用户名: 密码: 验证码:
特殊形貌二氧化钛基微纳米材料的制备及光学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为最有应用前景的半导体材料之一,二氧化钛在太阳能电池、光催化降解污染物、裂解水制氢等领域引起了研究人员的浓厚兴趣。在微纳米尺度范围内,二氧化钛可以呈现出多种微观形貌,如纳米颗粒,纳米线,纳米棒,纳米管,纳米带,微纳米球等;其晶体结构也具有多样性,如无定形态、金红石型、锐钛矿型、混晶型等。众多研究表明,二氧化钛基微纳米材料的微观形貌和晶体结构对其光学性能如紫外-可见光的吸收能力、光催化能力等有重大影响,开发具有特殊微观形貌的二氧化钛基微纳米材料,研究其制备工艺、形成机制及光学性能对推动新能源开发和环境治理、节能降耗等有积极的现实意义。
     为了探究二氧化钛基材料在微纳米尺度范围内的形貌演变,制备适用于新能源和环境保护领域、具有可见光响应的高性能功能材料,研究二氧化钛基微纳米材料的复杂形貌与其光学性能的关系,本文采用成熟的水热/溶剂热方法制备了一系列二氧化钛基微纳米材料,对其微观形貌、晶体结构、光学吸收和光催化性能等进行了研究,并借助计算机模拟软件Materials Studio的CASTEP模块对相关材料进行了热力学计算,对二氧化钛基功能材料的晶体生长机制做出了进一步阐述。主要研究内容及成果如下:
     (1)通过改进传统的二氧化钛纳米线、纳米管水热法制备的反应介质,开发出了一种二氧化钛介孔纳米带的溶剂热制备工艺。将无水乙醇与10mol/L的氢氧化钠溶液进行不同体积比的混合,以此为反应介质可以制备具有不同形貌的二氧化钛纳米带结构;当二者体积比为1:1时,纳米带具有规整、均一的几何形貌。将所获得的纳米带材料用pH<3的盐酸溶液浸泡24小时并经高温煅烧后可以在纳米带上引入均匀分布的介孔结构,介孔的尺寸为5~7nm,数目随着pH的减小而增加。实验结果表明,反应压力对于二氧化钛纳米材料的形貌有重要影响,压力越大越有利于纳米带形貌的形成。该纳米带制备工艺通过限制片层状钛酸盐的卷曲进一步增大了二氧化钛的比表面积,具有氢氧化钠的用量少,水热反应时间短,制备成本和能耗低的特点。
     将所获得的二氧化钛介孔纳米带材料与Li~+离子复合,我们研究了该复合材料对孔雀石绿的光催化降解效果。实验结果表明,Li~+离子与二氧化钛介孔纳米带的复合未明显改变纳米带的形貌和晶相组成,但会通过置换Ti~(4+)离子破坏纳米带的晶体结构,同时提高复合材料的电负性,对其光催化降解性能有正反双重作用。
     (2)相比于一维的纳米线、纳米管、纳米带等结构,三维二氧化钛微纳米结构更加复杂,其制备工艺、晶体生长机理和光学性能目前缺乏深入的研究。在强酸性条件下,以硫酸钾为形貌控制剂,通过缓慢氧化氯化亚钛制备了具有复杂形貌、可响应整个可见光区的二氧化钛混晶材料。通过控制硫酸钾的浓度可实现对二氧化钛晶体生长方向和生长速率的控制,一步合成具有典型的放射形方柱状结构的金红石型二氧化钛、八面体结构的锐钛矿型二氧化钛,以及二者共存的混晶结构。所得样品的微观形貌和晶粒尺寸对样品的光学吸收性能有明显影响,这些对可见光有强烈吸收的二氧化钛材料在太阳能电池、光催化等领域有重要的应用价值。
     (3)半导体耦合是扩展二氧化钛光谱响应区间的有效手段,三维二氧化钛基微纳米材料的半导体耦合方法目前鲜有研究。以刺棒状硫化镉为基础,通过水热法一步制备了三维硫化镉/钛酸盐复合材料,该复合材料由玫瑰花状结构和纳米线结构组成。实验表明,主要原料P25的用量对于玫瑰花状微纳米结构的形成至关重要:足量P25可保证二氧化钛在参与化学反应时能有效与S2-离子竞争,抑制硫化镉的自由生长,并以其为成核和生长的基点,最终形成玫瑰花状纳米结构;当P25用量不足时,样品最终形貌则呈现多样性,如颗粒状、不规则柱状及纤维状等。S~(2-)离子的形成和释放速度从动力学上决定了硫化镉成核和生长的速度,对最终反应产物的形貌有决定性作用。从动力学角度寻求材料制备过程中可能的速率控制步骤是制备具有特定形貌、特定性能纳米材料的有效途径。
     (4)为了探究二氧化钛混晶的晶体生长机制,通过计算机模拟软件MaterialsStudio的CASTEP模块对金红石型二氧化钛(110)面吸附硫酸进行了第一性原理计算分析,从热力学角度确定了主要的吸附模式。计算结果表明,在强酸性条件下硫酸钾对二氧化钛生长基元[TiO_6]八面体的螯合作用主要是通过H+HSO_4分子片段来实现的,其次是以H_2SO_4分子形式,而之前研究者提出的硫酸根螯合二氧化钛的机制是不正确的。该螯合作用改变了[TiO_6]八面体彼此之间结合的方式和结合速率,形成了锐钛矿型二氧化钛和金红石型二氧化钛共存的特殊结构。
As one of the most promising semiconductor materials, titanium dioxide hasaroused keen interest of researchers in the fields of solar cells, photocatalyticdegradation of pollutants and hydrogen production by water-splitting. In the microand nano scales, titanium dioxide shows a variety of morphology (such asnanoparticles, nanowires, nanorods, nanotubes, micro-nano-balls, etc.) and crystalstructure (such as amorphous, rutile, anatase, mixed crystal type). Many studies haveindicated that the microscopic morphologies and crystal structures of titanium dioxidebased micro-nano material have significant impacts on the UV-Vis light absorptionand photocatalytic properties; however, there are very limited researches investigatingthe morphology diversity, formation mechanism or the optical properties of titaniumdioxide based micro-nano material with complex morphologies. Such researches havepositive practical significance in promoting the development of new energy andenvironmental governance.
