用户名: 密码: 验证码:
polyl:C诱导负载HPV E7_(44-62)多肽的人脐血Cs抗宫颈癌免疫效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Poly Ⅰ:C诱导负载HPV E744-62多肽脐血DCs体外抗宫颈癌的免疫效应研究
     目的:观察Poly Ⅰ:C诱导负载HPV E744-62多肽的人脐血DCs体外抗宫颈癌的免疫效应。
     方法:采集健康足月妊娠孕妇的脐带血,密度梯度离心法分离获得脐血单个核细胞,取贴壁细胞体外经rhGM-CSF、rhIL-4诱导培养7天获DCs。分别用Poly Ⅰ:C、HPV16E744-62多肽、Poly Ⅰ:C联合HPVl6E744-62多肽来刺激DCs,设未经抗原负载的DCs作为对照组。观察细胞形态,收集培养9天的各组DCs,采用流式细胞仪检测DCs相关表型:CDl α、HLA-DR、CD40和CD83;ELISA法检测DCs上清中IL-12、IL-10的含量,混合淋巴细胞反应测定各组DCs体外刺激T细胞增殖的能力,ELISA法检测T细胞培养上清液中的IFN-γ含量,MTT法检测CTL对宫颈癌细胞系CaSki和肝癌细胞系HepG2的杀伤效应。
     结果:各组DCs均可诱导分化为一定数量的具有典型形态和表型的DCs。以HPV16E744_62多肽联合Poly Ⅰ:C组最高。与未经抗原负载的DCs相比,其他各组抗原刺激的DCs数量、表型CD1α、HLA-DR、CD40和CD83表达率、分泌IL-12的能力、刺激同种异体T细胞增殖能力、分泌IFN-Y水平及激活的CTL对CaSki细胞杀伤力均较高,尤其是以HPV16E744-62多肽联合Poly Ⅰ:C组效果最明显,同时其分泌IL-10水平亦最低。而此类CTL对HepG2细胞无特异性杀伤效应。
     结论:负载HPV16E744-62多肽的脐血DCs体外可诱导特异性杀伤宫颈癌细胞的免疫效应,Poly Ⅰ:C作为免疫佐剂可增强抗肿瘤免疫反应。
     第二章Poly Ⅰ:C诱导负载HPV E744-62多肽脐血DCs体内抗宫颈癌的免疫效应研究。
     目的:观察Poly Ⅰ:C诱导负载HPV E744-62多肽的人脐血DCs对T细胞免疫重建荷人宫颈癌裸鼠的肿瘤生长的影响。
     方法:对裸鼠经尾静脉射入宫颈癌患者T淋巴细胞进行细胞免疫重建,24h后皮下注射人宫颈癌细胞系CaSki细胞,建立荷瘤裸鼠模型。荷瘤1周后根据注射疫苗不同将裸鼠分为5组:皮下注射各组DCs疫苗:Ctrl组(未负载抗原的脐血DCs)、E组(负载HPV16E744-62多肽的脐血DCs)、P组(单独PolyⅠ:C刺激脐血DCs)、E+P组(HPVE744-62多肽联合PolyⅠ:C诱导脐血DCs),NS组(设皮下注射生理盐水作为空白对照组)。2周后再次接种疫苗强化1次。观察荷瘤裸鼠一般生物学特性、成瘤率、成瘤潜伏期、肿瘤大小及其生存期。荷瘤后35天检测裸鼠血中人CD3+、CD4+、CD8+T细胞比率及血中人IFN-γ水平。
     结果:裸鼠成瘤率为100%,成瘤潜伏期为5-8天。各组均可检测到人CD3+/CD4+、CD3-/CD8+T细胞,说明裸鼠T细胞免疫重建成功。与空白对照比较,其他各组裸鼠血中人CD3+/CD4+、CD3+/CD8+T细胞阳性率及IFN-γ水平均有升高,且有较高的抑瘤率和较长的生存时间,尤其以E+P组最为明显。
     结论:PolyⅠ:C诱导负载HPV16E744-62多肽的脐血DCs可以在人T细胞免疫重建荷人宫颈癌裸鼠模型体内诱发出抗肿瘤免疫反应。
Part Ⅰ Study on the effect of anti-cervical cancer immunity induced by cord blood-derived dendritic cells loaded with HPV E744-62peptide and activated by Poly Ⅰ:C in vitro.
     Objective:To investigate the effect of anti-cervical cancer immunity induced by cord blood-derived dendritic cells loaded with HPV E744-62peptide and activated by Poly Ⅰ:C in vitro.
     Methods:Cord blood was collected from healthy term delivery mother.Cord blood mononuclear cells were isolated by density centrifugation. The adherent fraction was cultured in presence of rhGM-CSF/IL-4for7days. DCs were activated by HPV E744,62peptide, Poly Ⅰ:C, and HPV E744.62peptide combined with Poly I:C, respectively, with DCs without loading antigen as control group. The yield of mature DCs was calculated and the morphological changes of the cultured cells were observed by light microscopy. Surface expressions of CD1a, HLA-DR, CD40and CD83were analysized by flow cytometry analysis. IL-12and IL-10levels of DCs were detected using ELISA method. The ability of DCs to stimulate the proliferation of lymphocytes was determined by mixed lymphocyte reaction. IFN-γ level of T cells was detected using ELISA method. MTT assay was employed to test the inhibition rates of tumor specific cytotoxic T lymphocyte on human cervical cancer cell line CaSki and human hepatocarcinoma cell line HepG2.
