用户名: 密码: 验证码:
可生物降解载药微球的制备和释药动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可生物降解型载药微球是近年来缓控释给药系统的研究热点,具有体积小、载体材料多样性和多功能性以及适用于多种给药方式等优点,可以通过对释药速率的控制来显著提高临床用药的安全性和有效性。本文以聚乳酸羟基乙酸-聚乙二醇单甲醚共聚物(PLGA-mPEG)为材料进行载药微球的研制,针对目前载药微球释药机理研究的不足,从微球的微观结构和性能关系出发,分析材料的降解对释药行为的作用机理,用于指导缓控释载药微球的处方设计和应用。
     以小分子疏水药物甲氨蝶呤(MTX)为模型药物,考察了乳化溶剂挥发法的工艺参数对载药微球性质的影响及成因。通过正交工艺优化,制备了包封率较高且缓释效果明显的MTX微球。实验表明MTX和材料具有良好的相容性。
     在一定的载药量下,MTX微球的释药过程呈现明显的三个阶段,包括起始突释期、时滞期和二次突释期。对微球的降解动力学研究显示,微球在降解过程中发生的物理化学变化和形态变化具有一定的规律性,对于不同的释药阶段,控制微球释药的降解因素也有所区别。亲水性嵌段聚乙二醇单甲醚(mPEG)的存在,加快了材料的降解速度,提高了材料的柔韧性,从而降低了微球受外力破坏和崩解释药的风险,同时也使得释药时滞期大大缩短。
     微球的降解受到自身的性质以及释药环境等因素的影响,这些因素通过影响材料的降解对药物释放进行了间接的调控。论文系统研究了材料组成、载药量、粒径以及释放环境等四种因素对MTX微球降解动力学的作用方式,进而分析出每种因素对不同释药阶段的控制规律,从中拓展了调节微球释药速率的途径,对实现微球释药速率可控性的研究具有重要指导意义。
     采用传质模型描述药物的扩散和材料的降解对MTX微球释药过程的影响,并对模型的适用性进行了考证。分析了影响材料降解的主要因素与药物扩散系数之间的关系,并对影响趋势作出预测。
     利用PLGA-mPEG与亲水性药物的相容性,分别制备了硫酸沙丁胺醇(SBS)微球和溶菌酶(LYS)微球。针对亲水性药物微球存在的包封率低、突释严重、活性大分子后期释药停滞等问题,采用添加附加剂、改进制备工艺等方法对微球的质量进行改善。
In recent years, biodegradable polymeric microparticles have attracted more and more attentions as sustained /controlled drug delivery systems. They have many advantages such as small size, diversity and functionality of materials and multiple dose administration, etc. They will be promising in clinical applications because they can release drugs with a controlled speed and thus greatly improve the effectiveness and safety of drugs. This research aimed to investigate the effect of polymer microstructure on controlled drug delivery from Poly (dl-lactide-co-glycolic acid)-methoxypoly (ethyleneglycol) (PLGA-mPEG) microparticles during polymer degradation process. An experimental and theoretical framework was created for the guidance of microparticle application.
     PLGA-mPEG microparticles were prepared by O/W solvent evaporation method. MTX, a small hydrophobic drug, was employed as the model drug. The influences of manufacturing parameters on the properties of microparticles were investigated. O/W solvent evaporation method was further optimized by orthogonal design. Microparticles with high encapsulation efficiency and well sustained drug release were prepared. The analytical results indicated that MTX had high compatibility with PLGA-mPEG.
     Under a certain drug loading capacity, the MTX release from PLGA-mPEG microparticles showed a triphasic pattern: an initial burst release, followed by a lag period and a subsequently second burst release. The degradation of microparticles induced both physicochemical and morphological changes, and these changes played important roles on the drug release kinetics. For each drug release phase, the controlling factor which correlated with polymer degradation was different. The incorporation of hydrophilic mPEG chain, acting as a surface modifier of hydrophobic PLGA network, increased the polymer hydrolysis rate as well as drug release rate. mPEG chain also enhanced the mechanical strength of PLGA-mPEG microparticles. It reduced the risk of severe drug burst release caused by particle collapse and shortened the lag period of drug release.
     The degradation behavior of microparticles could be affected by many external factors. These factors regulated the drug release indirectly by working on the polymer degradation process. In this study, the effects of four external factors, copolymer composition, drug loading, particle size and incubation medium, on the degradation of PLGA-mPEG microparticles were investigated. For each factor, the mechanism of controlling drug release was analyzed. Expanded means of regulating the drug release from PLGA-mPEG microparticles were then developed to achieve the desired drug release rate.
     Mass transfer models considering drug diffusion, hydrolysis of polymer chains and matrix erosion were developed for different drug release phases. A diffusion-degradation-erosion model was proposed and successfully described the whole MTX release from PLGA-mPEG microsparticles. The effects of external factors on drug release kinetics were analyzed and the trends of influences were well predicted according to the model.
     PLGA-mPEG was also applied for encapsulating salbutamol sulphate (SBS) and lysozyme (LYS), by utilizing the compatibility of PLGA-mPEG with hydrophilic or biomacromolecular drugs. Aiming at solving problems of microparticles encapsulating water soluble drugs, such as low encapsulation efficiency, severe initial burst release, and lag release of active biomolecules at the end of incubation period, etc, additives and manufacturing technique improvements were applied to improve the properties of hydrophilic drug-loaded microparticles.
引文
[1] Saltzman W M. Drug delivery: engineering principles for drug therapy. New York: Oxford university press, 2001.
    [2] Chess R. Economic aspects of drug delivery. Pharmaceutical Research, 1998, 15:172-174.
    [3] Fuji-Keizai USA Inc. 2006 US Market Advanced Drug Delivery Systems Probing the Route to Growth. New York: Fuji-Keizai USA Inc, 2005.
    [4] Béduneau A, Saulnier P, Benoit J P. Active targeting of brain tumors using nanocarriers. Biomaterials, 2007, 28: 4947-4967.
    [5] Dandamudi S, Campbell R B. The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials, 2007, 28: 4673-4683.
    [6]陆彬,药物新剂型与新技术,北京:人民卫生出版社, 2002, 2
    [7] Liu L X, Khang G, Rhee J M, et al. Monolithic osmotic tablet system for nifedipine delivery. J Control Release, 2000, 67: 309-322.
    [8] Lamprecht A, Yamamoto H, Takeuchi H, et al. Microsphere design for the colonic delivery of 5-fluorouracil. J Control Rel, 2003, 90(3): 313-322.
    [9] Okada H, Heya T, Igari Y, et al. One-month release injectable microspheres of leuprolide acetate inhibit steroidogenesis and genital organ growth in rats. Int J Pharm, 1989, 54: 231-239.
    [10] Santus G, Baker R W. Osmotic drug delivery: a review of the patent literature. J Control Rel, 1995, 35: 1-21.
    [11] Theeuwes F. Elementary Osmotic Pump. J Pharm Sci, 1975, 64:1987-1991.
    [12] Langer R. New methods of drug delivery. Science, 1990, 249:1527-1533.
    [13] Langer R. Transdermal drug delivery: past progress, current status, and future prospects. Adv Drug Deliver Rev, 2004, 56:557-558.
    [14] Riviere J E, Papich M G. Potential and problems of developing transdermal patches for veterinary applications. Adv Drug Deliver Rev, 2001, 50:175-203.
    [15] Sakr F M. A programmable drug delivery system for oral administration. Int J Pharm, 1999, 184:131-139.
    [16] Moriyama K, Yui N. Regulated insulin release from bio-degradable hydrogels containing poly(ethylene glycol). J Control Release, 1996, 42:237-248.
    [17] Shoji S, Esashi M. Microflow devices and systems. J Micromech Microeng, 1994, 4:157-171.
    [18] Yih T C, Wei C, Hammad B. Modeling and characterization of a nanoliter drug-delivery MEMS micropump with circular bossed membrane. Nanomedicine, 2005, 1:164-175.
    [19] Santini J T J, Cima M J, Langer R. A controlled release microchip. Nature, 1999, 397:335-338.
    [20]吴芳,张志荣.定时脉冲释药系统.药学进展, 2001, 25:279-283.
    [21] Scherer. DDS develops "alarm clock" dose formulation. Pharm J, 1991, 24:138.
    [22]候连兵.常用药物新剂型及临床应用.北京:人民军医出版社, 1998:167.
    [23] Weidner J. System for time and/or site-specific oral drug delivery. Drug Discovery Today, 2001, 6:1028-1029.
    [24] Gutierrez-Sanchez PE, Hernandez-Leon, Villafuerte-Robles, Leopoldo Effect of sodium bicarbonate on the properties of metronidazole floating matrix tablets. Drug Del Ind Pharm. 2008,34: 171-180.
    [25] Whitehead LF, Collett JH, Sharma HL, et al. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J. Control. Rel, 2000, 55: 3-12.
    [26] Yang L, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int. J. Pharm, 2002, 235: 1-15.
    [27] Weyenberg W, Bozdag S, Foreman P, et al. Characterization and in vivo evaluation of ocular minitablets prepared with different bioadhesive Carbopol-starch components. Eur J Pharm Biopharm, 2006, 62:202-209.
    [28] Hoogstraate J A J, Wertz P W. Drug delivery via the buccal mucosa. Pharmaceutical Science & Technology Today, 1998, 1:309-316.
    [29] Ugwoke M I, Agu R U, Verbeke N, et al. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Adv Drug Del Rev, 2005, 57:1640-1665.
    [30] King A E, Morgan K, Sallenave J M, et al. Differential regulation of secretory leukocyte protease inhibitor and elafin by progesterone. Biochem Bioph Res Co, 2003, 310(2): 594-599
    [31] Van der Bij P, van Eyk A D. Comparative in vitro permeability of human vaginal, small intestinal and colonic mucosa. Int J Pharm, 2003, 261(1-2): 147-152.
    [32] Wu P, Grainger D W. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials, 2006, 27(11): 2450-2467.
    [33] Wang P P, Frazier J, Brem H. Local drug delivery to the brain. Adv Drug Deliver Rev, 2002, 54(7): 987-1013.
    [34] Williams J A, Yuan X, Dillehay L E, et al. Synthetic, implantable polymers for local delivery of IUdR to experimental human malignant glioma. International Journal of Radiation Oncology Biology Physics, 1998, 42(3): 631-639.
    [35] Sershen S, West J. Implantable, polymeric systems for modulated drug delivery. Adv. Drug. Deliver. Rev., 2002, 54: 1225-1235.
    [36] Langer R. Drug delivery and targeting. Nature, 1998, 392: 5-10.
    [37] Torchilin VP. Drug targeting. Euro. J. Pharm. Sci., 2000, 11: 81-91.
    [38] Allen T, Moase EH. Therapeutic opportunities for targeted liposomal drug delivery. Adv. Drug. Deliver. Rev., 1996, 21: 117-133.
    [39] Zimmer A, Kreuter J. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev., 1995, 16: 61-73.
    [40] Amadóttir SG, Kristmundsdóttir T. Increased dissolution rate by microencapsulation. Euro. J. Pharm. Sci., 1996, 134-134.
    [41]朱盛山.药物新剂型.北京:化学工业出版社, 2003: 480-481.