     In this thesis, a series of titanium dioxide based micro-nano materials areprepared by hydrothermal or solvothermal method, and the morphology, crystalstructure, optical absorption and photocatalytic properties are studied exhaustively.The results are helpful to analyse the influencing factors of morphology evolution oftitanium dioxide within the range of the micro-nano scale, to synthetize titaniumdioxide with good visible light response for new energy and environmental protectionapplications, and to further study the relationship between the complex morphology oftitanium dioxide and its performance. The thermodynamic calculations by CASTEPmodule from Materials Studio are used to futher elaborate the mechanism of crystalgrowth of titanium dioxide. The main study contents and results of this paper aredescribed in detail as follows:
     (1)By improving the traditional hydrothermal method for the synthesis oftitanium dioxide nanowires or nanotubes, a solvothermal process for the synthesis oftitanium dioxide mesoporous nanobelts is developed. Different volume ratio mixturesof ethanol and10mol/L sodium hydroxide solution are used as the reaction mediumto prepare titanium dioxide nanobelts with different morphologies, when the volumeratio is1:1, the nanobelts with structured and uniform geometric morphology isobtained. When soaked in hydrochloric acid solution (pH <3) for24hours andcalcined at400℃for2hours, the titanium dioxide nanobelts will change intomesoporous structure, the size of the pore is about5-7nm and the number of thesepores has a slight increase when pH decreases. The experimental results show that thereaction pressure has great impact on the morphology of the titanium dioxide: thegreater the pressure, it is the more beneficial to the formation of nanobelts. Comparedwith other systhesis methods for nanobelt, the solvothermal process can significantlyreduce the amount of sodium hydroxide and hydrothermal reaction time, and thuslower costs and energy consumption. The specific surface area of nano titaniumdioxide is further improved by maintaining the lamellar Titanate in this solvothermalprocess.
     The visible light photocatalytic activity of mesoporous Li-doped titaniumdioxide nanobelts is studied. The doping of Li~+ion does not change the crystallinephase but decompose the lattice of titanium dioxide nanobelts and enhance theelectronegativity by replacing Ti~(4+)ion. The lattice breaking and the electronegativityhave important but contradictory influences on the photocatalytic activity of themesoporous Li-doped TiO_2nanobelts.
     (2) Compared to the one-dimensional nanowire, nanotube and nanobeltstructures, three-dimensional titanium dioxide micro-nano structures are morecomplex, while their synthesis technology, crystal growth mechanism or opticalproperties are lack of in-depth research.Titanium dioxide mixed crystals, havingcomplex morphologies and responsing to the whole visible region, are prepared under strong acidic conditions by hydrothermal method. The potassium sulfate is believed tochelate with the octahedral growth unit [TiO_6], which will change the crystal growthdirection and the growth rate of titanium dioxide. As a result, morphology control canbe achieved through the concentration control of potassium sulfate. Rutile with atypical radial prismatic structure, anatase with an octahedral structure, as well asrutile-anatase coexistence structures is synthesized. Both the morphology and grainsize of the samples have significant effects on the optical absorption properties oftitanium dioxide. These materials with visible light response have importantapplications prospects in solar cells, photocatalysis and other fields.
     (3) The semiconductor coupling is an effective means to extend the visible lightresponse range; however, there are few researches involving the coupling methods forthere-dimensional titanium dioxide based mirco-nano materials. Based on the thornyrod-like CdS, CdS/titanate composite nanostructure, consisting of nanoroses andnanowires, is prepared by hydrothermal method. The amount of P25is vital for theformation of rose-like nanostructure: a sufficient amount of titanium dioxide caneffectively compete with S2-ion in all related reactions, inhibit the free growth of CdSand make the transition from nanoparticle to nanoroses; inadequate amount oftitanium dioxide, however, gaves rise to diverse morphologies, such as particles,irregular columns and fibres. The formation and release rate of S~(2-)ion determines thenucleation and growth rate of CdS dynamically, which has a decisive role on themorphology of the final products. From the kinetic point of view, the rate controllingstep of chemical reactions is the key to prepare nanomaterials with specificmorphologies and properties.