     Results:A certain amount of DCs with typical morphology and phenotype were harvested from all groups. Antigen-loaded DCs had higher expression of CD1a, HLA-DR, CD40, and CD83, ability of inducing proliferation of allogeneic T cells, secretion of IL-12from DCs, secretion of IFN-γ from T cells, specific antitumor effect of CTL on CaSki cervical cancer cells, and lower secretion of IL-10, than that of DCs without loading antigen, especially in group of DCs activated by HPV16E744-62peptide combined with Poly Ⅰ:C, while CTL had no specific antitumor effect to HepG2.
     Conclusion:It can be induced the specific anti-cervical cancer immunity by cord blood-derived dendritic cells loaded with HPV E744-62peptide in vitro. Poly Ⅰ:C might act as a adjuvant to enhance antitumor effect.
     Part II Study on the effect of anti-cervical cancer immunity in vivo induced by cord blood-derived dendritic cells loaded with HPV E744-62peptide and activated by Poly I:C in vivo.
     Objective:To evaluate the effect of anti-cervical cancer immunity induced by cord blood-derived dendritic cells loaded with HPV E744.62peptide and activated by poly I:C in bearing human cervical cancer nude mice with immune reconstitution of human T cells.
     Methods:Cell immune reconstitution of nude mice was established by tail vein injection of T cells from cervical cancer patients. Then24hours later, those nude mice were injected subcutaneously with CaSki cells to establish bearing human cervical cancer model. And one week later, those nude mice were inoculated with different vaccines by subcutaneously injection, and randomly divided into5groups according to the type of vaccines:group Ctrl (vaccinated with cord blood-derived dendritic cells loaded without any antigen), group E (vaccinated with cord blood-derived dendritic cells loaded with HPV E744-62peptide), group P (vaccinated with cord blood-derived DCs activated by poly Ⅰ:C), group E+P (vaccinated with cord blood-derived DCs activated by HPV E744-62peptide and poly I:C), and group NS (vaccinated with NS, as control group). The second injection was given two weeks interval. Biological behavior of nude mice, tumorigenecity, latent period, tumor volume, and the survival period of nude mice were observed. At35days after nude mice bearing human cervical cancer, the percentage of human CD3+, CD4+, CD8+T cells in mice blood and the level of IFN-γ in mice serum were detected.
     Results:The tumorigenecity was100%and the latent period is5to8days. Human CD3+/CD4+, CD3+/CD8+T cells could detected in all mice blood, indicating that T cell immune reconstitution of nude mice was established successfully. Compared with group NS, others groups could elevate the percentage of human CD3+/CD4+and CD3+/CD8+cells, increase IFN-γ production, inhibit the tumor growth, and prolong survival period of nude mice, especially in group E+P.
     Conclusion:Anti-tumor immune response could be induced by cord blood-derived dendritic cells loaded with HPV E744_62peptide and activated by poly Ⅰ:C in bearing human cervical cancer nude mice model with immune reconstitution of human T cells.
引文
[1]Scheurer ME, Tortolero-Luna G, Adler-Storthz K. Human papillomavirus infection:biology, epidemiology,and prevention [J]. Int J Gynecol Cancer.2005; 15(5):727-746.
    [2]Olsson, S.E, Villa, L.L, Costa, R.L, et al. Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine [J]. Vaccine,2007; 25 4931-4939.
    [3]Radulovic S, Brankovic-Magic M, Malisic E, et al. Therapeutic cancer vaccines in cervical cancer:phase Ⅰ study of Lovaxin-C [J]. J BUON,2009; 14:165-168.
    [4]Roden R, Wu TC. Preventive and therapeutic vaccines for cervical cancer. Expert Rev Vaccines [J].2003; 2(4):495-516.
    [5]Ljubojevic S. The human papillomavirus vaccine [J]. Acta Dermatovenerol,2006; 14:208.
    [6]Sun XW, Kuhn L, Ellerbrock TV, et al. Human papillomavirus infection in women infected with the human immnnodeficiency virus [J]. N Engl J Med,1997; 337:1343-1349.
    [7]Syrjanen S, Naud P, Sarian L, et al. Immunosuppressive cytokine Interleukin-10 (IL-10) is up-regulated in high-grade CIN but not associated with high-risk human papillomavirus (HPV) at baseline, outcomes of HR-HPV infections or incident CIN in the LAMS cohort [J]. Virchows Arch,2009; 455:505-515.
    [8]Bhairavabhotla RK, Verm V, Tongaonkar H, et al. Role of IL-10 in immune suppression in cervical cancer [J]. Indian J Biochem Biophys,2007; 44:350-356.
    [9]Bolpetti A, Silva JS, Villa LL, et al. Interleukin-10 produn ctioby tumor infiltrating macrophages plays a role in human papillomavirus 16 tumor growth [J]. BMC Immunol,2010; 7 (11):27.
    [10]Bekeredjian-Ding I, Schafer M, Hatmann E, et al. Tumour-derived prostaglandin E and transform ing growth factor-beta synergise to inhibit plasmaeytoid dendritic cell -derived interferon-alha [J]. Immunol,2009; 128(3):439-450.
