水稻分蘖角度的QTL定位和主效基因的遗传分析[J].遗传学报,2005,32(9):948-954.
    余传元,万建民,翟虎渠,等.利用CSSL群体研究水稻籼粳亚种间产量性状的杂种优势[J].科学通报,2005,1(50):32-37.
    余四斌,李建雄,徐才国,等.上位性效应是水稻杂种优势的重要遗传基础[J].中国科学(C辑),1998,28(4):333-342.
    袁隆平.杂交水稻育种的战略设想[J].杂交水稻,1987,1:1-3.
    袁隆平.杂交水稻育种栽培学[M].长沙:湖南科学技术出版社,1988.
    袁隆平.水稻光、温敏不育系的提纯和原种生产[J].杂交水稻,1994,6:1-3.
    袁隆平.从育种角度展望我国水稻的增产潜力[J].杂交水稻,1996,4:1-2.
    袁隆平.选育水稻亚种间杂交组合的策略[J].杂交水稻,1996,2:1.
    袁隆平.水稻的雄性不孕性[J].科学通报,1996,17(4):185-188.
    袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,12(6):1-6.
    袁隆平.我国两系法杂交水稻研究的形势、任务和发展前景[J].农业现代化研究,1997,18(1):1-3.
    袁隆平,唐传道.杂交水稻选育的回顾、现状与展望[J].中国稻米,1999,4:3-6.
    袁隆平.杂交水稻超高产育种[J].杂交水稻,2000,15:31-33.
    翟虎渠,王建康.应用数量遗传学[M].北京:中国农业科学技术出版社,2007.
    曾千春,周开达,朱祯,等.中国水稻杂种优势利用现状[J].中国水稻科学,2000,14(4):243-246.
    曾世雄,杨秀青,卢庄文.栽培稻籼粳亚种内杂种一代优势的研究[J].作物学报,1980,6(4):193-202.
    张宏根,李波,朱正斌,等.分子标记辅助选择改良武育粳3号的条纹叶枯病抗性[J].中国水稻科学,2009,23(3):263-270.
    张士陆,倪大虎,易成新,等.分子标记辅助选择降低籼稻057的直链淀粉含量[J].中国水稻科学,2005,19(5):467-470.
    张战,刘辉,张喜成,等.几个粳稻品种穗部性状杂种优势及遗传分析[J].北方水稻,2007(4):28-30.
    赵炳然.我国无融合生殖研究现状及展望[J].杂交水稻,1992,43-46.
    赵芳明,朱海涛,丁效华,曾瑞珍,张泽民,李文涛,张桂权.丛于SSSL的水稻重要性状QTL的鉴定及稳定性分析[J].中国农业科学,2007,40(3):447-456.
    中国农业科学院,湖南省农业科学院.中国杂交水稻的发展[M].农业出版社,1991,p:1-58.
    钟金城.活性丛因效应假说[J].西南民族学院学报自然科学版,1994,20(2):203-205.
    周元飞,戚华雄,万丙良,等.运用分子标记辅助选择技术改良9311白叶枯病抗性的研究[J].分子植物育种,2003,1(3):343-349.
    朱立宏,周毓珍,陶世昌.籼粳稻杂交育种研究[J].作物学报,1964,3(1):69-84.
    朱作峰,孙传清,姜廷波,等.水稻品种SSR与RFLP及其与杂种优势的关系比较研究[J].遗传学报,2001,28(8):738-745.
    庄杰云,樊叶杨,吴建利,等.杂交水稻中超显性效应的分析[J].遗传,2000,22(4):205-208.
    庄杰云,樊叶杨,吴建利,等.超显性效应对水稻杂种优势的重要作用[J].中国科学(C辑),2001,31(2):106-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700