     (4) The interaction of sulfuric acid with rutile titanium dioxide (110) surfacefrom density functional theory calculations is carried on the CASTEP module ofMaterials Studio to determine the major adsorption mode from a thermodynamicpoint of view. The results show that, under strong acidic conditions, the chelationeffect between the potassium sulfate and [TiO_6] is mainly achieved by H+HSO_4 molecular fragment, partly by H_2SO_4molecular, but unlikely by2H+SO_4; the resultsfurther elaborate the crystal growth mechanism of titanium dioxide mixed crystalsfrom the energy point of view.
引文
[1]中国可再生能源发展项目办公室.中国光伏产业发展研究报告.2006.
    [2] Matthews RW. Photooxidative degradation of coloured organics in water using supported catalystsTiO2on sand. Water Research,1991,25(10):1169-1176.
    [3] Kotani Y, Matsuda A, Tatsumisago M, Minami T, Umezawa T, Kogure T. Formation of anatasenanocrystals in sol-gel derived TiO2-SiO2thin films with hot water treatment. Journal of Sol-GelScience and Technology,2000,19(1):585-588.
    [4]颜鲁婷,司文捷,刘莲云,戴春爱,郑妍鹏.低温制备二氧化钛纳米薄膜研究进展.材料工程,2006,1:495-495.
    [5] Daoud WA, Xin JH. Synthesis of single-phase anatase nanocrystallites at near room temperatures.Chemical Communications,2005(16):2110-2112.
    [6] O'regan B, Gr tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films. Nature,1991,353(6346):737-740.
    [7] Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N,Gr tzel M. Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium (II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titaniumdioxide electrodes. Journal of the American Chemical Society,1993,115(14):6382-6390.
    [8] Zhao G, Kozuka H, Lin H, Takahashi M, Yoko T. Preparation and photoelectrochemical propertiesof Ti1-xVxO2solid solution thin film photoelectrodes with gradient bandgap. Thin Solid Films,1999,340(1-2):125-131.
    [9] Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3particles assensitizers for various nanoporous wide-bandgap semiconductors. The Journal of Physical Chemistry,1994,98(12):3183-3188.
    [10] Deng H, Zhang H, Lu Z. Dye-sensitized anatase titanium dioxide nanocrystalline with (001)preferred orientation induced by Langmuir-Blodgett monolayer. Chemical Physics Letters,2002,363(5-6):509-514.
    [11] Wu J, Lin J, Yin S, Sato T. Synthesis and photocatalytic properties of layered HNbWO6/(Pt, Cd0.8Zn0.2S) nanocomposites. Journal of Materials Chemistry,2001,11(12):3343-3347.
    [12] Wu J, Uchida S, Fujishiro Y, Yin S, Sato T. Synthesis and photocatalytic properties ofHNbWO6/TiO2and HNbWO6/Fe2O3nanocomposites. Journal of Photochemistry and Photobiology A:Chemistry,1999,128(1-3):129-133.
    [13] Meyer GJ. Efficient light-to-electrical energy conversion: nanocrystalline TiO2films modifiedwith inorganic sensitizers. Journal of Chemical Education,1997,74(6):652-656.
    [14]钱新明,宋庆,白玉白,李铁津,汤心颐,董绍俊,汪尔康. CdS敏化对TiO2纳米薄膜电极光生电荷转移特性的影响.高等学校化学学报,2000,21(2):295-297.
    [15] Wijayantha K, Peter LM, Otley L. Fabrication of CdS quantum dot sensitized solar cells via apressing route. Solar Energy Materials and Solar Cells,2004,83(4):363-369.
    [16]张含平,林原,周晓文,王正平,张宝宏. CdSe敏化TiO2纳米晶多孔膜电极的制备及其光电性能研究.现代化工,2007,26(11):39-41.
    [17] Shen Q, Sato T, Hashimoto M, Chen C, Toyoda T. Photoacoustic and photoelectrochemicalcharacterization of CdSe-sensitized TiO2electrodes composed of nanotubes and nanowires. ThinSolid Films,2006,499(1):299-305.
    [18] Nozik A. Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures,2002,14(1):115-120.
    [19] Nanu M, Schoonman J, Goossens A. Inorganic nanocomposites of n-and p-type semiconductors:A new type of three-dimensional solar cell. Advanced Materials,2004,16(5):453-456.
    [20] Nanu M, Schoonman J, Goossens A. Solar-energy conversion in TiO2/CuInS2nanocomposites.Advanced Functional Materials,2005,15(1):95-100.
    [21] O'Hayre R, Nanu M, Schoonman J, Goossens A, Wang Q, Gr tzel M. The influence of TiO2particle size in TiO2/CuInS2nanocomposite solar cells. Advanced Functional Materials,2006,16(12):1566-1576.
    [22] Nanu M, Reijnen L, Meester B, Schoonman J, Goossens A. CuInS2thin films deposited by ALD.Chemical Vapor Deposition,2004,10(1):45-49.
    [23] Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38.
    [24] Khan SU, Al-Shahry M, Ingler Jr WB. Efficient photochemical water splitting by a chemicallymodified n-TiO2. Science,2002,297(5590):2243-2245.
    [25]孙奉玉,吴鸣,李文钊,李新勇,顾婉贞,王复东.二氧化钛表面光学特性与光催化活性的关系.催化学报,1998,19(2):121-124.
    [26]张晓杰,储国海,李树本,吕功煊.以葡萄糖为电子给体光催化还原水制氢的研究.分子催化,2007,21(3):239-244.
    [27]李越湘,吕功煊,李树本,俞飞.污染物甲醛为电子给体Pt/TiO2光催化制氢.分子催化,2002,16(4):241-246.
    [28]黄翠英,张澜萃,李晓辉.稀土离子掺杂对纳米TiO2光催化制氢活性的影响.催化学报,2008,29(2):163-163.
    [29]钱丽苹,刘奎仁,魏绪钧.半导体光解水制氢的研究.材料与冶金学报,2003,2(1):l191-1197.
    [30] Tatsuma T, Saitoh S, Ohko Y, Fujishima A. TiO2-WO3photoelectrochemical anticorrosion systemwith an energy storage ability. Chemistry of Materials,2001,13(9):2838-2842.
    [31] Zhang Z, MacMullen J, Dhakal HN, Radulovic J, Herodotou C, Totomis M, Bennett N.Biofouling resistance of titanium dioxide and zinc oxide nanoparticulate silane/siloxane exterior facadetreatments. Building and Environment,2013,59:47-55.
    [32] Fujii H, Ohtaki M, Eguchi K, Arai H. Photocatalytic activities of CdS crystallites embedded inTiO2gel as a stable semiconducting matrix. Journal of Materials Science Letters,1997,16(13):1086-1088.
    [33] Henglein A. Small-particle research: physicochemical properties of extremely small colloidalmetal and semiconductor particles. Chemical Reviews,1989,89(8):1861-1873.
    [34] Liu Z, Pan K, Wang M, LüQ, Bai Y, Li T. Influence of the mixed ratio on the photocurrent of theTiO2/SnO2composite photoelectrodes sensitized by mercurochrome. Journal of Photochemistry andPhotobiology A: Chemistry,2003,157(1):39-46.
    [35] Tai WP. Photoelectrochemical properties of ruthenium dye-sensitized nanocrystalline SnO2: TiO2solar cells. Solar Energy Materials and Solar Cells,2003,76(1):65-73.
    [36] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-dopedtitanium oxides. Science,2001,293(5528):269-271.
    [37] Diwald O, Thompson TL, Zubkov T, Goralski EG, Walck SD, Yates Jr JT. Photochemical activityof nitrogen-doped rutile TiO2(110) in visible light. The Journal of Physical Chemistry B,2004,108(19):6004-6008.
    [38] Batzill M, Morales EH, Diebold U. Influence of nitrogen doping on the defect formation andsurface properties of TiO2rutile and anatase. Physical Review Letters,2006,96(2):26103-26106.
    [39] Arnal P, Corriu RJP, Leclercq D, Mutin PH, Vioux A. Preparation of anatase, brookite and rutileat low temperature by non-hydrolytic sol–gel methods. Journal of Materials Chemistry,1996,6(12):1925-1932.
    [40] Arnal P, Corriu RJP, Leclercq D, Mutin PH, Vioux A. A solution chemistry study ofnonhydrolytic sol-gel routes to titania. Chemistry of Materials,1997,9(3):694-698.
    [41] Hay JN, Raval HM. Preparation of inorganic oxides via a non-hydrolytic sol-gel route. Journal ofSol-Gel Science and Technology,1998,13(1):109-112.
    [42] Hay JN, Raval HM. Synthesis of organic-inorganic hybrids via the non-hydrolytic sol-gel process.Chemistry of Materials,2001,13(10):3396-3403.
    [43] Lafond V, Mutin P, Vioux A. Control of the texture of titania-silica mixed oxides prepared bynonhydrolytic sol-gel. Chemistry of Materials,2004,16(25):5380-5386.
    [44] Niederberger M, Bartl MH, Stucky GD. Benzyl alcohol and titanium tetrachloride A versatilereaction system for the nonaqueous and low-temperature preparation of crystalline and luminescenttitania nanoparticles. Chemistry of Materials,2002,14(10):4364-4370.
    [45] Parala H, Devi A, Bhakta R, Fischer RA. Synthesis of nano-scale TiO2particles by anonhydrolytic approach. Journal of Materials Chemistry,2002,12(6):1625-1627.
    [46] Tang J, Redl F, Zhu Y, Siegrist T, Brus LE, Steigerwald ML. An organometallic synthesis of TiO2nanoparticles. Nano Letters,2005,5(3):543-548.
    [47] Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL. Synthesis of TiO2nanocrystals bynonhydrolytic solution-based reactions. Journal of the American Chemical Society,1999,121(7):1613-1614.
    [48] Hench LL, West JK. The sol-gel process. Chemical Reviews,1990,90(1):33-72.
    [49] Lu Z, Lindner E, Mayer HA. Applications of sol-gel-processed interphase catalysts. ChemicalReviews,2002,102(10):3543-3578.
    [50] Pierre AC, Pajonk GM. Chemistry of aerogels and their applications. Chemical Reviews,2002,102(11):4243-4266.
    [51] Schwarz JA, Contescu C, Contescu A. Methods for preparation of catalytic materials. ChemicalReviews,1995,95(3):477-510.
    [52] Wight A, Davis M. Design and preparation of organic-inorganic hybrid catalysts. ChemicalReviews,2002,102(10):3589-3614.