    [42] Okuhata Y. Delivery of diagnostic agents for magnetic resonance imaging. Adv. Drug Deliv. Rev., 1999, 37: 121-137.
    [43] Zeng H,,Sun SH. Syntheses, properties and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mat.,2008,18(3): 391-400.
    [44] Ho KM, Li P. Design and synthesis of novel magnetic core-shell polymeric particles. LANGMUIR.,2008, 24(5): 1801-1807.
    [45] Voltairas P A,Fotiadis D I,Michalis L K.Hydrodynamics of magnetic drug targeting.J Biomech,2002,35:813-821.
    [46] Pankhurst Q A,Connolly J,Jones S K,et al.Applications of magnetic nanoparticles in biomedicine[J].J Phys D:Appl Phys,2003:36:167-181.
    [47] Freiberg S,Zhu X.Polymer microspheres for controlled drug release[J].Int J Pharm,2004,282:1-18.
    [48] Soppirnath K S,Aminabhavi T M.Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur J Pharm Biopharm, 2002, 53:87-98.
    [49] Soppimath K S,Kulkarni A R,Aminabhavi T M.Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: preparation and characterization. J Control Rel, 2001, 75: 331-345.
    [50] Kurkuri M D,Aminabhavi T M. Poly(vinyl alcohol) and poly(acrylic acid) sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine. J Control Rel,2004,96:9-20.
    [51] Wang C H,Wang C H,Hsiue G H.Polymeric micelles with a pH-responsive structure as intracellular drug carriers.J Control Rel,2005,108:140-149.
    [52] Gillies E R,Frechet J M J.Dendrimers and dendritic polymers in drug delivery. Drug discovery today, 2005, 10:35-43.
    [53] Majoros I J,Thomas T P,Mehta C B.Poly(amidoamine) Dendrimer-Based Multifunctional Engineered Nanodevice for Cancer Therapy. J Med Chem,2005,48:5892-5899.
    [54] Thomas T P,Patri A K,Myc A, et al.In Vitro Targeting of Synthesized Antibody-Conjugated Dendrimer Nanoparticles.Biomacromolecules,2004,5:2269-2274.
    [55] Low P S,Antony A C.Folate receptor-targeted drugs for cancer and inflammatory diseases.Adv Drug Deliv Rev,2004,56 (8):1055-1058.
    [56] Thomas T P,Majoros I J,Kotlyar A,et al. Targeting and Inhibition of Cell Growth by an Engineered Dendritic Nanodevice. J Med Chem,2005,48:3729-3735.
    [57] Marty, J.J., Oppenheim, R.C. Colloidal systems for drug delivery. Aust. J. Pharm. 1977. 6: 65-76.
    [58] Malcolmson C, Lawrence M J. A comparison of the incorporation of model steroids into non-ionic micellar and microemulsionsystems. J Pharm Pharmocol,1993,45(1):141-143.
    [59] Li Y, Zhu KJ, Zhang JX, et al. In vitro and in vivo studies of cyclosporin A-loaded microspheres based on copolymers of lactide and _-caprolactone: Comparison with conventional PLGA microspheres. Int J Pharm, 2005, 295: 67-76.
    [60] Lee EJ, Lee SW, Choi HG,et al. Bioavailability of cyclosporin A dispersed in sodium lauryl sulfate–dextrin based solid microspheres. Int J Pharm, 2001, 218: 125-131.
    [61] Genta I, Perugini P, Pavanetto F, et al. Enzyme loaded biodegradable microspheres in vitro ex vivo evaluation. J Control Rel, 2001, 77: 3 287–295.
    [62] Dai CY, Wang BC, Zhao HW. Microencapsulation peptide and protein drugs delivery system. Colloids and Surfaces B: Biointerfaces, 2005, 41:117–120.
    [63] Gavini E, Chetoni P, Cossu M. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm, 2004, 57: 207–212.
    [64] Blanco-Pr′?eto MJ, Besseghir K, Zerbe O.In vitro and in vivo evaluation of a somatostatin analogue released from PLGA microspheres. J Control Rel,2000, 67:19-28.
    [65] Lu LC, Peter SJ, Lyman MD, et al. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials,2000, 21:1837-1845.
    [66] Pfeifer BA, Burdick JA, Little SR. Poly(ester-anhydride):poly(_-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.Int J Pharm, 2005,304: 210–219.
    [67] Jain JP, Modi S, Domb AJ. Role of polyanhydrides as localized drug carriers. J Control Rel, 2005,103:541–563.
    [68] Erdmann L, Uhrich KE. Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters). Biomaterials,2000, 21:1941-1946.
    [69] Luengo JM, Ruel-Gariépy G, Angel S, et al. Bioplastics from microorganisms. Curr. Opin in Microbiol., 2003, 6: 251-260.
    [70] Molinaroa G, Lerouxa JC, Damasb J, et al. Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials, 2002, 23: 2717-2722.
    [71] Hirano S, Noishiki Y. The blood compatibility of chitosan and N-acylchitosans. J. Biomed. Mater. Res., 1985, 19: 413-417.
    [72] Muzzarelli RAA. Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohydr. Polym., 1993, 20 7-16.
    [73] Gombotz WR ,Wee SF. Protein Release from alginate matrices. Adv Drug Deliv Rev,1998,31:267-285.
    [74]王康,何志敏.海藻酸微胶囊的制备及在药物控释中的研究进展.化学工程, 2002, 30: 48-53.
    [75] Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev, 1997, 28: 5-24.
    [76] Kulkarni RK, Moore EG,Hegyelli AF, et al.Biodegradable poly(lactic acid) polymers. J Biomed Mater Res, 1971,5:169-181.
    [77] Bostman OM. Absorbable implants for the fixation of fractures. J Bone Joint Surg.1991, 73A:148-153.
    [78] Claes L, Rehm K, Helling HJ.et al. A new degradable pin for the refixation of bony fragments. Adv Sci Technol,1995,12:635-637.
    [79] Grizzi I, Garreau H, Li S, et al. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence [J]. Biomaterials, 1995, 16:305-311.
    [80]孙皎,郭尚春,何伟. PGLA降解产物对材料降解性能影响的体外研究.生物医学工程学杂志, 2006; 23:1062-1065.
    [81] Grayson AC, Voskerician G, Lynn A, et al. Differential degradation rates in vivo and in vitro of biocompatible poly (lactic acid) and poly (glycolic acid) homo- and co-polymers for a polymeric drug delivery microchip. J Biomater Sci Polym Ed, 2004, 15:1281-1304.
    [82] Charles R N , Scott M H , KriistiS A. Synthesis and Characterization of Photcrosslinkable, Degradable Poly(vinyl alcohol)-based Tissue Engineering Scaffolds. Biomaterials,2002,23:3617-3626.
    [83] Calandrelli L, De Rosa G,Errico ME,et al. Novel graft PLLA-based Copolymers: Potential of their Application to Particle Technology.J.Bio.Mat.Res,2002,62:244-253.
    [84]曹雪波.马来酸酐改性聚乳酸的力学性能研究.高分子材料科学与工程,2002,1: 115-118.
    [85] Inagaki N, Naraehima K, Lim S K. Effects of aromatia groups in polymer chains on plasma surface modification. J Appl.Polym.Sci,2003, 89: 96-103.
    [86] Okasman K. Natural fibres as reinforced in polylactic acid composites.First International Conference on Ecocomposites,‘ECOCOMP-2001’,Sep,2001,London,UK.
    [87] Chen WN, Luo WJ, Wang SJ, et al. Synthesis and properties of poly (L-lactide) Poly (Ethyleneglycol) multiblock copolymers by coupling triblock copolymers. Polym Advan Technol, 2003, 14:245-253.
    [88] Chen S, Pieper R, Webster DC, et al. Triblock copolymers: synthesis, characterization, and delivery of a model protein. Int J Pharm, 2005,288: 207–218.
    [89] Jeong B, Bae YH, Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Control Rel, 2000,63:155-163.
    [90] Jeong B,Bae YH,Lee DS,et al. Biodegradable block copolymers as injectable drug delivery systems.Nature, 1997, 388:860-862.
    [91] Saito N,Okada T,Horiuchi H,et al.Biodegradable poly(D,L -lactic acid) poly(ethylene glycol) block copolymers as a BMP delivery system for inducing bone.J Bone and Joint Surgery-American,2001,83A:92-98.
    [92] Lucke A,Tebmar J,Schnell E,et al.Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol) monomethyl ether diblock copolymers:structures and surface properties relevant to their use as biomaterials.Biomaterials,2001,21:2361-2370.
    [93] Ruckenstein E, Sun Y. Preparation and characteristics of polymer-based large adsorbent particles. J Appl Polym Sci, 1996, 61:1949-1956.
    [94] Couffin-Hoarau, A. Motulsky, P. Delmas, J. C. Leroux, In situ–forming pharmaceutical organogels based on the self-assembly of L-alanine derivatives, Pharm. Res. 2004,21: 454-457.
    [95] Stolnik S, Heald CR, Neal J, et al. Polylactide-ploy (ethylene glycol) micellar-like particles as potential drug carriers: Production, colloidal properties and biological performance. J Drug Targeting, 2001,9: 361-378.
    [96] Lee U, Park J, Yank E H, et al. Investigation of the factors influencing the release rates of cyclosporin A-loaded rnicro- and nanoparticles prepared by high-pressure homogenizer.J Control Rel, 2002, 84:115-123
    [97] Zhu K J, Zhann J X, Warm C,et al. Preparation and in vitro release behaviour of 5-fluorouracil-loaded microspheres based on poly (L-lactide) and its carbonate copolymers. J Microencapsul, 2003, 20(6): 731-743.
    [98] Aguiar MMG, Rodrigues J M, Silva CA, et al. Encapsulation of insulin-cyclodextrin complex in PLGA microspheres: A new approach for prolonged pulmonary insulin delivery. J Microencapsul, 2004, 21: 553-564.
    [99] Wong H M, Wang J J, Wang C. In Vitro Sustained Release of Human Immunoglobulin G from Biodegradable Microspheres, Ind. Eng. Chem. Res., 2001, 40:933-948.
    [100] Avgoustakis K, Beletsi A, Panagi Z, et al. PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Rel, 2002,79:123-135
    [101] Storm G, Belliot SO, Daemen T, et al. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv drug deliv Rev, 1995, 17:31-48.
    [102] Hoarau D, Delmas P, David S, et al. Novel long-circulating lipid nanocapsules. Pharm Res, 2004, 21:1783-1789.
    [103] Gaur U,Sahoo SK, De TK,et al. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system.Int J Pharm, 2000, 202:1-10.
    [104] Fang C, Shi B, Pei Y Y, et al. In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size [J]. Eur J Pharm Sci, 2006, 27: 27-36.
    [105] Lee C M, Choi Y, Huh E J, et al. Polyethylene glycol (PEG) modified 99mTc-HMPAO-liposome for improving blood circulation and biodistribution: The effect of the extent of PEGlation. Canc Bio R, 2005, 20(6): 620-628.
    [106] Fanciullino R, Giacometti S, Aubert C, et al. Development of Stealth Liposome Formulation of 20-Deoxyinosine as 5-Fluorouracil Modulator: In Vitro and In Vivo Study. Pharm.Res, 2005, 22(12): 2051-2057.
    [107] Reddy P R, Venkateswarlu V. Pharmacokinetics and tissue distribution of etoposide delivered in long circulating parenteral emulsion. J Drug Targeting, 2005, 13(10):543-553.
    [108] Moghimi S M. Chemical camouflage of nanospheres with a poorly reactive surface:towards development of stealth and target-specific nanocarriers[J]. Biochimica et Biophysica Acta, 2002, 1590:131-139.
    [109] Augustea DT, Armesb SP, Brzezinska KR. pH triggered release of protective poly(ethylene glycol)-b-polycation copolymers from liposomes. Biomaterials, 2006, 27: 2599-2608.
    [110] Takeuchi H, Matsui Y, Yamamoto H, et al. Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J Control Rel, 2003, 86:235-242.
    [111] Grabovac V, Guggi D, Bernkop-Schnurch A. Comparison of the mucoadhesive properties of various polymers[J].Adv Drug Deliv Rev,2005,57:1713-1723.
    [112] Bernkop-Schnurch A, Guggi D, Pinter Y. Thiolated chitosans:development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J Control Rel, 2004, 94:177-186.
    [113] Takeuchi H, Thongborisute J, Matsui Y, et al. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems.Adv Drug Deliv Rev,2005, 57:1583-1594.
    [114] Okada H,Toguchi H.Biodegradable microspheres in drug delivery. Crit Rev Therap, 1995, 12:1-99.
    [115] G. opferich A. Mechanism of polymer degradation and elimination.In: Domb AJ, Kost J, Wiseman DM, editors. Handbook of biodegradable polymers. Amsterdam: Harwood Academic Publishers, 1997. p.451-471.
    [116] Tamada J, Langer R. Erosion kinetics of hydrolytically degradable polymers. Proc Natl Acad Sci 1993;90: 552-556.
    [117] Li SM, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive aliphatic poly-(a-hydroxy acids) in aqueous media, Part 1. J Mater Sci: Mater Med 1990, 1:123-130.
    [118] Li SM, Garreau H, Vert M. Structure–property relationships in the case of the degradation of massive aliphatic poly-(a-hydroxy acids) in aqueous media, Part 3. J Mater Sci: Mater Med 1990,1:198-206.
    [119] Gopferich A. Polymer bulk erosion. Macromolecules 1997, 30: 2598-2604.
    [120] Park T G.Degradation of Poly (lactic-co-glycolic acid) Microspheres: Effect of Copolymer Composition. Biomaterials, 1995, 16(15): 1123-1130.
    [121] Van Krevelen DW. Transition temperatures. In: Properties of Polymers, Chapter 6. Amsterdam: Elsevier, 1976:126.
    [122] Pistner H ,Bendix DR ,Muhing J , et al . Poly (L2lactide) :a long term degradation study in vivo partⅢ. Analytical characterization. Biomaterials, 1993, 14:291-304.
    [123] Duek EAR, Zavaglia CAC, Belangero WD. In vitro study of poly (lactic acid) pin degradation. Polymer, 1999, 40: 6465-6473.
    [124] Makino K, Mogi T, Ohtake N, et al. Pulsatile drug release from poly (lactide-co-glycolide) microspheres:how does the composition of the polymer matrixes affect the time interval between the initial burst and the pulsatile release of drugs. Colloid Surf B:Biointerfaces, 2000,19:173–179.
    [125] Edlund U, Albertsson A C. Morphology Engineering of a Novel Poly (L-lactide)/Poly (1, 5-dioxepan-2-one) Microsphere System for Controlled Drug Delivery. J Polym Sci., Part A: Polym Chem, 2000, 38:786-796.
    [126] Mi FL, Shyu SS, Lin YM, et al. Chitin/PLGA blend microspheres as a biodegradable drug delivery system: a new delivery system for protein. Biomaterials,2003, 24:5023–5036.
    [127] Kakish HF, Tashtoush B, Ibrahim HG, et al. A novel approach for the preparation of highly loaded polymeric controlled release dosage forms of diltiazem HCl and diclofenac sodium. Eur J Pharm Biopharm, 2002, 54:75-81.
    [128] Yang YY, Chung TS, Bai XL, et al. Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method. Chem. Eng. Sci,2000, 55: 2223–2236.
    [129] Chung TW, Huang YY, Liu YZ. Effects of rate of solvent evaporation on the characteristics of drug loaded PLLA and PDLLA microshperes. Int J Pharm, 2001, 212:161-169.
    [130] Mehta KA, Kislalioglu MS, Phuapradit W, et al. Effect of formulation and process variables on porosity parameters and release rates from a multi unit erosion matrix of a poorly soluble drug. J Control Rel, 2000,63:201-211.
    [131] Hurrell S, Cameron RE. Polyglycolide: degradation and drug release. Part I: changes in morphology during degradation. J Mater Sci: Mater Med. 2001, 12:811-816.
    [132] Graysona ACR, Cima MJ, Langer R. Size and temperature effects on poly (lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials, 2005, 26: 2137-2145.
    [133] Narayani R, Rao KP. Gelatin microsphere cocktails of different sizes for the controlled release of anticancer drugs. Int J Pharm.1996, 143:255-258.
    [134] Faisant N, Akiki J, Siepmann F, et al. Effects of the type of release medium on drug release from PLGA-based microparticles: Experiment and theory. Int J Pharm, 2006, 314: 189-197.
    [135] Huang YY, Qi M, Zhang M, et al. Degradation mechanisms of poly (lactic-co-glycolic acid) films in vitro under static and dynamic environment.Trans Nonferrous Met Soc China,2006,16:293-297.
    [136] Giunchedi P, Contia B, Scalia S, et al.In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. J Control Rel, 1998, 56: 53–62.
    [137] Treon SP , Chabner BA. Concept in use of high– dose methotrexate therapy. Clinical Chemistry , 1996 , 42:1322-1329.
    [138] Murakami Y, Yamazaki K, Sakauchi N, et al. A one-month repeated oral does toxicity study of methotrexate in unilaterally nephrectomized rats. J Toxicol Sci, 1998, 235: 681-699.
    [139]国家药典委员会.中国药典(二部).北京:化学工业出版社, 2005:596,120.
    [140]吴晓英,林影,陈慧英.溶菌酶的研究进展.工业微生物,2002,4:55-58.
    [141] Jeffery SN,John JR,Bruce SZ,et al. Lysozyme enhancement of tumor cell immumoprotection in murine fibrosarcoma.Cancer Research,1981,4:16-42.
    [142] Peeters TL,Depraetere YR,Vantrappen GR,et al. Radioimmunoassay fro urinary lysozyme in human serum from leukemic patients. Clin Chen,1978,24:2155.
    [143] Pérez C, Griebenow K. Improved activity and stability of lysozyme at the water/methylene chloride interface: enzyme unfolding and aggregation and its prevention by polyols. J Pharm Pharmacol, 2001, 53:1217-1226.
    [144]常东武.压汞法测量孔隙时减小误差的方法及分析.实验技术与管理, 2003 , 20: 76-80.
    [145]刘培生.多孔材料孔率的测定方法.钛工业进展, 2005 , 22: 34-37.
    [146]王玉珑,曹振雷,王燕忠.采用汞压入法测量纸张微孔分布和孔隙率.中国造纸, 2006, 25:19 - 21.
    [147] Carlos A , Leon y Leon. New Perspectives in mercury porosimetry. Advances in Colloid and Interface Science, 1998 , 76 - 77 : 341 - 372.
    [148] Liu YD, Sunderland B. In vitro and in vivo release of naltrexone from biodegradable depot systems. Drug Dev Ind Pharm, 2006, 32:85-94;
    [149] Cao Y, Mitchell G, Messina A, et al. The influences of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo. Biomaterials, 2006, 27:2854-2864.
    [150] Zweers MLT, Engbers GHM, Grijpma DW. In vitro degradation of nanoparticles prepared from polymers based on dl-lactide, glycolide and poly(ethylene oxide). J Control Rel, 2004,100:347-356.
    [151] McHugh J, Dumont S N., Paradis J, et al. New and Simple HPLC Method for the Determination of Lactic Acid Content in Ciprofloxacin Injection. J. Liq. Chromatogr. Relat. Technol.2006,29:1905–1916.
    [152] Je Y Y, Jong M K, Kwang S S,et al. Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Biomed Mater Eng. 2005, 15: 279–288.
    [153] Sims GEC, Snape TJ. A method for the estimation of polyethylene glycol in plasma protein fractions. Anal Biochem.1980,107:60-63.
    [154] Friederike VB, Ruxandra G, Achim G. erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol)[J],Biomaterials,1997,18:1599-1607.
    [155] Xiao HL, Xian M D, Ming LY, et al., In Vitro Degradation and Release Profiles of Poly(D,L-Lactide)-Poly(ethylene glycol) Microspheres with Entrapped Proteins, Journal of Applied Polymer Science, 2000,78:140–148.
    [156] Rosca I D. Watari F. Uo M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J.Control.Rel, 2004, 99, 271-280.
    [157] Guyot M, Fawaz F. Nifedipine loaded-polymeric microspheres: preparation and physical characteristics. Int J Pharm,1998,175:61-74.
    [158] Okhamafe A,York P. Thermal characterization of drug/polymer and excipient/polymer interactions in some films coating formulation.J Pharm Phartnacol,1989,41:1-6.
    [159] Six K,Verreck G, Peeters J, Brewster M, et al.Increased Physical Stability and Improved Dissolution Properties of Itraeonazole,a Class II drug,by Solid Dispersions that Combine Fast- and Slow-Dissolving Polymers, J Pharm Sci, 2004,93:124-131.
    [160] Miyajima M, Koshika A, Okada J, et al. Effect of polymer/ basic drug interactions on the two-stage diffusion-controlled release from a poly (L-lactic acid) matrix. J Control Rel,1999, 61:295-304.
    [161] Rabek JF主编,吴世康,漆宗能等译.高分子科学实验方法-物理原理与应用.北京:科学出版社,1987:365-387.
    [162] Wang, J.,Wang, B.M. and Schwendeman, S.P., 2000a. Characterization of the initial burst drug release from poly (D,L-lactide-co-glycolide) microspheres I: multiphasic release behavior uncovered by continuous monitoring. In: Proceedings AAPS Annual Meeting, Indianapolis, USA.
    [163] Wang, J.,Wang, B.M. and Schwendeman, S.P., 2000b. Characterization of the initial burst drug release from poly (D,L-lactide-co-glycolide) micro- spheres II: alterations in surface permeability implicated in cessation of burst release. In: Proceedings AAPS Annual Meeting, Indianapolis, USA.
    [164] Ainaoui, A., Siepmann, J., Bodemeier, R., Vergnaud, J. M., Calculation of the dimensions of dosage. forms with release controlled by diffusion for in vivo use, European Journal of Pharmaceutics and Biopharrnaceutics, 2001, 51, 17-24.
    [165] Ainaoui, A., Vergnaud, J. M., Modeling the plasma drug 1eve1 with oral controlled release dosage forms with lipidic Gelucire, International .Journal of Pharmaceutics, 1998, 169, 155-162.
    [166] Chen YX, McCa11 TW, Baichwal AR,et al.The applications of an artificial neural network and pharmacokinetic simulations in the design of controlled release dosage forms, J Control Rel,1999,59:33-41.
    [167] Koizumi T,Panomusul SP,Release of Medicaments from Spherical Matrices Containing Drug in supsension:Theoretical Apects.Int J Pharm,1995,116:45-49.
    [168] Batycky PR,Hanes J.Langer R,et al. A theoretical model of erosion and macromolecular release from biodegrading microspheres [J].J Pharm Sci,1997,86:1464-1477.
    [169] Berkland C, Kim K, Pack DW. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J Control Rel, 2001,73:59-74.
    [170] Berkland C, Kim K, Pack DW. PLG microsphere size controls drug release rate through several competing factors. Pharm. Res, 2003, 20:1055–1062.
    [171] Li L, Schwendeman,SP. Mapping neutral microclimate pH in PLGA microspheres. J.control.Rel, 2005, 101:163-173.
    [172] Raman C, Berkland C, Kim K, et al. Modeling small-molecule release from PLG microspheres: effects of polymer degradation and nonuniform drug distribution. J.Control.Rel, 2005, 103,:149–158.
    [173] Ruan G, Feng SS, Li QT. Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process. J control Rel , 2002, 84: 151-160.
    [174] Jamshidi K, Hyon SH, Ikada Y.Thermal characterization of polylactides. Polymer, 1988,29: 2229-2234.
    [175] Fan LT, Singh SK.Controlled release: A quantitative treatment.1989, Springer-Verlag, Berlin.
    [176] Siepmann J, Elkharraz K, Siepmann F, et al. How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Biomacromolecules, 2005, 6: 2312-2319.
    [177] Klose D, Siepmann F, Elkharraz K, KrenzlinS, et al. How porosity and size affect the drug release mechanisms from PLGA-based microparticles.Int. J.Pharm. 2006, 314:198-206.
    [178] Siepmann J, Faisant N, Akiki J, et al. Effect of the size of biodegradable microparticles on drug release: experiment and theory. J.Control.Rel, 2004, 96: 123-134.
    [179] Kenley RA, Lee MO, Randolph IT, et al. Poly (lactide-co-glycolide) degradation kinetics in vivo and in vitro. Macromolecules, 1987, 20:2398–2403.
    [180] Liang LS, Jackson J, Min W, et al. Methotrexate loaded poly (L-lactic acid) microspheres for intra-articular delivery of methotrexate to the Joint. J. Pharma. Sci, 2004, 93: 943–956.
    [181] Chiu LK, Chiu WJ, Cheng YL, Effects of polymer degradation on drug release - a mechanistic study of morphology and transport properties in 50:50 poly (dl-lactide-co-glycolide). 1995, Int.J.Pharm, 126:169-178.
    [182] Sansdrap P, Moe¨s AJ. In vitro evaluation of the hydrolytic degradation of dispersed and aggregated poly(DL-lactide-co-glycolide) microspheres. J Control Rel,1997,43: 47-58.
    [183] Bodmeier R, Chen H. Effect of the addition of low molecular weight poly(D,L-1actide) on drug release from biodegradable poly(D,L-lactide) drug delivery system. Int J Pharm, 1989, 51:1-8.
    [184] Vert M, Mauduit J, Li S. Biodegradation of PLA/GA polymers:increasing complexity. Biomaterials, 1994, 15:1209-1213.
    [185] Berkland C, King M, Cox A, et al. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Rel, 2002, 82:137-147.
    [186] Chu CC. A Comparison of the Effect of pH on the Biodegradation of Two Synthetic Absorbable Sutures. Ann Surg, 1982,195:55–59.
    [187] Read AM,Gilding DK. Biodegradable polymers for use in surgery-poly(glycolic)/ poly(lactic acid) homo and copolymers 2. In-vitro degradation. Polymer,1981,22:494-504.
    [188] Visscher GE, Robison RL, Maulding HV,et al. Biodegradation of and tissue reaction to 50:50 poly (dl-lactide-co-glycolide) microcapsules. J Biomed Mater Res. 1985,19: 349-365.
    [189] Ertl B, Platzer P, Wirth M, et al. Poly(D,L-lactide-co-glycolide acid) microspheres for sustained delivery and stabilization of camptothecin. J.Contrl.Rel. 1999, 61:305-317.
    [190] K.Fu,D.W.Pack,A.M.Klibanov,and R.Langer.Visual evidence of acidic environment within degrading PLGA microspheres.Pharm.Res. 2000,17:100-106.
    [191] M.Dunne,O.I.Corrigan,and Z.Ramtolla.Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials,2000, 21:1659-1668.
    [192] Gref R, Quellec P, Sanchez A, et al. Development and characterization of CyA-loaded poly (lactic acid)-poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Eur J Pharm Biopharm,2001, 51:111-118.
    [193] Burkersroda F, Schedl L, Gopferich A. Why degradable polymers undergo surface erosion or bulk erosion.Biomaterials, 2002, 23: 4221-4231.
    [194] Li XH, Deng XM, Huang ZT. In Vitro Protein Release and Degradation of Poly-dl-lactide-poly (ethylene glycol) Microspheres with Entrapped Human Serum Albumin: Quantitative Evaluation of the Factors Involved in Protein Release Phases. Pharm Res, 2001, 18: 117-124.
    [195] Jiang HL, Zhu KJ. Preparation, characterization and degradation characteristics of polyanhydrides containing poly(ethylene glycol). Polym Int, 1999, 48:47-52.
    [196] Siepmann J, Peppas NA.Mathematical modeling of controlled drug delivery, Adv Drug Deliver Rev, 2001, 48:137-138.
    [197] Zhou Y,Wu XY.Modeling and analysis of dispersed-drug release into a finite medium from sphera ensembles with a boundary layer.J Control Rel,2003,90:23-36.
    [198] Bakhouya A, Saidna M, vergnaud JM.Calculation of the blister fluid-time history with ciprofloxacin administered orally or by infusion. Int J Pharm,1997, 146:225-232.
    [199] Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci, 1961, 50:874-875.
    [200] Peppas NA.In:Smolen VF,Ball L (Eds.). Controlled Drug Bioavailability.New York:John Wiley&Sons,1984(1):203.
    [201] Baker RW,Lacdale HS.Controlled release: mechanisms and rates. In:Taduary A.C.,Lacey,R.E.(Eds.), Cohtrolled Release of Biologically Active Agents.Plenum Press, New York,1974,15-71.
    [202] Pepps N A, Korsmeyer R W. Dynamically swelling hydrogels in controlled release application. Hydrogel in Medicine and Pharmacy. Beca Raton: CRC Press, 1986, 3.
    [203] Hopfenberg H B, Hsu K C. Swelling-controlled, constant rate delivery systems. Polym Eng Sci, 1978, 18:1186-1191.
    [204] Polakovic M, Gorner T, Gref K,et al.“Lidocaine-loaded Biodebradahle nanospheres, II. Modeling of Drug release". J Control Rel, 1999, 60:169-177.
    [205] Faisant N,Siepmann J,Benoit JP.PLGA-based microparticles:elucidation of mechanisms and a new, simple mathematical model quantifying drug release. Eur J Pharm Sci, 2002, 15:355-366.
    [206] Charlier A, Leclerc B, Couarraze G. Release of mifepristone from biodegradable matrices: experimental and theoretical evaluations. Int J Pharm, 2000, 200:115-120.
    [207] Ehtezazi T,Washington C. Controlled release of macromolecules from PLA microspheres: using porous structure topology, J Control Rel,2000, 68:361-372.
    [208] Zhang M, Yang Z, Chow LL,et al. Simulation of drug release from biodegradable polymeric microspheres with bulk and surface erosions, Journal of Pharmaceutical Sciences,2003,92:2040-2056.
    [209] Siepmann J, Faisant N, Benoit J P. A new mathematical model quantifying drug release from bioerodible microparticles using monte carlo simulations. Pharm Res, 2002, 19(12):1885-1893.
    [210] Zygourakis K, Markenscoff P A. Computer-aided design of bioerodible devices with optimal release characteristics: a cellular automata approach. Biomaterials, 1996, 17:125-135.
    [211] Gopferich A. Mechanisms of polymer degradation and erosion.Biomaterials. 1996, 17:103-114.
    [212] Fitzgerald J F, Corrigan O I. Mechanisms governing drug release from polyα-hydroxy aliphatic esters, diltiazem base release from polylactide-co-glycolide delivery systems. 1993, In Polymeric Delivery Systems, Properties and Applications, ACS Symposium Series, 520:311–326. Washington DC: American Chemical Society.
    [213] Sinha VR,Trehan A. Biodegradable microspheres for protein delivery. J Control Rel, 2003, 90:261-280.
    [214] Hildebrand GE,Tack JW.Microencapsulation of peptides and proteins. Int J Pharm, 2000, 196:173–176.
    [215] Weert M, Hennink W, Jiskoot WE, Protein instability in poly(lactic-co-glycolic acid) microparticles, Pharm. Res. 2000,17:1159–1167.
    [216] Jiang W, Schwendeman SP. Stabilization and controlled release of bovine serum albumin encapsulated in poly(d,l-lactide) and poly(ethylene glycol) microsphere blends, Pharm.Res.2001, 18:878-885.
    [217] Yamaguchi Y, Takenaga M, Kitagawa A, et al. Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives. J Control Rel, 2002, 81:235-249.
    [218] Wang J, Wang B M, Schwendeman S P. Mechanistic evaluation of the glucose-induced reduction in initial burst release of octreotide acetate from poly(d,l-lactide-co-glycolide) microspheres[J]. Biomaterials, 2004, 25:1919-1927.
    [219] Thote A J, Chappell J T, Gupta R B. Reduction in the initial-burst release by surface crosslinking of PLGA microparticles containing hydrophilic or hydrophobic durgs. Drug Dev Ind Pharm, 2005, 1: 43-57.
    [220] Wang S H, Zhang L C, Linb F, et al. Controlled release of levonorgestrel from biodegradable poly(d,l-lactide-co-glycolide) microspheres: In vitro and in vivo studies.Int J Pharm,2005, 301:217-225.
    [221] Shi M, Yang YY, Chaw CS, et al. Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties. J Control Rel, 2003, 89:167-177.
    [222] Rahman NA, Mathiowitz E. Localization of bovine serum albumin in double-walled microspheres. J Control Rel, 2004, 94:163-175.
    [223] Matsumoto A, Matsukawa Y, Suzuki T, et al. Drug release characteristics of multi-reservoir type microspheres with poly (dl-lactide-co-glycolide) and poly (dl-lactide).J Control Rel, 2005, 106:172-180.
    [224] Kumar MNVR, Muzzarelli RRA, Muzzarelli C, et al. Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev. 2004, 104: 6017-6084.
    [225] Chen SC,Wu YC,Mi FL,et al. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery.J.Control.Rel,2004,96:285-300.
    [226] Jiang G, Woo BH, Kang F R, et al. Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly (D,L-lactide-co-glycolide) microspheres. J Control Release, 2002, 79(1-3):137-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700