    [11]Ouabed A, Hubert FX, Chabannes D, et al. Diferential control of T regulatory cell proliferation and suppressive activity by mature plasmaeytoid versus conventional spleen dendritic cells [J]. J Immunol,2008; 180(9):5862-5870.
    [12]Rutella S, Danese S, Leone G. Tolerogenic dendritic cells:cytokine modulation comes of age [J]. Blood,2006; 108(5):1435-1440.
    [13]Cools N, Ponsaerts P, Van Tendeloo VFI, et al. Balancing between immunity and tolerance:an interplay between dendritic cells, regulatory T cells, and effector T cells [J]. Journal of Leukocyte Biology,2007; 82(6):1365-1374.
    [14]Baecher C, Anderson DE. Immune regulation in tumor-bearing hosts [J]. CUIT Opin Imnmnol,2006; 18:214.
    [15]Baecher-Allan C, Anderson DE. Immune regulation in tumor-bearing hosts [J]. Curr Opin Immunol,2006; 18:214-219.
    [16]Comes A, Rosso O, Orengo AM, et al. CD25+ regulatory T cell depletion augments immunotherapy of micrometastases by an IL-21-secreting cellular vaccine [J]. J Immunol,2006; 176:1750-1758.
    [17]Chen W, Yan W, Huang L. A simple but effective cancer vaccine consisting of an antigen and a cationic lipid [J]. Cancer Immunol Immunother,2008; 57(4):517-530.
    [18]Piersma SJ, Jordanova ES, van Poelgeest MI, et al. High number ot intraepithelial CD8 tumor-infiltrating lymphocytesis associated with the absence of lymph node metastases in patients with large early-stage cervical cancer [J]. Cancer Res,2007; 67:354.
    [19]Kaufman HL, Disis ML.Immune system versus tumor-shifting the balance in favor of DCs and effective immunity [J]. J Clin Invest,2004; 113(5):664-667.
    [20]Pirtskhalaishvili G, Shurin GV, Gambotto A, et al. Transduction of dendritic cells with Bcl-xL increases their resistance to prostate cancer-induced apoptosis and antitumor efect in mice [J]. J Immunol,2000; 165(4):1956-1964.
    [21]Lou Y, Liu C,Kim GJ, et al.Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigenspecific antitumor immune responses [J]. Immunol,2007; 178(3):1534-1539.
    [22]Bellone S, Pecorelli S, Cannon MJ, et al. Advances in dendritic-cell-based therapeutic vaccines for cervical cancer. Expert Rev Anticancer Ther [J].2007; 7(10): 1473-1486.
    [23]Van Den Ancker W, Van Luijn MM, Westers TM, et al. Recent advances in antigen-loaded dendritic cell-based strategies for treatment of minimal residual disease in acute myeloid leukemia [J]. Immunotherapy,2010; 2(1):69-83.
    [24]Apetoh L, Locher C, Ghiringhelli F, et al. Harnessing dendritic cells in cancer [J]. Semin Immunol,2011; 23(1):42-49.
    [25]Kalinski P, Edington H, Zeh HJ, et al. Dendritic cells in cancer immunotherapy: vaccines or autologous transplants? [J] Immunol Res,2011; 50 (2-3):235-247.
    [26]Evel-Kabler K, Song X T, Aldrich M, et al. SOCS1 rest rict s dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling [J]. J Clin Invest,2006; 116:902-1000.
    [27]Goldman B,DeFrancesco L. The cancer vaccine roller coaster [J]. Nat Biotechnol, 2009; 27(2):129-139.
    [28]Barbuto JA, Ensina LF, Neves AR, et al. Dendritic cell-tumor cell hybrid vaccination for metastatic cancer [J]. Cancer Immunol Immunother,2004; 53(12): 1111-1118.
    [29]Kim JH, Lee Y, Bae YS, et al.Phase Ⅰ/Ⅱ study of immunotherapy using autologous tumor lysate-pulsed dendritic cells in patients with metastatic renal cell carcinoma [J]. Clin Immunol,2007; 125(3):257-267.
    [30]Ledford H. A shot in the arm for cancer vaccines? [J]. Nature,2010; 464 (7292): 1110-1111.
    [31]Weber JS, Vogelzang NJ, Ernstoff MS, et al. Phase 1 Study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors [J]. J Immunother,2011 34(7):556-567.
    [32]Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer:the first FDA-approved therapeutic cancer vaccine [J].Clin Cancer Res,2011; 17(11): 3520-3526.
    [33]Gilboa E. DC-based cancer vaccines [J]. J Clin Invest.2007; 117(5):1195-1203.
    [34]Melief CJ. Cancer immunotherapy by dendritic cells [J]. Immunity,2008; 29(3): 372-383.
    [35]Ilett EJ, Prestwich RJ, Melcher AA. The evolving role of dendritic cells in cancer therapy [J]. Expert Opin Biol Ther,2010; 10(3):369-379.
    [36]Balan S, Kale VP, Limaye LS. A large number of mature and functional dendritic cells can be efficiently generated from umbilical cord blood-derived mononuclear cells by a simple two-step culture method [J]. Transfusion,2010; 50(11): 2413-2423.
    [37]Hsu AK, Kerr BM, Jones KL, et al. RNA loading of leukemic antigens into cord blood-derived dendritic cells for immunotherapy. Biol Blood Marrow Transplant [J], 2006; 12(8):855-867.
    [38]Govan VA. Strategies for human papillomavirus therapeutic vaccines and other therapies based on the E6 and E7 oncogenes [J]. Ann N Y Acad Sci,2005; 1056:328-343
    [39]De Bruijn ML, Schuurhuis DH, Vierboom MP, et al. Immunization with human papillomavirus type 16 (HPV16) oncoprotein-loaded dendritic cells as well as protein in adjuvant induces MHC class Ⅰ-restricted protection to HPV16-induced tumor cells [J]. Cancer Res,1998; 58:724-731.
    [40]Moyle PM, Olive C, Ho MF, et al. Toward the development of prophylactic and therapeutic human papillomavirus type-16 lipopeptide vaccines [J]. J Med Chem, 2007; 50 (19):4721-4727.
    [41]Reinis M, Stepanek I, Simova J, et al. Induction of protective immunity against MHC class Ⅰ-deficient, HPV16-associated tumours with peptide and dendritic cell-based vaccines [J]. Int J Oncol.2010; 36 (3):545-551.
    [42]Indrova M, Reinis M, Bubenik J. Immunogenicity of dendritic cell-based HPV16 E6/E7 peptide vaccines:CTL activation and protective effects [J]. Folia Biol (Praha), 2004; 50 (6):184-193.
    [43]Bona CA, Casares S, Brumeanu TD. Towards development of T-cell vaccine [J]. Immunol Today,1998; 19:126-133.
    [44]Chen R, Alvero AB, Silasi DA, et al. Inflammation, cancer and chemoresistance: taking advantage of the toll-lik e receptor signaling pathway [J]. Am J Reprod Immunol,2007; 57 (2):93-107.
    [45]Cui Z, Qiu F. Synthetic double-stranded RNA poly (I:C) as a potent peptide vaccine adjuvant:therapeutic activity against human cervical cancer in a rodent model [J]. Cancer Immunol Immunother,2006; 55 (10):1267-1279.
    [46]陈虎,唐晓义,张斌.树突状细胞肿瘤疫苗:全球临床试验巡礼[J].中国肿瘤生物治疗杂志,2012;19(1):1-10.
    [47]Ma J, Usui Y, Takeuchi M, et al. Human uveal melanoma cells inhibit the immunostimulatory function of dendritic cells [J].Exp Eye Res,2010; 91 (4):491-499.
    [48]Pereira MI, Paiva A. Dendritic Cells in Cord Blood Transplantation:A Review [J]. Stem Cells Int,2011; 2011:539896.
    [49]Perillo A, Ferrandina G, Pierelli L, et al. Stem cell-based treatments for gynecological solid tumors [J]. Eur Rev Med Pharmacol Sci.2005; 9 (2):93-102.
    [50]Sun L, Kong B, Sheng X, et al. Dendritic cells transduced with Rsf-1/HBXAP gene generate specific cytotoxic T lymphocytes against ovarian cancer in vitro [J]. Biochem Biophys Res Commun,2010; 394 (3):633-638.
    [51]Clark EM, Joshi DS, Grimm AB, et al. Ultrastructural basis of enhanced antitumor cytotoxicity of cord blood-derived CTLs:a comparative analysis with peripheral blood and bone marrow [J]. Int J Oncol,2010; 37 (3):645-653.
    [52]Balan S, Kale VP, Limaye LS.A large number of mature and functional dendritic cells can be efficiently generated from umbilical cord blood-derived mononuclear cells by a simple two-step culture method [J]. Transfusion,2010; 50 (11):2413 2423.
    [53]Cullup H, Hsu AK, Kassianos AJ, et al. CD34+ cord blood DC-induced antitumor lymphoid cells have efficacy in a murine xenograft model of human ALL [J]. J Immunother,2011; 34 (4):362-371.
    [54]Hemando J, Park TW, Kubler K, et al. Vaccination with autologous tumour antigen-pulsed dendritic cells inadvanced gynaecological malignancies:clinical and immunological evatuation of a phase I trial [J].Cancer Immunol Immunother,2002; 51(1):45-52.
    [55]Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured humand endritic cells is maintained by granulocyte/macrophagecolony-stimulating factor plus interleukin 4 and down regulated by tumor necrosis factor alpha [J]. J Exp Med,1994; 179 (4):1109-1118.
    [56]Roth MD, Gitlitz BJ, Kitrtscher SM, et al. Granulocyte macrophage colong-stimulating factor and interleukin 4 enhance the number and antigen-presenting activity of circulating CD14+ and CD83+ cells in cancer patients [J]. Cancer Res, 2000; 60:1934-1941.
    [57]Rakesh M, Austyn JM. Bacterial lipopolysaccharide contamination of commercial collagen preparations may mediate dendritic cell maturation in culture [J]. J Immunol Methods,1998; 214:149-163.
    [58]Covertry B J, Austyn J M, Chryssidis S, et al. Identification and isolation of CD1a positive putative tumor infiltrating dendritic cells in human breast cancer. Adv Exp Med Biol,1997; 417 (1):571-577.
    [59]Rouard H, Leon A, Klonjkowski B, et al. Adenoviral transduction of human clinical grade immature dendritic cells enhances costimulatory molecule expression and T-cell stimulatory capacity. Immunol Meth,2000; 241 (1-2):69-81.
    [60]Levin D, Constant S, Pasqualini T, et al. Role of dendritic cells in the priming of CD4+ Tlymphocytes to peptide antigen in vivo [J]. J Immunol,1993; 151:6742.
    [61]De Vries IJ, Lesterhuis WJ, Scharenborg NM, et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients [J]. Clin Cancer Res,2003; 9 (14):5091-5100.
    [62]De Vries IJ, Krooshoop DJ, Scharenborg NM, et al. Effective Migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation State [J]. Cancer Res,2003; 63 (1):12-17.
    [63]Dhodapkar MV, Bhardwaj N. Active immunization of humans with dendritic cells [J].J Clin Immunol,2000; 20 (3):167-174.
    [64]Simon T, Fontenean JF, Gregoire M. Dendritic cell preparation for immunotherapeutic interventions [J]. immonotherapy,2009; 1 (2):289-302.
    [65]Qiu F, Cui Z. CD4+T helper cell response is required for memory in CD8+T lymphocytes induced by a poly (I:C)-adjuvanted MHC I-restricted peptide epitope [J]. J Immunother,2007; 30 (2):180-189.
    [66]李卫华,唐立.树突细胞上Toll样受体的介导作用[J].中国微生态学杂志.2011;23(11):1037-1039.
    [67]Napolitani G, Rinaldi A, Bertoni F, et al. Selected toll-like receptor agonist combinations synergistically trigger at helper type 1- polarizing program in dendritic cells [J]. Nat Immunol,2005; 6 (8):769-776.
    [68]Warger T, Osterloh P, Rechtsteiner G, et al. Synergistic activation of dendritic cells by conbined Toll-like receptor ligation induces superior CTL responses in vivo [J]. Blood,2006; 108 (2):544-550.
    [69]Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toil—like receptors(TLR) in human]eukocytes:selective expression of TLR3 in dendritic cells [J]. J Immunol,2000; 164 (11):5998-6004.
    [70]Yu YS, Tang ZH, Han JC, et al. Expression of ICAM-1, HLA-DR, and CD80 on peripheral circulating CD1 alpha DCs induced in vivo by IFN-alpha in patients with chronic hepatitis B [J]. World J Gastroenterol,2006; 12 (9):1447-1451.
    [71]Verdi Jk,Mutis RMT,Esendam B,et al.Polyriboin-osinic polyribocy-tidylic acid[poly(I:C)] induces stable maturation of functionally active human dendritic cells [J]. J Immunol,1999; 163 (1):57-61.
    [72]李莉,刘宝瑞.多聚次黄嘌呤胞嘧啶核苷酸诱导下人外周血树突细胞的体外培养和快速成熟[J].医学研究生学报,2007;20(4):353-356.
    [73]Qiu F,Cui Z. CD4+T helper cell response is required for memory in CD8+T lymphocytes induced by a poly (I:C)- adjuvanted MHC I-restricted peptide epitope [J]. J Immunother,2007; 30 (2):180-189.
    [74]Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 [J]. Nature,2001; 413 (6857):732-738.
    [75]Kubo T, Hatton RD, Oliver J, et al. Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells [J]. J Immunol,2004; 173:7249-7258.
    [76]Netea MG, Van der Meer JWM, Sutmuller RP, et al. From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias [J]. Antimicrob Agents Chemother,2005; 49:3991-3996.
    [77]Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity [J]. Nat Rev Immunol,2003; 3 (2):133-146.
    [78]Mazzolini G, Alfaro C, Sangro B, et al. Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with netastatic gastrointestinal carcinomas [J]. J Clin Oneol,2005; 23 (5):999-1010.
    [79]Kalady MF, Onaitis MW, Emani S, et al. Sequential delivery of manuration stimuli inerease human dendritic cell IL-12 production and enhances tumor antigen-specific immunogenicity [J]. J Surg Res,2004; 116 (1):24-31.
    [80]Re F, Strominger JL. IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of TH1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells [J]. J Immunol,2004; 173 (12):7548-7555.
    [81]Banchereau J, Briere F, Caux C,et al.Immunobiology of dendritic cells [J].Annu Rev Immunol,2000; 18:767-811.
    [82]Valenzuela JO, Hammerbeck CD, MescherMF. Cutting edge:Bcl-3 up-regtulation by signal 3 cytokine (IL-12) prolongs survival of antigen-activated CD8+T cells [J]. J Immunol,2005; 174 (2):600-604.
    [83]Carl JW Jr, Liu JQ, Joshi PS, et al. Autoreactive T cell escape clonal deletion in the thymus by a CD24-dependent pathway [J]. Immnunol,2008; 181 (1):320-328.
    [84]Song H, Shahverdi K, Huso DL, et al. An immunotolerant HER-2/neu transgenic mouse model of metastatic breast cancer [J]. Clin Cancer Res,2008; 14 (19):6116-6124.
    [85]Theodoro A, Barreto CB, Gusmao PM, et al. Influence of first-wave derived T lymphocytes in the long term functional reconstitution of allogeneie T cell deficient hosts [J]. Immunobiology,2003; 207 (3):207-215.
    [86]马云龙,郑铮,郭华,等.树突状细胞疫苗联合胸腺肤a1对人源化免疫重建裸鼠结肠癌生长的抑制效应[J].中华实验外科杂志,2007;24(11):1357-1359.
    [87]李倩如,杜英,赵航,等.MG患者胸腺移植BALB/cnu/nu裸鼠模型的建立及其功能研究[J].中国免疫学杂志,2009;3:356-359.
    [88]Sandhu J, Shpitz B, Gallinger S, et al. Human primary immune response in SCID mice engrafted with human peripheral blood lymphocytes [J]. J Immanol,1994; 152:3806-3813.
    [89]Pirenne J, Medot M, Baaafarano R, et al. Does endotoxic accelerate rejection in a cardiac allograft model? [J] Transplant Proc,1996; 28:2463-2464.
    [90]Morse MA, Coleman RE, Akabani G, et al. Migration of human dendritic cells after injection in patients with metastatic malignancies [J]. Cancer Res,1999; 59 (1): 56-58.
    [91]Ridolfi R, Riccobon A, Galassi R, et al. Evaluation of in vivo labeled dendritic cell migration in cancer patients [J]. J Transl Med,2004; 2 (1):27.
    [92]Fong L, Brockstedt D, Benike C, et al. Dendritic cells injected via different routes induce immurity in cancer patients [J]. J Immunol,2001; 166 (6):4254-4259.
    [93]Kyte JA, Mu L, Aamdal S, et al. Phase Ⅰ/Ⅱ trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA [J]. Cancer Gene Ther,2006; 13 (10):905-918.
    [94]Lesterhuis WJ, De Vries IJ, Schreibelt G, et al. Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients [J]. Clin Cancer Res,2011; 17 (17):5725-5735.
    [95]Verdijk P, Aarntzen EH, Lesterhuis WJ, et al. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients [J]. Clin Cancer Res,2009; 15 (7):2531-2540.
    [1]Thornton CA, Morgan G. Innate and adaptive immune pathways to tolerance [J]. Nestle Nutr Workshop Ser Pediatr Program,2009; 64:45-57.
    [2]Steinman RM, Cohn ZA. Identification of a novel cell type in peripher-al lymphoid organs of mice:Morphology,quantification,tissue distri-bution [J]. J Exp Med,1973; 137:1142-1162.
    [3]Shortman K, Liu YJ.Mouse and human dendritic cell subtypes [J]. Nature Reviews Immunology,2002; 2 (3):151-161.
    [4]Dudziak D, Kamphorst AO, Heidkamp GF, et al. Differential antigen processing by dendriticn cell subsets in vivo [J]. Science,2007; 315 (5808):107-111.
    [5]LiuYJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity [J]. Cell,2001; 106 (3):259-262.
    [6]Sallusto F, Lanzavecchia A. Efficient presentation of soluble-antigen by cultured human dendritic cells is maintained by granulocyte-macrophage colony-stimulating factor plus interleukin-4 and down-regulated by tumor-necrosis-factor-alpha [J]. Jounal of experimental Medicine,1994; 179 (4):1109-1118.
    [7]Leon B, Lopez-Bravo M, Ardavin C. Monoeyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishlnania [J]. Immunity,2007; 26 (4):519-531.
    [8]Liu YJ. IPC:Professional type 1 interferon-producing cells and plasmaeytoid dendritic ceel precursors [J]. Annual Review of Immunology,2005; 23:275-306.
    [9]Fukui H, Mitsui S, Harima N, et al. Novel functions of herbal medicines in dendritic cells:role of amomi semen in tumor immunity [J]. Microbiol Immunol, 2007; 51 (11):1121-1133.
    [10]Baumgart DC, Thomas S, Przesdzing I, et al. Exaggerated inflam-matory response of primary human myeloid dendritic cells to lipopo-lysaccharide in patients with inflammatory bowel disease [J]. Clin Exp Immunol,2009; 157 (3):423-436.
    [11]Lim TS, Mortellaro A, Lim CT, et al. Mechanical interactions be-tween dendritic cells and T cells correlate with T cell responsive-ness [J]. J Immunol,2011; 187 (1): 258-265.
    [12]Girardi M. Immuno surveillance and immuno regulation by gammadelta T cells [J]. J Invest Dermatol,2006; 126 (1):25-31.
    [13]Bazan JF, Baeon KB, Hardilnan G, et al. A new class of membrane-boundchemokine with a CX3CI motif [J]. Nature,1997; 385 (6617):640-644.
    [14]Kadowaki N. Immunotherapy exploiting the versatility of dendritic cells [J].Ther Apher Dial,2003; 7 (3):312-317.
    [15]Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells [J]. Annu Rev Immunol,2000; 18:767-811.
    [16]Mahnke K, Qian Y, Knop J, et al. Induction of CD4+/CD25+regulatory T cells by targeting of antigens to immature dendritic cells [J]. Blood,2003; 101 (12):4862-4869.
    [17]Cools N, Van Tendeloo VF, et al. Immuno suppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4 regulatory T cells [J]. J Cell Mol Med,2008; 12 (2):690-700.
    [18]Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spfitzle/Toll/cactus controls the potent antifungal response in Drosophila adults [J]. Cell,1996; 86 (6):973-983.
    [19]Schreibelt G, Tel J, Sliepen KH, et al. Toll-like receptor expression and function in human dendritic cell subsets:implications for dendritic cell based anticancer immunotherapy [J]. Cancer Immunol Immunother,2010; 59 (10):1573-1582.
    [20]Takeuehi O, Hoshino K, Kawai T, et al. Differential roles of TLR 2 and TLR 4 in recognitionofgram-negative and gram-positive baeterial cell wall components [J]. Immunity,1999; 11 (4):443-451.
    [21]Saito T, Gale M. Principles of intracellular viral recognition [J]. Current Opinion in Immunology,2007; 19 (1):17-23.
    [22}Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3 [J]. Nature,2001; 413 (6857):732-738.
    [23]Heil F, Hemmi H, Hoehrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8 [J]. Science,2004; 303 (5663):1526-1529.
    [24]Hemmi H, Takeuehi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA [J]. Nature,2000; 408 (6813):740-745.
    [25]Steinman RM, Hemmi H. Dendritic cells:translating innate to adaptive immunity [J]. Curr Top Microbiol Immunol,2006; 311:17-58.
    [26]Kawai T, Akira S. TLR signaling [J]. Semin Immunol,2007; 19 (1):24-32.
    [27]Takeda K, Akira S. Toll-like receptors [J]. Curr Protoc Immunol,2007; Chapter 14:1412.
    [28]Langlet C, Springael C, Johnson J, et al. PKC-alpha controls MyD88-dependent TLR/IL-1R signal and cytokine production in mouse and human dendritic cells. Eur J Immunol,2010; 40 (2):505-515.
    [29]Liu YC, Gray RC, Hardy GA, et al. CpG-B oligodeoxynucleotides inhibit TLR-dependent and -independent induction of type Ⅰ IFN in dendriticcells. J Immunol, 2010; 184 (7):3367-3376.
    [30]Cotter CR, Nguyen ML, Yount JS, et al. The virion host shut-off (vhs) protein blocks a TLR -independent pathway of herpes simplex virus type I recognition in human and mouse dendritic cells. PLoS One,2010; 5(2):e8684.
    [31]Chen S, Sorrentino R, Shimada, et al. Chlamydia pneumoniae-induced foam cell formation requires MyD88- dependent and -independent signaling and is reciprocally modulated by liver X receptor activation [J]. J Immunol,2008; 181 (10):7186-7193.
    [32]Yu YS, Tang ZH, Han JC, et al. Expression of ICAM-1, HLA-DR, and CD80 on peripheral circulating CD1 alpha DCs induced in vivo by IFN- alpha in patients with chronic hepatitis B [J]. World J Gastroenterol,2006; 12(9):1447-1451.
    [33]Randolph GJ, Jakubzick C, Qu CF. Antigen presentation by monocytes and monocyte-derived cells [J]. Current Opinion in Immunology,2008; 20(1):52-60.
    [34]Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toil-like receptors (TLR) in human leukocytes:selective expression of TLR 3 in dendritic cells [J]. J Immunol,2000; 164 (11):5998-6004.
    [35]Sehulz O, Diebold SS, Chen M, et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells [J]. Nature,2005; 433 (7028):887-892.
    [36]Lee HK, Dunzendorfer S, Soldau K, et al. Double-stranded RNA- mediated TLR3 activation is enhanced by CD14 [J]. Immunity,2006; 24 (2):153-163.
    [37]Choe J, Kelker MS, Wilson IA. Crystal structure of humanToll like receptor 3 (TLR3) ectodomain [J]. Seience,2005; 309 (5734):581-585.
    [38]Sakaguchi S, Negishi H, Asagiri M, et al. Essential role of 1RF-3 in lipopoly saccharide-induced interferon- beta gene expression and endotoxin shock [J]. Biochemical and BioPhysical Researeh Communications,2003; 306 (4):860-866.
    [39]Ngoi SM, Tovey MG, Vella AT. Poly (I:C) to the TLR 3 independent pathway boosts effector CD8+T cell deffentiation through IFN- alpha/beta. J Immunol,2008; 181 (11):7670-7680.
    [40]Iwasaki A, Medzhitov R. Toll- like receptor control of the adaptive immune responses [J]. Nat Immunol,2004; 5 (10):987-995.
    [41]Kanzler H, Barrat FJ, Hessel EM, et al. Therapeutie targeting of innate immunity with Toll- like receptor agonists and antagonists [J]. Nat Med,2007; 13 (5):552-559.
    [42]李卫华,唐立.树突细胞上Toll样受体的介导作用.中国微生态学杂志[J],2011;23(11):1037-1039
    [43]Sousa CR. Toll- like receptors and dendritic cells:for whom the bug tolls [J]. Semin Immunol,2004; 16:27-34.
    [44]Golden JM, Lacasse CJ, Simovad V, et al. Differential mediator production by dendritic cells upon toll-like receptor stimulation does not impact T cell cytokine expression [J]. Immunol Lett,2008; 118 (1):30-35.
    [45]Liu A, Takahashi M, Narita M, et al. Generation of functional and mature dendrtic cells from cord blood and bone marrow CD34+cells by two-step culture combined with calcium ionophone treatment. J Immunol Methods,2002,261(1/2):49-63.
    [46]Rouas R, LewaUe P, Ei Ouriaqhli F, et al. Poly(I:C) used for human dendritic cell maturation preserves their ability to secondarily secrete bioactive IL-12. Int Immunol,2004,16(5):767-773.
    [47]Verdijk RM, Mutis T, Esendam B, et al. Polyriboin-osinic polyribocy-tidylicacid (poly (I:C)) induces stable maturation of functionally active human dendritic cells [J]. J Immunol,1999; 63 (1):57-61.
    [48]李莉,刘宝瑞.多聚次黄嘌呤胞嘧啶核苷酸诱导下人外周血树突细胞的体外培养和快速成熟[J].医学研究生学报,2007;20(4):353-356.
    [49]Covertry BJ, Austyn JM, Chryssidis S, et al. Identification and isolation of CD1a positive putative tumor infiltrating dendritic cells in human breast cancer [J]. Adv Exp Med Biol,1997; 417 (1):571-577.
    [50]Gautier G, Humbert M, Deauvieau F, et al. A type Ⅰ interferon autocrine-paraerlne loop is involved in Toll- like receptor- induced interleukin-12 p70 secretion by dendritic cells [J]. J Exp Med,2005; 201 (9):1435-1446.
    [51]Re F, Strominger JL. IL-10 released by concomitant TLR 2 stimulation blocks the induction of a subset of TH1 cytokines that are specifically induced by TLR 4 or TLR 3 in human dendritic cells [J]. J Immunol,2004; 173 (12):7548-7555.
    [52]Apetoh L, Locher C, Ghiringhelli F, et al. Harnessing dendritic cells in cancer [J]. Semin Immunol,2011; 23 (1):42-49.
    [53]Ma J, Usui Y, Takeuchi M, et al. Human uveal melanoma cells inhibit the immunostimulatory function of dendritic cells [J].Exp Eye Res,2010; 91 (4):491-499.
    [54]Lou Y, Liu C, Kim GJ, et al. Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigenspecific antitumor immune responses [J]. Immunol,2007; 178 (3):1534-1539.
    [55]Idoyaga J, Moreno J, Bonifaz L. Tumor cells prevent mouse dendritic cell maturation induced by TLR ligands [J]. Cancer Immunol Immunother,2007; 56 (8): 1237-1250.
    [56]Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells [J]. Nat Med,1996; 2 (1):52-58.
    [57]Barbuto JA, Ensina LF, Neves AR, et al. Dendritic cell-tumor cell hybrid vaccination for metastatic cancer [J]. Cancer Immunol Immunother,2004; 53 (12): 1111-1118.
    [58]Goldman B, DeFrancesco L.The cancer vaccine roller coaster [J]. Nat Biotechnol, 2009; 27 (2):129-139.
    [59]Ledford H. A shot in the arm for cancer vaccines? [J]. Nature,2010; 464 (7292): 1110-1111.
    [60]Kim JH, Lee Y, Bae YS, et al. Phase Ⅰ/Ⅱ study of immunotherapy using autologous tumor lysate-pulsed dendritic cells in patients with metastatic renal cell carcinoma [J]. Clin Immunol,2007; 125 (3):257-267.
    [61]Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer:the first FDA-approved therapeutic cancer vaccine [J].Clin Cancer Res,2011; 17 (11): 3520-3526.
    [62]Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer [J]. N Engl J Med,2010; 363 (5):411-422.
    [63]陈虎,唐晓义,张斌.树突状细胞肿瘤疫苗:全球临床试验巡礼[J].中国肿瘤生物治疗杂志,2012;19(1):1-10.
    [64]Jiang Q, Wei H, Tian Z. Poly 1:C enhances cycloheximide-induced apoptosis of tumor cells through TLR 3 pathway [J]. BMCCaneer,2008; 8:12.
    [65]Juang SH, Wei SJ, Hung YM, et al. IFN-beta induces caspase-mediated apoptosis by disrupting;nitochondria in human advanced stage colon cancer cell lines [J]. J Interferon Cytokine Res,2004; 24 (4):231-243.
    [66]Morrison BH, Tang Z, Jacobs BS, et al. Apo2L/TRAIL induction and nuclear translocation of inositol hexakisphosphate kinase 2 during IFN-beta- induced apoptosis in ovarian carcinoma [J]. Biochem J,2005; 385 (Pt2):595-603.
    [67]Takaoka A, Hayakawa S, Yanai H, et al. Integration of interferon- alpha/beta signaling to P53 responses in tumour suppression and antiviral defence [J]. Nature, 2003; 424 (6948):516-523.
    [68]Napolitani G, Rinaldi A, Bertoni F, et al. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells [J]. Nat immunol,2005; 6 (8):769-776.
    [69]Qiu F, Cui Z. CD4+T helper cell response is required for memory in CD8+T lymphocytes induced by a poly (I:C)-adjuvanted MHC I- restricted peptide epitope [J]. J Immunother,2007; 30 (2):180-189.
    [70]陈赛娟,王煌Toll样受体和树突状细胞:免疫激活传感器[J].自然杂志,2033(6):315-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700