    [53] Hong SS, Lee MS, Park SS, Lee GD. Synthesis of nanosized TiO2/SiO2particles in themicroemulsion and their photocatalytic activity on the decomposition of p-nitrophenol. CatalysisToday,2003,87(1-4):99-105.
    [54] Kim KD, Kim SH, Kim HT. Applying the Taguchi method to the optimization for the synthesis ofTiO2nanoparticles by hydrolysis of TEOT in micelles. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2005,254(1-3):99-105.
    [55] Li G, Wang G. Synthesis of nanometer-sized TiO2particles by a microemulsion method.Nanostructured Materials,1999,11(5):663-668.
    [56] Li Y, Lee NH, Hwang DS, Song JS, Lee EG, Kim SJ. Synthesis and characterization of nanotitania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOCl2aqueoussolution at low temperatures. Langmuir,2004,20(25):10838-10844.
    [57] Lim KT, Hwang HS, Hong SS, Park C, Ryoo W, Johnston KP. Synthesis of ultrafine TiO2particles from hydrolysis of Ti (OiPr)4with PEO-b-PFOMA reverse micelles in CO2. Studies inSurface Science and Catalysis,2004,153:569-572.
    [58] Lim KT, Hwang HS, Ryoo W, Johnston KP. Synthesis of TiO2nanoparticles utilizing hydratedreverse micelles in CO2. Langmuir,2004,20(6):2466-2471.
    [59] Lin J, Lin Y, Liu P, Meziani MJ, Allard LF, Sun YP. Hot-fluid annealing for crystalline titaniumdioxide nanoparticles in stable suspension. Journal of the American Chemical Society,2002,124(38):11514-11518.
    [60] Yu J, Yu J, Ho W, Zhang L. Preparation of highly photocatalytic active nano-sized TiO2particlesvia ultrasonic irradiation. Chemical Communications (Cambridge, England),2001(19):1942-1943.
    [61] Zhang D, Qi L, Ma J, Cheng H. Formation of crystalline nanosized titania in reverse micelles atroom temperature. Journal of Materials Chemistry,2002,12(12):3677-3680.
    [62] Andersson M, sterlund L, Ljungstroem S, Palmqvist A. Preparation of nanosize anatase andrutile TiO2by hydrothermal treatment of microemulsions and their activity for photocatalytic wetoxidation of phenol. The Journal of Physical Chemistry B,2002,106(41):10674-10679.
    [63] Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI. Preparation of size-controlled TiO2nanoparticles and derivation of optically transparent photocatalytic films. Chemistry of Materials,2003,15(17):3326-3331.
    [64] Cot F, Larbot A, Nabias G, Cot L. Preparation and characterization of colloidal solution derivedcrystallized titania powder. Journal of the European Ceramic Society,1998,18(14):2175-2181.
    [65] Yang J, Mei S, Ferreira J. Hydrothermal synthesis of TiO2nanopowders fromtetraalkylammonium hydroxide peptized sols. Materials Science and Engineering: C,2001,15(1):183-185.
    [66] Yang J, Mei S, Ferreira JMF. Hydrothermal synthesis of nanosized titania powders: influence ofpeptization and peptizing agents on the crystalline phases and phase transitions. Journal of theAmerican Ceramic Society,2000,83(6):1361-1368.
    [67] Yang J, Mei S, Ferreira JMF. Hydrothermal synthesis of nanosized titania powders: influence oftetraalkyl ammonium hydroxides on particle characteristics. Journal of the American Ceramic Society,2001,84(8):1696-1702.
    [68] Yang J, Mei S, Ferreira JMF. Hydrothermal synthesis of well-dispersed TiO2nano-crystals.Journal of Materials Research,2002,17(09):2197-2200.
    [69] Yang J, Mei S, Ferreira JMF. In situ preparation of weakly flocculated aqueous anatasesuspensions by a hydrothermal technique. Journal of Colloid and Interface Science,2003,260(1):82-88.
    [70] Yang J, Mei S, Ferreira JMF. Hydrothermal processing of nanocrystalline anatase films fromtetraethylammonium hydroxide peptized titania sols. Journal of the European Ceramic Society,2004,24(2):335-339.
    [71] Yang J, Mei S, Ferreira JMF. Hydrothermal fabrication of rod-like rutile nano-particles. TransTech Publications;2004. p.556-559.
    [72] Li XL, Peng Q, Yi JX, Wang X, Li Y. Near monodisperse TiO2nanoparticles and nanorods.Chemistry-A European Journal,2006,12(8):2383-2391.
    [73] Wang X, Zhuang J, Peng Q, Li Y. A general strategy for nanocrystal synthesis. Nature,2005,437(7055):121-124.
    [74] Xu J, Ge JP, Li YD. Solvothermal synthesis of monodisperse PbSe nanocrystals. The Journal ofPhysical Chemistry B,2006,110(6):2497-2501.
    [75] Wu JM. Low-temperature preparation of titania nanorods through direct oxidation of titanium withhydrogen peroxide. Journal of Crystal Growth,2004,269(2-4):347-355.
    [76] Wu JM, Hayakawa S, Tsuru K, Osaka A. Nanocrystalline titania made from interactions of Tiwith hydrogen peroxide solutions containing tantalum chloride. Crystal Growth&Design,2002,2(2):147-149.
    [77] Wu JM, Hayakawa S, Tsuru K, Osaka A. Porous titania films prepared from interactions oftitanium with hydrogen peroxide solution. Scripta Materialia,2002,46(1):101-106.
    [78] Wu JM, Hayakawa S, Tsuru K, Osaka A. Soft solution approach to prepare crystalline titania films.Scripta Materialia,2002,46(10):705-709.
    [79] Wu JM, Zhang TW. Photodegradation of rhodamine B in water assisted by titania films preparedthrough a novel procedure. Journal of Photochemistry and Photobiology A: Chemistry,2004,162(1):171-177.
    [80] Wu JM, Zhang TW, Zeng YW, Hayakawa S, Tsuru K, Osaka A. Large-scale preparation ofordered titania nanorods with enhanced photocatalytic activity. Langmuir,2005,21(15):6995-7002.
    [81] Ayllon J, Figueras A, Garelik S, Spirkova L, Durand J, Cot L. Preparation of TiO2powder usingtitanium tetraisopropoxide decomposition in a plasma enhanced chemical vapor deposition (PECVD)reactor. Journal of Materials Science Letters,1999,18(16):1319-1321.
    [82] Wu JM, Shih HC, Wu WT. Electron field emission from single crystalline TiO2nanowiresprepared by thermal evaporation. Chemical Physics Letters,2005,413(4-6):490-494.
    [83] Wu JM, Shih HC, Wu WT, Tseng YK, Chen I. Thermal evaporation growth and the luminescenceproperty of TiO2nanowires. Journal of Crystal Growth,2005,281(2-4):384-390.
    [84] Xiang B, Zhang Y, Wang Z, Luo XH, Zhu YW, Zhang HZ, Yu D. Field-emission properties ofTiO2nanowire arrays. Journal of Physics D: Applied Physics,2005,38:1152-1155.
    [85] Lei Y, Zhang L, Fan J. Fabrication, characterization and Raman study of TiO2nanowire arraysprepared by anodic oxidative hydrolysis of TiCl3. Chemical Physics Letters,2001,338(4-6):231-236.
    [86] Liu S, Huang K. Straightforward fabrication of highly ordered TiO2nanowire arrays in AAM onaluminum substrate. Solar Energy Materials and Solar Cells,2005,85(1):125-131.
    [87] Blesic MD, Saponjic Z, Nedeljkovic J, Uskokovic D. TiO2films prepared by ultrasonic spraypyrolysis of nanosize precursor. Materials Letters,2002,54(4):298-302.
    [88] Guo W, Lin Z, Wang X, Song G. Sonochemical synthesis of nanocrystalline TiO2by hydrolysis oftitanium alkoxides. Microelectronic Engineering,2003,66(1):95-101.
    [89] Huang W, Tang X, Wang Y, Koltypin Y, Gedanken A. Selective synthesis of anatase and rutilevia ultrasound irradiation. Chemical Communications,2000(15):1415-1416.
    [90] Jokanovi V, Spasi AM, Uskokovi D. Designing of nanostructured hollow TiO2spheresobtained by ultrasonic spray pyrolysis. Journal of Colloid and Interface Science,2004,278(2):342-352.
    [91] Li JR, Tang ZL, Zhang ZT. Converting industrial TiO2into titanate nanotubes by simplesonochemical-hydrothermal processing. Key Engineering Materials,2004,280:651-654.
    [92] Meskin PE, Ivanov VK, Barantchikov AE, Churagulov BR, Tretyakov YD. Ultrasonically assistedhydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4and Ni0.5Zn0.5Fe2O4powders.Ultrasonics Sonochemistry,2006,13(1):47-53.
    [93] Jimmy CY, Zhang L, Li Q, Kwong KW, Xu AW, Lin J. Sonochemical preparation of nanoporouscomposites of titanium oxide and size-tunable strontium titanate crystals. Langmuir,2003,19(18):7673-7675.
    [94] Jimmy CY, Zhang L, Yu J. Direct sonochemical preparation and characterization of highly activemesoporous TiO2with a bicrystalline framework. Chemistry of Materials,2002,14(11):4647-4653.
    [95] Jimmy CY, Zhang L, Yu J. Rapid synthesis of mesoporous TiO2with high photocatalytic activityby ultrasound-induced agglomeration. New Journal of Chemistry,2002,26(4):416-420.
    [96] Xia H, Wang Q. Ultrasonic irradiation: a novel approach to prepare conductivepolyaniline/nanocrystalline titanium oxide composites. Chemistry of Materials,2002,14(5):2158-2165.
    [97] Yu JC, Yu J, Zhang L, Ho W. Enhancing effects of water content and ultrasonic irradiation on thephotocatalytic activity of nano-sized TiO2powders. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):263-271.
    [98] Yun CY, Chah S, Kang SK, Yi J. The effect of ultrasonic waves on the fabrication of TiO2nanoparticles on a substrate using a self-assembly method. Korean Journal of Chemical Engineering,2004,21(5):1062-1065.
    [99] Zhu Y, Li H, Koltypin Y, Hacohen YR, Gedanken A. Sonochemical synthesis of titania whiskersandnanotubes. Chemical Communications,2001(24):2616-2617.
    [100] Corradi AB, Bondioli F, Focher B, Ferrari AM, Grippo C, Mariani E, Villa C. Conventional andmicrowave-hydrothermal synthesis of TiO2nanopowders. Journal of the American Ceramic Society,2005,88(9):2639-2641.
    [101] Gressel-Michel E, Chaumont D, Stuerga D. From a microwave flash-synthesized TiO2colloidalsuspension to TiO2thin films. Journal of Colloid and Interface Science,2005,285(2):674-679.
    [102] Szabo D, Vollath D, Arnold W. Microwave plasma synthesis of nanoparticles: Application ofmicrowaves to produce new materials. Ceramic Transactions(USA),2000,111:217-224.
    [103] Uchida S, Tomiha M, Masaki N, Miyazawa A, Takizawa H. Preparation of TiO2nanocrystallineelectrode for dye-sensitized solar cells by28GHz microwave irradiation. Solar Energy Materials andSolar Cells,2004,81(1):135-139.
    [104] Wu X, Jiang QZ, Ma ZF, Fu M, Shangguan WF. Synthesis of titania nanotubes by microwaveirradiation. Solid State Communications,2005,136(9):513-517.
    [105] Yamamoto T, Wada Y, Yin H, Sakata T, Mori H, Yanagida S. Microwave-driven polyol methodfor preparation of TiO2nanocrystallites. Chemistry Letters,2002,31(10):964-965.
    [106] Guobin M, Zhao X, Zhu J. Microwave hydrothermal synthesis of rutile TiO2nanorods.Internationals Journal of Modern Physics B,2005,19:2763-2768.
    [107] Qiu J, Yu W, Gao X, Li X. Sol–gel assisted ZnO nanorod array template to synthesize TiO2nanotube arrays. Nanotechnology,2006,17(18):4695-4698.
    [108] Sugimoto T, Okada K, Itoh H. Synthetic of uniform spindle-type titania particles by the gel-solmethod. Journal of Colloid and Interface Science,1997,193(1):140-143.
    [109] Sugimoto T, Zhou X. Synthesis of uniform anatase TiO2nanoparticles by the gel–sol Method*:2.Adsorption of OH Ions to Ti(OH)4gel and TiO2particles. Journal of Colloid and Interface Science,2002,252(2):347-353.
    [110] Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2nanoparticles by gel-solmethod*:1. Solution chemistry of Ti(OH)(4-n)+ncomplexes. Journal of Colloid and Interface Science,2002,252(2):339-346.
    [111] Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2nanoparticles by gel-solmethod*:4. Shape control. Journal of Colloid and Interface Science,2003,259(1):53-61.
    [112] Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2nanoparticles by gel-solmethod*:3. Formation process and size control. Journal of Colloid and Interface Science,2003,259(1):43-52.
    [113] Huang Q, Gao L. A simple route for the synthesis of rutile TiO2nanorods. Chemistry Letters,2003,32(7):638-639.
    [114] Yang S, Gao L. Fabrication and characterization of nanostructurally flowerlike aggregates ofTiO2via a surfactant-free solution route: Effect of various reaction media. Chemistry Letters,2005,34(7):1044-1045.
    [115] Yang S, Gao L. A facile and one-pot synthesis of high aspect ratio anatase nanorods based onaqueous solution. Chemistry Letters,2005,34(7):972-973.
    [116] Zhang Q, Gao L. Preparation of oxide nanocrystals with tunable morphologies by the moderatehydrothermal method: insights from rutile TiO2. Langmuir,2003,19(3):967-971.
    [117] Wei M, Konishi Y, Zhou H, Sugihara H, Arakawa H. A simple method to synthesize nanowirestitanium dioxide from layered titanate particles. Chemical Physics Letters,2004,400(1-3):231-234.
    [118] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of titanium oxide nanotube.Langmuir,1998,14(12):3160-3163.
    [119] Du G, Chen Q, Che R, Yuan Z, Peng LM. Preparation and structure analysis of titanium oxidenanotubes. Applied physics letters,2001,79:3702-3704.
    [120] Wang Y, Hu G, Duan X, Sun H, Xue Q. Microstructure and formation mechanism of titaniumdioxide nanotubes. Chemical Physics Letters,2002,365(5-6):427-431.
    [121] Wang W, Varghese OK, Paulose M, Grimes CA, Wang Q, Dickey EC. A study on the growthand structure of titania nanotubes. Journal of Materials Research,2004,19(2):417-422.
    [122]古映莹,杜作娟.纳米二氧化钛的水热制备及光催化研究.中南大学学报,2003(03):27-30.
    [123]仲维卓,罗豪,华素坤.铌酸锂(LN)晶体生长基元与结晶形貌.人工晶体学报,1994,23(04):255-258.
    [124]仲维卓,华素坤.晶体中正负配位多面体的结晶方位与晶体形貌.化学通报,1992,12(1):17-22.
    [125]张学华,罗豪甦,仲维卓.负离子配位多面体生长基元模型及其在晶体生长中的应用.中国科学E辑:技术科学,2004,34(03):241-253.
    [126]施尔畏,仲维卓,华素坤,元如林,王步国,夏长泰,李汶军.关于负离子配位多面体生长基元模型.中国科学E辑:技术科学,1998,28(01):38-44.
    [127]李汶军,施尔畏,仲维卓,殷之文.负离子配位多面体生长基元的理论模型与晶粒形貌.人工晶体学报,1999,28(02):118-125.
    [128]仲维卓,罗豪甦,华素坤.若干晶体中氧八面体结晶方位与晶体形貌.无机材料学报,1995,10(03):272-280.
    [129] López T, Hernandez-Ventura J, Gómez R, Tzompantzi F, Sánchez E, Bokhimi X, Garc a A.Photodecomposition of2,4-dinitroaniline on Li/TiO2and Rb/TiO2nanocrystallite sol–gel derivedcatalysts. Journal of Molecular Catalysis A: Chemical,2001,167(1):101-107.
    [130] Brezová V, Bla ková A, Karpinsky, Gro ková J, Havlinova B, Jorik V, eppan M. Phenoldecomposition using Mn+/TiO2photocatalysts supported by the sol-gel technique on glass fibres.Journal of Photochemistry and Photobiology A: Chemistry,1997,109(2):177-183.
    [131]杨娟,李丹.硬脂酸法制备纳米TiO2及微结构控制.无机材料学报,2001,16(3):550-554.
    [132]陈代荣,孟祥建.偏钛酸作前驱体水热合成TiO2微粉.无机材料学报,1997,12(001):110-114.
    [133]林元华,黄淑兰.纳米金红石型TiO2粉体的制备及其表征.无机材料学报,1999,14(6):853-860.
    [134] Kim SJ, Park SD, Jeong YH, Park S. Homogeneous precipitation of TiO2ultrafine powders fromaqueous TiOCl2solution. Journal of the American Ceramic Society,1999,82(4):927-932.
    [135] Bokhimi AM, Novaro O, Lopez T, Sanchez E, Gomez R. Effect of hydrolysis catalyst on the Tideficiency and crystallite size of sol-gel-TiO2crystalline phases. Detail,1995,11:13.
    [136] Aruna S, Tirosh S, Zaban A. Nanosize rutile titania particle synthesis viaa hydrothermal methodwithout mineralizers. Journal of Materials Chemistry,2000,10(10):2388-2391.
    [137]张青红,高濂.四氯化钛水解法制备二氧化钛纳米晶的影响因素.无机材料学报,2000,15(6):992-998.
    [138] Spurr RA, Myers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer.Analytical Chemistry,1957,29(5):760-762.
    [139] Yamabi S, Imai H. Crystal phase control for titanium dioxide films by direct deposition inaqueous solutions. Chemistry of Materials,2002,14(2):609-614.
    [140] Sorescu DC, Yates Jr JT. First principles calculations of the adsorption properties of CO and NOon the defective TiO2(110) surface. The Journal of Physical Chemistry B,2002,106(24):6184-6199.
    [141] Sorescu DC, Rusu CN, Yates Jr JT. Adsorption of NO on the TiO2(110) Surface: AnExperimental and Theoretical Study. The Journal of Physical Chemistry B,2000,104(18):4408-4417.
    [142] Sorescu DC, Yates Jr JT. Adsorption of CO on the TiO2(110) surface: A theoretical study. TheJournal of Physical Chemistry B,1998,102(23):4556-4565.
    [143] Zhao Z, Li Z, Zou Z. Understanding the interaction of water with anatase TiO2(101) surfacefrom density functional theory calculations. Physics Letters A,2011,375(32):2939-2945.
    [144] Hrbek J, Rodriguez JA, Dvorak J, Jirsak T. Sulfur Adsorption and Reaction with a TiO2(110)Surface: O-S Exchange and Sulfide Formation. Collection of Czechoslovak Chemical Communications,2001,66(8):1149-1163.
    [145]田凤惠.非金属元素掺杂改性的TiO2基光催化剂的理论研究[Dissertation Thesis]:山东大学;2006.
    [146] Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review,1964,136(3B):B864.
    [147] Min Y, Xiaoheng L, Xuehu W, Qiongfen Y, Lude L, Xin W. Preparation and Characterization ofTiO2/MS (M=Cd, Zn, Ni) Nanocomposite. Shanghai Chemical Industry,2002,22:16-17.
    [148]冯彩霞,金振声,杨建军,王晓冬,李昱昊,张治军,赵进才.镶嵌CdS的纳米管钛酸制备及其光催化性能研究.感光科学与光化学,2004,22(4):272-276.
    [149] Hosono E, Fujihara S, Imai H, Honma I, Masaki I, Zhou H. One-step synthesis of nano–microchestnut TiO2with rutile nanopins on the microanatase octahedron. ACS nano,2007,1(4):273-278.
    [150] Xing C, Jing D, Liu M, Guo L. Photocatalytic hydrogen production over Na2Ti2O4(OH)2nanotube sensitized by CdS nanoparticles. Materials Research Bulletin,2009,44(2):442-445.
    [151] Zhang YJ, Yan W, Wu YP, Wang ZH. Synthesis of TiO2nanotubes coupled with CdSnanoparticles and production of hydrogen by photocatalytic water decomposition. Materials Letters,2008,62(23):3846-3848.
    [152] Banerjee S, Mohapatra SK, Das PP, Misra M. Synthesis of Coupled Semiconductor by Filling1DTiO2Nanotubes with CdS. Chemistry of Materials,2008,20(21):6784-6791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700