用户名: 密码: 验证码:
生物滴滤器净化甲苯废气工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物滴滤法净化挥发性有机物(VOCs)是有机废气治理领域的新兴技术,而反应器生物膜中微生物的特性与反应器的操作运行参数对生物系统的稳定运行与有机物的高效净化有着重要的影响。本论文以甲苯气体作为唯一碳源,在筛选出高效降解甲苯菌种的基础上,系统地研究了生物滴滤器净化甲苯过程中中间产物的形成与积累机制及气流配置方式对系统净化性能、运行稳定性与种群结构的影响,并深入探讨了微生物对甲苯及中间代谢产物的趋化性反应与滴滤器净化过程的内在关系,取得了以下的主要结果:
     以焦化废水活性污泥为菌源,甲苯为唯一碳源进行递进式诱导驯化,筛选得到3株甲苯高效降解菌株:Pseudomonas putida,Gordonia sp.和Ochrobactrum sp.。
     通过对菌株Pseudomonas putida降解甲苯的序批式实验和生物滴滤器净化甲苯废气试验的研究表明:生物降解甲苯过程中有邻苯二酚等中间产物积累,在试验条件下,邻苯二酚最大累积量可达0.045 mg·L~(-1)。但当停止向生物反应体系供给甲苯气体时,体系中积累的邻苯二酚在5~10 h内可以完全矿化。
     基于生物降解甲苯过程与降解甲苯代谢中间产物过程的分离,并从中间产物的积累对酶的抑制作用出发,建立了甲苯消耗动力学和细胞生长动力学模型。
     采用双向流交替进气(FDS)方式,对生物滴滤器内的微生物种群进行选择,构建净化有机废气的高效生物滴滤新工艺。通过生物滴滤系统进气方式改变的平行对比试验研究表明:与单向进气(UF)运行方式相比,FDS运行方式可以显著提高滴滤器最大去除能力与停运恢复能力。FDS系统对甲苯的最大去除能力为480 g·m~(-3)·h~(-1),且停运48 h后,经3~4 h系统就可以恢复稳定;而UF系统对甲苯的最大去除能力为410 g·m~(-3)·h~(-1),停运48 h后,需要9~10 h才能恢复稳定。
     通过对FDS生物滴滤器中微生物群落的代谢特征研究表明: FDS运行模式下,可通过生物选择作用显著提高生物膜群落代谢活性、功能多样性和分布均匀程度,从而提高系统去除能力与稳定性。FDS系统出气段最高AWCD(每孔溶液平均吸光度)值、Mdntonch指数分别比UF系统高出46.8%和31.5%。
     考察了菌株Gordonia sp.和Ochrobactrum sp.对甲苯和邻苯二酚的趋化现象,结果表明:细菌对疏水性底物和中间产物的趋化作用可推动生物膜的形成,增强相间传质推动力和生物降解效果。建立了“固液相主动吸附-生物降解”生物膜理论与稳态条件下生物滴滤器净化苯系有机气体的动力学模型,利用该模型成功预测了不同进口浓度,床层体积与运行温度下的净化性能,模型计算值与实验测试值具有较好的一致性。
     该论文有图75幅,表21个,参考文献174篇。
Biotrickling filter treatment is an attractive approach for treating volatile organic compounds (VOCs) in waste-gas treatment fields. The characteristics of microbial populations in biomembrane and running conditions of bioreactors both play crucial roles in biological waste-gas treatments by significantly influencing the stability and treatment efficiency of systems. In this dissertation, based on the screening of the obligate toluene-degrading bacteria and toluene chosed as the sole carbon source, the production of metabolic intermediates by microorganisms degrading toluene and its accilimation mechanism in biotricking filters were investigated. The effect of waste-gas flow configuration pattern on biotrckling filter performance, stability and microbial community, and the roles of microbial chemotaxis to toluene and intermediates in the purification process of biotrickling filters were also researched. The main contributions to the current understanding of this topic were described below.
     The consortium source in this research was derived from the activated sludge of a coking plant, and the toluene was used as the only carbon source and inducer with concentration increasing by degrees to acclimate the toluene-degrading consortium. Three strains with high toluene-degrading activity were gained, and were identified as P.putida,Gordonia sp. and Ochrobactrum sp.
     Toluene biodegradation by Pseudomonas putida in batch cultues and purification in a laboratary-scale biotrickling filter were investigated. The results showed that intermediates including catechol accumulated during the degradation of toluene. Under the condition of our experimentation, the catechol which accumulated to the maximal concentration of 0.045 mg·L-1 during biodegradation could be totally mineralized within 5~10 h during shutdown periods.
     By incorporating the inhibition effects of metabolic intermediates, the toluene biodegradation and cell growth kinetics is proposed to simulate toluene degradation profiles, which is based on the production and later consumption of metabolic intermediates.
     A novel flow-directional-switching biotrickling filter was designed by improving the structure and running condition to select effective microbial populations. Two identical sized laboratory-scale biotrickling filters with flow configuration of flow-directional–switching (FDS) and conventional undirectional flow (UF) respectively, were used to study the purification of toluene waste-gas streams. The results show that FDS operation can improve the maximum elimination capacity of the biotrickling filter and quickly recover its nominal performance after system shutdowns. The maximum elimination capacities of 480 and 410 g·m-3·h-1 were obtained, respectively. When the systems were operated with continuous feed, then shut down for 48 hours, the elimination efficiency of FDS and UF systems were resumed to normal level with continuous feed after 3~4 h and 9~10 h, respectively.
     The metabolic characteristics of the microbial communities in FDS and UF biotrickling filters were accessed. The diversity indexes and principle component analysis demonstrate that FDS operation can improve the microbial reaction capacity and community functional diversity,produce a more uniform distribution of biomass along the length of packed bed. The maximum values of AWCD (Average Well Color Development) and Mdntonch index near the oulet packed bed of FDS system were 46.8% and 31.5% higher than that of UF system.
     Two strains of bacteria, identified as Gordonia sp.and Ochrobactrum sp., were tested for their chemotactic responses to toluene and catechol. The results show that bacteria chemotaxis can significantly accelerate the biofilm formation, interphase mass transfer process and biodegradation process of biotrickling filters. Then, a new theory called "Solid and Liquid phase Active Adsorption" is put forward and a related kinetic model is also established in this research. It is shown that the model agrees well with the experimental data, predicting the variations of purification performance with different inlet concentration, packed bed volumes and running temperture.
引文
[1] Hinwood A L, Berko H N, Farrar D, et al. Volatile organic compounds in selected micro -environments[J]. Chemosphere, 2006, 63 (3): 421-429.
    [2] Kennes C, Veiga M C. Bioreactor for Waste Gas Treatment[M]. London: Kluwer Academic Publishers, 2001: 47-137.
    [3]李建.涂料和胶粘剂中有毒物质及其检测技术[M].北京:中国计划出版社,2002.
    [4] Noelde Nevers. Air pollution control engineering (second edition)[M].北京:清华大学出版社,2000.
    [5] Metcalf, Eddy. Wastewater Engineering: Treatment, Disposal and Reuse[M]. New York: McGraw-Hill, 1991.
    [6]刘力,冯坚持,张桥,等.苯、甲苯、二甲苯暴露人群遗传毒性生物标志物的研究[J].中华劳动卫生职业病杂志, 1996, 14 (1): 1-3.
    [7] Maliyekkal S M, Rene E R, Philip L, et al. Performance of BTX degraders under substrate versatility conditions[J]. Journal of Hazardous Materials, 2004: 201-211.
    [8] Mathur A K, Majumdera C B, Chatterjee S. Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media[J]. Journal of Hazardous Materials, 2007, 148: 64–74.
    [9]陈英旭.环境学[M].北京:中国环境科学出版社, 2001.
    [10]戴树桂.环境化学[M].北京:高等教育出版社, 2000.
    [11]苑宏英,郭静,徐娟,等.生物膜法降解甲苯废气过程的探讨[J].城市环境与城市生态, 2002, 15 (1): 44-46.
    [12] Pedersen A R, Arvin E. Toluene removal in a biofilm reactor for waste gas treatment[J]. Water Sci. Technol, 2000, 36: 69-76.
    [13] Zilli M, Borghi A D, Converti A. Toluene vapor removal in a laboratory scale biofilter[J]. Appl. Microbiol. Biotechnol, 2000, 54: 248-254.
    [14] Kumar A, Dewulf J, Luvsanjamba M, et al. Continuous operation of membrane bioreactor treating toluene vapors by Burkholderia vietnamiensis G4[J]. Chemical Engineering Journal, 2008, 140: 93-200.
    [15]王宝庆.挥发性有机废气净化技术研究进展[J].环境污染治理技术与设备,2003, 4 (5): 47-51.
    [16] Wu G, