用户名: 密码: 验证码:
月球软着陆自主导航、制导与控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年10月24日,随着”嫦娥一号”的发射升空,中国迈出了月球探索的第一步。中国的探月计划将分为三步走:绕、落、回。后续,我国要在月球上(正面或背面)建立基地,开发月球各种矿物资源,用于补充地球的能源。这就要求着陆器具有自主、定点软着陆的能力。本论文结合国家自然科学基金重点项目“月球探测器的建模、传感、导航与控制基础理论与关键技术研究”,对未来实现定点着陆的着陆器从环月轨道到月面这一过程中的制导、导航与控制所涉及的关键技术进行研究。
     首先,介绍了从环月轨道上下降到月面的过程中的制导、导航与控制系统所涉及的基础知识,给出了时间计量系统的定义、不同参考坐标系的定义和日月星历的计算。建立了从环月轨道到月面过程中的不同阶段的轨道动力学、姿态动力学、姿态运动学模型及质量流方程。
     然后,为了给软着陆动力下降段提供高精度的导航起始点,本文研究了环月轨道上基于日地月方位信息的高精度自主导航算法。环月轨道上的导航系统采用日地月集成敏感器来确定日地月方位。研究了紫外月球敏感器的测量原理,给出了测量数据的模拟方法。研究了敏感器成像时满足的代数约束,给出了考虑月球扁率的月心矢量的精确确定方法。结合日地敏感器的输出信息,利用双矢量定姿原理和考虑常值系统偏差修正的最小二乘滤波算法得到了一套考虑月球扁率的自主定轨和定姿算法。数值仿真验证了这种导航算法的有效性,此方法能够修正月球扁率对月心矢量确定的误差,达到很高的导航精度。
     为了实施软着陆,探测器需要从初始的圆轨道上机动到近月点高度为15km的椭圆轨道上,基于此背景,本文研究了两种任意环月轨道之间的时间自由的最优两脉冲转移,以主矢量理论和正则Mathieu变换为工具,将变边界的两点边值问题转换成一组带有27个未知常数的27个代数方程。利用非线性最小二乘方法求解这些未知常数,确定两脉冲的转移轨迹。数值仿真也验证了这种方法的有效性。这种方法还可以进一步推广到多脉冲转移的情况。
     接下来研究了基于嵌入自主性的动力下降段的制导、导航与控制问题。基于合理的假设,利用量纲分析、级数展开和待定系数法求解了动力下降段的近似解析次优解,设计了鲁棒的自适应控制器去跟踪解析轨道。该控制器能很好的应付燃料消耗、惯量矩阵、推进器安装误差及部分推进器失效带来的参数或者模型不确定性。此外,本文设计了动力下降段的辅助惯性导航系统,利用惯导系统来估计探测器的位置、速度、角速度和四元素,并利用外部的高度计和速度计来修正IMU的累积误差和初始导航误差。解析式轨道和鲁棒的自适应控制器以及自主导航系统实现了系统的嵌入自主性。仿真结果也验证了动力下降段的制导、导航与控制系统的设计的合理性。
     最后,进行了终端着陆段的制导、导航与控制系统设计。得出了最优姿态角公式,以及特殊情形下的最优解析轨迹。针对一般情形,最优轨迹数值解的计算复杂性,由二次型最优指标,导出了时间自由和时间固定的多项式显式制导律,以实现定点着陆。设计了带终端姿态约束的多项式制导律,保证探测器以垂直的姿态在月面上实现定点着陆。另一方面,动力下降段中的姿态控制器部分可以直接应用于终端着陆段。终端着陆段同样采用辅助惯性导航的方式,惯导系统用来估计探测器的轨道和姿态信息,外部的图像成像敏感器通过对月面上的特征点成像,修正惯导系统的估计误差,精确估计着陆器的轨道和姿态。仿真结果表明终端着陆段的制导、导航和控制的设计能够保证实现垂直姿态的定点软着陆。
On October 24, 2007, the successful launching of Chang’E-1 satellite became a mile-stone of Chinese Lunar Exploration Programme (CLEP) which takes three steps: orbiting,soft-landing and return. In the future, China will establish bases on the near side or farside of moon to supply plentiful resource for the earth. Therefore, it is required that thelunar probe can achieve pin-point soft-landing and autonomous navigation without rely-ing on the ground stations. With the support of the Chinese Science Nature Foundation -the Fundamental Research of the Key Technology for Lunar Probe’s Modeling, Sensing,Navigation and Control, this dissertation studies the key technologies on guidance, nav-igation and control (GNC) system of lunar probe from lunar orbit to the moon’s surfacefor future lunar exploration missions.
     Firstly, this dissertation introduces preliminary knowledge of the GNC system of thelunar probe from lunar orbit to lunar surface. As essential elements of dynamical sys-tems, the definitions of time system and reference coordinates are given. The calculationmethod of sun and moon ephemeris is given. The orbit dynamics, rotational kinematics,attitude dynamics and mass ?ow equation for different phases from lunar orbit to lunarsurface are established.
     Nextly, autonomous navigation methods of lunar orbit, which play important rolesfor pin-point landing, based on the orientation information of sun-earth-moon are studied.Nadir vector determination is an important element in autonomous navigation algorithm.Therefore, according to the principle of imaging, algebraical constraints of the images ofthe lunar edge are established and the nadir vector is determined from these algebraicalconstraints, of which the in?uence of lunar oblateness is considered. Combined with theinformation from sun and earth sensors, a high accuracy autonomous navigation with theconsideration of the lunar oblateness is proposed. Numerical simulations show that theproposed navigation algorithms can correct lunar oblateness effectively and achieve highaccuracy navigation.
     Subsequently, the optimal impulse maneuvers between two lunar orbits are studiedsince the probe is required to transfer from initial lunar orbit to another orbit which is moresuitable for landing sometimes. General time-free two-impulse optimal transfers between two orbits are studied. Using the powerful tools of primer vector theory and Mathieutransformation, the two-point boundary problem with variable boundary is converted to27 algebraical equations with 27 unknown constants. The 27 unknown constants can besolved by a nonlinear Least-Squares method which implies that the two impulse trajectoryis determined. The method is testified by numerical simulations. It should be notedthat the method can be also expanded to multiple-impulse trajectories. However, thecomputation time would increase for multiple-impulse trajectories.
     Thereafter, the GNC system with embedded autonomy in the powered descent phaseis studied. Based on reasonable assumptions, a sub-optimal analytical trajectory is found.A robust adaptive controller is designed to track the reference trajectory. Such a controllercan cope with uncertainty of mass consumption, inertia matrix, thrust misalignment andthrust failures. In additional, An aid-Inertial Navigation System (A-INS) is designed.Inertial Navigation System (INS) is adopted to estimate the probe’s orbit and attitudeinformation, and external altimeter and velocimeter are used to estimate the inertial er-rors. The analytical solution, robust controller and autonomous navigation method enablesystem’s embedded autonomy. The design is also verified by numerical simulations.
     Finally, the GNC system for the terminal descent phase is proposed. A polynomialquadratic optimal guidance law is derived for time-free and time-fixed descent problemwhich can ensure the pin-point landing. A polynomial guidance law with attitude con-straint is also designed which can ensure pin-landing with vertical attitude. The proposedattitude controller in power descent phase can be also used for terminal descent. AnA-INS system is designed. INS system is used to estimate probe’s orbit and attitude in-formation, and external lunar imaging sensor is used correct the inertial errors. Numericalsimulations show that the GNC system for terminal descent phase can ensure pin-pointsoft landing with almost vertical attitude.
引文
1杭科.中国开展月球探测工程的重大意义[J].中国航天, 2007, (11):63–64.
    2卢波.月球探测的意义及发展态势[J].国际太空, 1998, 4:1–4.
    3 Wikipedia. Exploration of the Moon[J]. http://en.wikipedia.org/wiki/Explorationof the Moon.
    4欧阳自远,李春来,邹永廖,等.嫦娥一号的初步科学成果[J].自然杂志, 2010,32(5):249–254.
    5仁民.“嫦娥三号”卫星将实现三大创新[J].军民两用技术与产品, 2010,(8):10–10.
    6李勇,魏春岭.卫星自主导航技术发展综述[J].航天控制, 2002, 20(2):70–74.
    7易维勇.惯性导航及组合导航研究及仿真[D].郑州:中国人民解放军信息工程大学,2002.
    8张天光,王秀萍,王丽霞, et al.捷联惯性导航技术[M].北京:国防工业出版社,2007:5–7.
    9 J. Nielson, G. Swearingen, A. Witsmeer. GPS Aided Inertial Navigation[J]. IEEEAerospace and Electronic Systems Magazine, 1986, 1(3):20–26.
    10汪锡桢.全球定位系统与惯性导航系统的组合系统[J].系统工程与电子技术,1989,(8):24–32.
    11郑谔,倪世宏. GPS/捷联惯性组合导航系统的性能研究[J].西北工业大学学报,1990,8(1):27–34.
    12俞济祥,张更生. GPS/惯性组合方式讨论与导航精度分析[J].航空学报, 1991,12(5):287–293.
    13艾伦,金玲,黄晓瑞. GPS/INS组合导航技术的综述与展望[J].数字通信世界,2011, (2):58–61.
    14李家齐.惯性/天文组合导航系统中信息处理的研究[D].武汉:华中科技大学,2005.
    15赵明波.机载惯导/天文组合导航技术研究及仿真验证[D].长沙:国防科学技术大学,2008.
    16陈坡,孙付平.捷联惯导与天文导航组合导航系统仿真研究[J].海洋测绘,2010, 30(6):55–58.
    17屈蔷,刘建业,熊智,等.机载天文/惯性位置组合导航[J].南京理工大学学报:自然科学版,2010,34(6):729–734.
    18 H. Feng, Z. Yang, J. Fang. Simulation Design of Geomagnetic Aided InertialNavigation System[C]//2nd International Symposium on Systems and Control inAerospace and Astronautics. 2008:1–5.
    19 X. Ma, H. Liu, H. Li. Key Technologies of Geomagnetic Aided Inertial NavigationSystem[C]//IEEE Intelligent Vehicles Symposium. 2009:464–469.
    20蔡洪,郭才发,胡正东.惯性/地磁组合导航算法[J].中国惯性技术学报, 2009,17(3):333–337.
    21刘伟,王超,张京娟.微小型惯性/光学组合导航系统研究[J].武汉大学学报(信息科学版),2010,35(12):1392–1395.
    22 A. Jircitano, D. Dosch. Gravity Aided Inertial Navigation System (gain-s)[C]//Institute of Navigation, 47th Annual Meeting. 1991, 1:221–229.
    23黄凤荣,翁海娜,张桂敏.惯性/重力匹配组合导航系统与可视化仿真[J].中国惯性技术学报,2007,15(2):209–213.
    24 K. Walchko, P. Mason. Inertial Navigation[C]//Proceedings of the 15th FloridaConference on Recent Advances in Robotics. Miami, Florida, 2002.
    25宁晓琳,吴伟仁,房建成.深空探测器自主天文导航技术综述(上)[J].中国航天,2010,(6):37–40.
    26王大轶,黄翔宇.深空探测自主导航与控制技术综述[J].空间控制技术与应用,2009,35(3):6–12.
    27丁子明,言中.无线电导航综述[J].电子学报, 1985, (6):105–112.
    28 R. Langley. GLONASS: Review and Update[J]. GPS world, 1997, 8(7):46–51.
    29谭述森.北斗卫星导航系统的发展与思考[J].宇航学报, 2008, 29(2):391–396.
    30 J. Yim, J. Crassidis, J. Junkins. Autonomous Orbit Navigation of Interplanetary S-pacecraft[C]//AIAA/AAS Astrodynamics Specialist Conference, Denver. 2000:53–61.
    31郭才发,胡正东,张士峰,等.地磁导航综述[J].宇航学报, 2009, 30(4):1314–1319.
    32文援兰,王威,曾国强,等.地面站对月球探测器的导航[J].国防科技大学学报,2001,23(6):33–37.
    33朱圣英.小天体探测器光学导航与自主控制方法研究[D].哈尔滨:哈尔滨工业大学,2009.
    34 G. Falbel, R. Astheimer. Infrared Horizon Sensor Techniques for Lunar and Plan-etary Approaches[C]//AIAA Guidance and Control Conference, Massachusetts In-stitute of Technology, Cambridge, MA. 1963.
    35赵旭,李铁寿.月球卫星的自主轨道确定[J].航天控制, 2000, 18(1):31–36.
    36孙军伟,崔平远,黄翔宇.绕月探测器的自主光学导航研究[J].航空学报,2006, 27(6):1145–1149.
    37张燕,荆武兴.基于紫外月球敏感器和测高仪测量信息的月球探测器自主导航[C]//第25届中国控制会议论文集(下册).2006.
    38宋敏,袁运斌.利用信息融合进行月球卫星自主导航[J].武汉大学学报:信息科学版,2010,35(3):257–260.
    39 M. Psiaki, J. Hinks. Autonomous Lunar Orbit Determination Using Star Occulta-tion Measurements[C]//AIAA Guidance, Navigation, and Control Conference andExhibit. 2007:AIAA paper 2007–6657.
    40 E. Mikrin, M. Mikhailov, S. Rozhkov. Autonomous Navigation and Rendezvous ofSpacecraft in Lunar Orbit[J]. Gyroscopy and Navigation, 2010, 1(4):310–320.
    41 S. Hur-Diaz, B. Bamford, D. Gaylor. Autonomous Lunar Orbit Navigation UsingOptical Sensors[J]. American Astronautical Society, AAS Paper, 2007:07–312.
    42 Y. Biao, Y. Bo. Autonomous Deep Space Navigation for Two Lunar Spacecraftsfrom Relative Position Measurements[C]//Valencia, Spain, 2006, 3:1592– 1598.
    43叶飚,杨博.一种强跟踪非线性衰减滤波的环月自主导航方法研究[J].航天控制,2009,(3):23–27.
    44 J. Fang, X. L. Ning. New Autonomous Celestial Navigation Method for LunarSatellite[J].哈尔滨工业大学学报:英文版, 2003, 10(3):308–310.
    45张燕,荆武兴.基于日地月方位信息的月球卫星自主导航[J].宇航学报, 2005,26(4):495–498.
    46孙军伟.月球探测器自主导航与控制方法研究[D].哈尔滨:哈尔滨工业大学,2006.
    47宁晓琳,马辛.基于天文和陆标观测的月球卫星自主导航方法[J].宇航学报,2010, (7):1737–1747.
    48程会艳,郝云彩,乔国栋.存在常值偏差的卫星自主导航系统滤波算法[J].航天控制,2011,29(1):59–62.
    49郑月英,钱唯德,罗俊,等.基于天象匹配的地心矢量确定方法[J].航天控制,2006, 24(2):43–47.
    50刘军,韩潮.基于圆球与椭球的地球敏感器地心矢量算法分析[J].航天控制,2008, 26(2):86–91.
    51刘延柱.地球扁率引起红外地平仪姿态测量误差的数学模型[J].宇航学报,1999, 20(3):13–17.
    52 J. Tekawy, P. Wang, C. Gray. Scanning Horizon Sensor Attitude Correction forEarth Oblateness[J]. Journal of guidance, control and dynamics, 1996, 19(3):706–708.
    53李捷.基于地球椭球特性的红外地球敏感器测量值的修正算法[J].控制工程(北京),1997,(2):9–14.
    54 J. Li. Simple Correction Algorithm of Scanning Horizon Sensor Measurement forEarth Oblateness[J]. Journal of Guidance, Control and Dynamics, 1999, 22(1):187–190.
    55钱勇.高精度三轴稳定卫星姿态确定和控制系统研究[D].西安:西北工业大学,2002.
    56周军,钱勇.基于地球扁率红外地平仪测量值修正算法研究[J].宇航学报,2003, 24(2):144–149.
    57李明群,魏春岭,袁军.红外地球敏感器测量值修正算法及其应用研究[J].空间控制技术与应用,2008,34(5):26–30.
    58王艳宝,王立,蔡伟.紫外月球敏感器月心矢量及月心距求解[J].控制工程(北京),2005,(3):9–15.
    59王立,郝云彩.环月卫星成像敏感器对月姿态确定算法[J].中国空间科学技术,2006,26(6):14–17.
    60王立,郝云彩.一种成像敏感器对月定姿算法[J].宇航学报, 2007, 28(1):39–42.
    61 D. Lawden. Optimal Trajectories for Space Navigation[M]. Butterworths, 1963.
    62 P. Lion, M. Handelsman. Primer Vector on Fixed-time Impulsive Trajectories[J].AIAA Journal, 1968, 6(1):127–132.
    63 D. Jezewski, H. Rozendhal. Efficient Method for Calculating Optimal Free SpaceN-impulse Trajectories[J]. AIAA Journal, 1968, 6(11):2160–2165.
    64 J. Prussing. Optimal Four-impulse Fixed-time Rendezvous in the Vicinity of aCircular Orbit.[J]. AIAA Journal, 1969, 7:928–935.
    65 J. Prussing, J. Chiu. Optimal Multiple-impulse Time-fixed Rendezvous betweenCircular Orbits[J]. Journal of Guidance, Control and Dynamics, 1986, 9(1):17–22.
    66 J. Peussing. Optimal Two-and Three-impulse Fixed-time Rendezvous in the Vicin-ity of a Circular Orbit[J]. Journal of Spacecarft and Rockets, 2003, 40(6):1221–1228.
    67 S. Hughes, L. Mailhe, J. Guzman. A Comparison of Trajectory Optimization Meth-ods for the Impulsive Minimum Fuel Rendezvous Problem[J]. Advances in theAstronautical Sciences, 2003, 113:85–104.
    68 S. Sandrik. Primer-optimized Results and Trends for Circular Phasing and OtherCircle-to-circle Impulsive Coplanar Rendezvous[D]. Champaign:Department ofAerospace Engineering, university of illinois at urbana-champaign, 2006.
    69 Y. Luo, G. Tang, Y. Lei, et al. Optimization of Multiple-impulse, Multiple-revolution, Rendezvous-phasing Maneuvers[J]. Journal of Guidance Control andDynamics, 2007, 30(4):946–952.
    70 Y. Luo, J. Zhang, H. Li, et al. Interactive Optimization Approach for OptimalImpulsive Rendezvous Using Primer Vector and Evolutionary Algorithms[J]. ActaAstronautica, 2010, 67(3-4):396–405.
    71 J. Kechichian. Reformulation of Edelbaum’s Low-thrust Transfer Problem Us-ing Optimal Control Theory[J]. Journal of guidance, control and dynamics, 1997,20(5):988–994.
    72 J. Kechichian. Minimum-time Constant Acceleration Orbit Transfer with First-order Oblateness Effect[J]. Journal of guidance, control and dynamics, 2000,23(4):595–603.
    73 D. Benson, G. Huntington, T. Thorvaldsen, et al. Direct Trajectory Optimizationand Costate Estimation via an Orthogonal Collocation Method[J]. Journal of Guid-ance Control and Dynamics, 2006, 29(6):1435–1440.
    74 J. Betts. Practical Methods for Optimal Control Using Nonlinear Programming[M].Philadelphia: Society for Industrial Mathematics, 2001.
    75 J. Betts, W. Huffman. Sparse Optimal Control Software Socs[R]. Tech. rep., TheBoeing Company, 1997.
    76 C. Hargraves, S. Paris. Direct Trajectory Optimization Using Nonlinear Program-ming and Collocation.[J]. Journal of Guidance, Control and Dynamics, 1987,10(4):338–342.
    77 I. Ross, F. Fahroo. Legendre Pseudospectral Approximations of Optimal ControlProblems[J]. New Trends in Nonlinear Dynamics and Control and their Applica-tions, 2004:327–342.
    78 R. Barrar. An Analytic Proof That the Hohmann-type Transfer Is the True MinimumTwo-impulse Transfer[J]. Acta Astronautica, 1962, 9(1):1–11.
    79 G. A. Hazelrigg. The Use of Green’s Theorem to Find Globally Optimal Solutionsto a Class of Impulsive Transfers[J]. AAS Paper 68-092, 1968.
    80 J. Marec. Optimal Space Trajectories[M]. Elsevier Science & Technology,1979:21–27.
    81 R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics[M].AIAA Education Series, 1999:529–530.
    82 J. Palmore. An Elementary Proof of the Optimality of Hohmann Transfers[J]. Jour-nal of Guidance Control Dynamics, 1984, 7:629.
    83 J. Prussing. Simple Proof of the Global Optimality of the Hohmann Transfer[J].Journal of Guidance Control and Dynamics, 1992, 15(4):1037–1038.
    84 T. Edelbaum. How many Impulses?[J]. Astronautics and Aeronautics, 1967,5(11):64–69.
    85 W. M. Gobetz, F. W., T. N. Edelbaum. Minimum-impulse Time-free Transfer be-tween Elliptic Orbits[R]. Tech. Rep. NASA CR-636, 1966.
    86郗晓宁,王威,高玉东.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003:220.
    87李大耀,李大治.关于脉冲式轨道改变的讨论[J].中国空间科学技术, 1991,11(1):22–29.
    88李大耀,李大治.两圆轨道之间双脉冲式最优转移的进一步讨论[J].中国空间科学技术,1991,11(6):1–10.
    89刘恒,雷涛,李顺利,等.基于参数优化的脉冲轨道设计[J].上海航天, 2010,(1):20–25.
    90易照华,赵德滋.击中月球的火箭轨道设计问题[J].南京大学学报, 1964,8(4):367–375.
    91張钰哲,張家祥,冼鼎璋.定点击中和航測月球的火箭軌道[J].天文学报,1965, 13(2):131–147.
    92曾国强,赵汉元.月球探测器月面软着陆制动轨道研究[J].国防科技大学学报,1996,18(4):40–43.
    93肖齐英,李明强.登月探测器轨道计算的自动寻优设计[J].国防科技大学学报,1996,18(4):36–39.
    94严辉,陈士橹.给定条件下直接命中月球轨道计算方法[J].中国空间科学技术,1996,16(3):17–21.
    95郗晓宁,王海丽.多约束条件下探测器击中月球的轨道设计[J].中国空间科学技术,1997,17(2):1–7.
    96郗晓宁,朱议耀.探测器垂直击中月球的轨道设计[J].空间科学学报, 1998,18(2):161–167.
    97杨维廉.击中月球的转移轨道研究[J].飞行力学, 1998, 16(4):20–25.
    98王劼,刘暾,崔乃刚.通过“建立月球垂线”实现月球软着陆方法研究[J].导弹与航天运载技术,2000,(4):45–47.
    99王劼,崔乃刚,刘暾,等.有限推力登月飞行器燃料消耗研究[J].导弹与航天运载技术,2000,(6):10–13.
    100黄珹,胡小工,李鑫.满足一定约束条件的登月飞行轨道的设计[J].天文学报,2001, 42(2):161–171.
    101和兴锁,林胜勇,张亚锋.月球探测器直接软着陆最优轨道设计[J].宇航学报,2007, 28(2):409–413.
    102 R. Sostaric, J. Rea. Powered Descent Guidance Methods for the Moon andMars[C]//Collection of Technical Papers-AIAA Guidance, Navigation, and Con-trol Conference. 2005, 6:4495.
    103 D. Y. Wang, X. Y. Huang, Y. F. Guan. Gnc System Scheme for Lunar Soft LandingSpacecraft[J]. Advance in Space Research, 2008, 42:379–385.
    104 J. Meditch. On the Problem of Optimal Thrust Programming for a Lunar SoftLanding[J]. IEEE Transactions on Automatic Control, 1964, 9(4):477–484.
    105王大轶,马兴瑞.月球最优软着陆两点边值问题的数值解法[J].控制工程(北京),2000,(3):7–12.
    106王大轶.月球软着陆的制导控制研究[D].哈尔滨:航天学院,哈尔滨工业大学,2000.
    107 H. Yan, H. X. Wu. Initial Adjoint-variable Guess Technique and its Applicationin Optimal Orbital Transfer[J]. Journal of guidance, control, and dynamics, 1999,22(3):490–492.
    108田坤黉,赵吉松.伴随法及其在月球最优软着陆两点边值问题中的应用[C]//中国宇航学会深空探测技术专业委员会第二届学术会议论文集.2005.
    109蔡艳芳.月球探测器软着陆制导控制方法研究[D].西安:西北工业大学, 2006.
    110唐琼.月球软着陆轨道快速优化[J].计算机仿真, 2007, 24(12):24–27.
    111 D. Cho, B. Jeong, D. Lee, et al. Optimal Perilune Altitude of Lunar Landing Trajec-tory[J]. International Journal of Aeronautical & Space Sciences, 2009, 10(1):67–74.
    112周净扬,周荻.月球探测器软着陆精确建模及最优轨道设计[J].宇航学报,2007, 28(6):1462–1466.
    113王劼,崔乃刚,刘暾,等.定常推力登月飞行器最优软着陆轨道研究[J].高技术通讯,2003,13(4):39–42.
    114孙军伟,乔栋,崔平远.基于SQP方法的常推力月球软着陆轨道优化方法[J].宇航学报,2006,27(1):99–102.
    115王劼,李俊峰,崔乃刚,等.登月飞行器软着陆轨道的遗传算法优化[J].清华大学学报(自然科学版),2003,43(8):1056–1059.
    116徐敏,李俊峰.月球探测器软着陆的最优控制[J].清华大学学报:自然科学版,2001,41(8):87–89.
    117王明光,裴听国,袁建平.基于伪光谱方法月球软着陆轨道快速优化设计[J].中国空间科学技术,2007,(5):27–32.
    118朱建丰,徐世杰.基于自适应模拟退火遗传算法的月球软着陆轨道优化[J].航空学报,2007,28(4):806–812.
    119段佳佳,徐世杰,朱建丰.基于蚁群算法的月球软着陆轨迹优化[J].宇航学报,2008, 29(2):476–488.
    120涂良辉,袁建平,罗建军,等.基于直接配点法的月球软着陆轨道快速优化[J].中国空间科学技术,2008,28(4):19–24.
    121赵吉松,谷良贤.基于广义乘子法的月球软着陆轨道快速优化设计[J].科技导报(北京),2008,26(20):50–54.
    122赵吉松,谷良贤.月球着陆轨道的一种快速优化方法[J].宇航学报, 2009,30(4):1564–1568.
    123 X. Liu, G. Duan, K. Teo. Optimal Soft Landing Control for Moon Lander[J]. Au-tomatica, 2008, 44(4):1097–1103.
    124郭景录,付平.登月软着陆轨道优化算法研究[J].计算机仿真, 2009, (12):70–73.
    125阮晓钢,郭锁凤.神经元最优状态反馈控制及其在登月问题中的应用研究[J].南京航空航天大学学报,1994,26(6):721–729.
    126阮晓钢.登月舱软着陆的非线性神经元控制[J].宇航学报, 1998, 19(1):35–43.
    127王大轶,马兴瑞.月球软着陆的神经元最优制导控制方法[J].系统工程与电子技术,1999,21(12):31–36.
    128王大轶,乔国栋,李铁寿.用于月球软着陆最优轨迹跟踪制导过程的模糊神经网络控制方法[J].宇航学报,2007,28(5):1149–1155.
    129单永正,段广仁,刘宏亮.月球探测器软着陆最优末制导策略[J].航天控制,2006, 24(5):31–34.
    130单永正.月球探测器软着陆的制导问题研究[D].哈尔滨:哈尔滨工业大学,2009.
    131刘兴隆,段广仁.登月飞行器软着陆的非线性最优控制[J].宇航学报, 2007,28(4):920–925.
    132 H. H. Afshariand, A. B. Novinzadeh. A Perturbation Approach in Determination ofClosed-loop Optimal-fuzzy Control Policy for Planetary Landing Mission[J]. Pro-ceedings of the Institution of Mechanical Engineers, Part G: Journal of AerospaceEngineering, 2009, 223(3):233–243.
    133 S. Ueno, Y. Yamaguchi. 3-dimensional Near-minimum Fuel Guidance Law of a Lu-nar Landing Module[C]//Proceedings of AIAA Guidance,Navigation, and ControlConference and Exhibit. Portland, OR: AIAA, 1999:248–257.
    134孙军伟,崔平远.月球软着陆多项式制导控制方法[J].宇航学报, 2007,28(5):1171–1174.
    135 J. Guo, C. Han. Design of Guidance Laws for Lunar Pinpoint Soft Landing[J].Advances in the Astronautical Sciences, 2009, 135(3):2133–2145.
    136 N. Christopher. An Optimal Guidance Law for Planetary Landing[C]//AIAA Guid-ance, Navigation and Control Conference, USA. 1997:1376–1381.
    137黄翔宇,王大轶,关轶峰.月球软着陆的二次型最优制导方法[J].航天控制,2006, 24(6):11–16.
    138王鹏基,张熇,曲广吉.月球软着陆飞行动力学和制导控制建模与仿真[J].中国科学:E辑,2009,39(3):521–527.
    139 K. Uchiyama. Guidance Law for Lunar Lander with Input Constrain-t[C]//2007:AIAA 2007–6848.
    140刘兴隆.登月飞行器软着陆的制导与控制[D].哈尔滨:哈尔滨工业大学, 2008.
    141 J. A. Jungmann. The Exact Analytic Solution of the Lunar Landing Problem(lunarLanding Problem, Determining Position, Velocity and Acceleration as Functions ofTime from Ignition to Shutdown)[C]//American Astronautical society, Space ?ightmechanics specialist. Denver, Colo, 1966.
    142 T. Feng, C. Wasynczuk. Terminal Guidance for Soft and Accurate Lunar Landingfor Unmanned Spacecraft.[J]. Journal of Spacecraft and Rockets, 1968, 5:644–648.
    143 S. J. Citron. A Terminal Guidance Technique for Lunar Landing[J]. AIAA Jounral,1964, 2(3):503–509.
    144 R. K. Cheng. Lunar Terminal Guidance[C]//Lunar Missions and Exploration. NewYork: Wiley, 1964, 1:308–355.
    145 R. K. Cheng, C. M. Meredith, D. A. Conrad. Design Considerations for SurveyorGuidance[J]. Journal of Spacecraft and Rockets, 1966, 3(11):1569–1576.
    146 R. Ingoldby. Guidance and Control System Design of the Viking Planetary Lan-der[C]//Guidance and Control Conference. 1977, 1:164–171.
    147 C. R. McInnes. Non-linear Transformation Methods for Gravity-turn Descent[J].Journal of Guidance, Control and Dynamics, 1996, 19(1):247–248.
    148 C. R. McInnes. Direct Adaptive Control for Gravity-turn Descent[J]. Journal ofGuidance, Control and Dynamics, 1999, 22(2):373–375.
    149王大轶,李铁寿,严辉,等.月球引力转弯软着陆的制导控制研究[J].中国空间科学技术,2000,5:17–23.
    150朱建丰,徐世杰.月球重力转弯软着陆的模糊变结构控制[J].北京航空航天大学学报,2007,33(5):539–543.
    151 C. T. Chomel. Development of an Analytical Guidance Algorithm for Lunar De-scent[D]. Austin, TX:University of Texas, 2007.
    152 C. T. Chomel, R. H. Bishop. Analytical Lunar Descent Guidance Algorithm[J].Journal of Guidance, Control and Dynamics, 2009, 32(3):915–926.
    153 E. Wong, G. Singh, J. Masciarelli. Autonomous Guidance and Control Designfor Hazard Avoidance and Safe Landing on Mars[C]//AIAA Atmospheric FlightMechanics Conference and Exhibit, Monterey, CA. 2002.
    154常晓飞.月球着陆舱制动减速段的控制研究[D].西安:西北工业大学, 2007.
    155杨勇,杨博. Terminal变结构控制的月球软着陆姿态控制律设计[J].航天控制,2010,(4):29–34.
    156王大轶,黄翔宇,关轶峰,马兴瑞.基于IMU配以测量修正的月球软着陆自主导航研究[J].宇航学报,2007,28(6):1544–1549.
    157黄翔宇.航天器自主导航方法及在小天体探测中的应用研究[D].哈尔滨:哈尔滨工业大学,2005.
    158 C. Epp, T. Smith. Autonomous Precision Landing and Hazard Detection and Avoid-ance Technology (alhat)[C]//Aerospace Conference, 2007 IEEE. 2007:1–7.
    159 D. Tuckness. Future Lunar Landing Navigation Schemes, with Emphasis on Preci-sion Landings[J]. Navigation, 1994, 41(2):215–228.
    160介鸣,黄显林.基于月貌匹配的视觉导航方法[J].哈尔滨工程大学学报, 2007,28(1):11–14.
    161 J. de Lafontaine, O. Gueye. Autonomous Planetary Landing Using a Lidar Sensor:The Navigation Function[J]. Space Technology, 2004, 24(1):7–18.
    162 J. de Lafontaine, D. Neveu, K. Lebel. Autonomous Planetary Landing Using a LidarSensor: The Closed-loop System[C]//Guidance, Navigation and Control Systems.2006, 606:3.
    163 M. Beilock. Surveyor Lander Mission Capability[R]. Tech. rep., NASA N64-28969, 1964.
    164 M. Center. APOLLO Experience Report-mission Planning for Lunar Module De-scent and Ascent[R]. Tech. rep., NASA TN D-6846, 1972.
    165 W. Ockels, et al. EuroMoon 2000 a Plan for a European Lunar South Pole Expedi-tion[J]. Acta Astronautica, 1997, 41(4):579–583.
    166 N. Mihashi, T. Mizuno, S. Fukuda, et al. Fundamental Development of LandingRadar for Lunar and Planetary Mission[J]. Uchu Kagaku Gijutsu Rengo KoenkaiKoenshu, 2003, 47:196–198.
    167 G. Barton, S. Shepperd, T. Brand. Autonomous Lunar Landing Navigation[J]. Ad-vances in the Astronautical Sciences, 1994, 87(2):695–713.
    168 N. Trawny, A. Mourikis, S. Roumeliotis, et al. Vision-aided Inertial Navigation forPin-point Landing Using Observations of Mapped Landmarks[J]. Journal of FieldRobotics, 2007, 24(5):357–378.
    169宋敏,袁运斌.月球软着陆自主组合导航研究[J].武汉大学学报:信息科学版,2010,(9):1013–1016.
    170夏一飞,黄天衣.球面天文学[M].南京:南京大学出版社, 1995:46–47.
    171 H. Karttunen, P. Kroger, H. Oja. Fundamental Astronomy[M]. Springer Verlag,2007:36.
    172 W. Seefelder. Lunar Transfer Orbits Utilizing Solar Perturbations and BallisticCapture[M]. Herbert Utz Verlag, 2002:8.
    173 R. Roncoli. Lunar Constants and Models Document[J]. JPL D-32296, Sept, 2005.
    174 Mathworks. About Aerospace Coordinate Systems[J]. http://www.mathworks.com/access/helpdesk/help/toolbox/aeroblks/f3-22568.html.
    175 P. Seidelmann, B. Archinal, M. A’hearn, et al. Report of the Iau/iag WorkingGroup on Cartographic Coordinates and Rotational Elements: 2006[J]. CelestialMechanics and Dynamical Astronomy, 2007, 98(3):155–180.
    176 X. Newhall, J. Williams. Estimation of the Lunar Physical Librations[J]. CelestialMechanics and Dynamical Astronomy, 1996, 66(1):21–30.
    177 A. Konopliv, S. Asmar, E. Carranza, et al. Recent Gravity Models as a Result ofthe Lunar Prospector Mission[J]. Icarus, 2001, 150(1):1–18.
    178张燕.基于日地月信息的月球探测器自主导航方法研究[D].哈尔滨:哈尔滨工业大学,2007.
    179刘林,王歆.月球探测器轨道力学[M].国防工业出版社, 2006:98–100.
    180王彦荣,刘林,刘蓉.月球卫星精密定轨[J].飞行器测控学报, 2006, 25(6):16–21.
    181刘冰.环月航天器轨道预报方法研究[D].长沙:国防科学技术大学, 2006.
    182 M. Sidi. Spacecraft Dynamics and Control: A Practical Engineering Approach[M].Cambridge Univ Pr, 2000.
    183 J. Boskovic, S. Yu, R. Mehra. A Stable Scheme for Automatic Control Reconfigu-ration in the Presence of Actuator Failures[J]. 1998, 4:2455–2459.
    184 G. Tao, S. Joshi, X. Ma. Adaptive State Feedback and Tracking Control of Sys-tems with Actuator Failures[J]. IEEE Transactions on Automatic Control, 2001,46(1):78–95.
    185 X. Tang, G. Tao, S. Joshi. Adaptive Actuator Failure Compensation for Nonlin-ear Mimo Systems with an Aircraft Control Application[J]. Automatica, 2007,43(11):1869–1883.
    186 B. Wie. Space Vehicle Dynamics and Control[M]. Reston: AIAA Eduation Series.AIAA, 1998:451–456.
    187宋琛,韩潮,耿建中.自适应粒子滤波在紫外导航中的应用[J].中国空间科学技术,2009,(1):32–40.
    188耿建中,肖业伦,韩潮.基于紫外敏感器的卫星自主导航方法研究[J].航天控制,2007,25(2):47–51.
    189管乐鑫,魏春岭.基于紫外敏感器和星敏感器的卫星自主导航[J].空间控制技术与应用,2008,34:37–41.
    190黄欣,王立,卢欣.嫦娥一号卫星紫外月球敏感器[J].空间控制技术与应用,2008, 34(1):51–55.
    191 C. Lanczos. The Variational Principles of Mechanics[M]. Dover Pubns, 1970:201.
    192 G. Giacaglia. The Equations of Motion of an Artificial Satellite in NonsingularVariables[J]. Celestial Mechanics and Dynamical Astronomy, 1977, 15(2):191–215.
    193 S. Fernandes. Generalized Canonical Systems–III: Space Dynamics Applications:Solution of the Coast-arc Problem[J]. Acta Astronautica, 1994, 32(5):347–354.
    194 B. Conway. Spacecraft Trajectory Optimization[M]. Cambridge Univ Pr, 2010:28.
    195 C. Kelley. Iterative Methods for Optimization[M]. Society for Industrial Mathe-matics, 1999:22–23.
    196章仁为.卫星轨道姿态动力学与控制[M].北京航空航天大学出版社,1998:75–77.
    197朱建丰,徐世杰.基于自适应模拟退火遗传算法的月球软着陆轨道优化[J].航空学报,2007,28(7):806–812.
    198 R. R. Sostaric. Powered Descent Trajectory Guidance and some Considerations forHuman Lunar Landing[C]//Proceedings of AAS Guidance and Control Conference.Breckenridge, Colorado: AAS, 2007.
    199 J. Pomet, L. Praly. Adaptive Nonlinear Regulation: Estimation from the LyapunovEquation[J]. IEEE Transactions on Automatic Control, 1992, 37(6):729–740.
    200 P. A. Ioannou, J. Sun. Robust Adaptive Control[M]. New Jersey: Prentice HallInc., 1996:72.
    201 B. T. Costic, D. M. Dawson, M. S. De Queiroz, et al. Quaternion-based AdaptiveAttitude Tracking Controller without Velocity Measurements[J]. Journal of Guid-ance Control and Dynamics, 2001, 24(6):1214–1222.
    202 R. Kristiansen, P. J. Nicklasson, J. T. Gravdahl. Satellite Attitude Control byQuaternion-based Backstepping[J]. IEEE Transaction on Control System Tech-nology, 2009, 17(1):227–232.
    203 J. Ahmed, V. Coppola, D. Bernstein. Adaptive Asymptotic Tracking of SpacecraftAttitude Motion with Inertia Matrix Identification[J]. Journal of Guidance Controland Dynamics, 1998, 21:684–691.
    204 G. Tao, S. Joshi. Direct Adaptive Control of Systems with Actuator Failures Stateof the Art and Continuing Challenges[C]//Proceeding of AIAA Guidance., Naviga-tion., and Controrl Conference. Honolulu, Hawaii, 2008.
    205 D. Titterton, J. Weston. Strapdown Inertial Navigation Technology[M]. Peter Pere-grinus Ltd, 2004.
    206 E. Bekir. Introduction to Modern Navigation Systems[M]. World Scientific,2007:174.
    207 H. Geering. Optimal Control with Engineering Applications[M]. Springer Verlag,2007:25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700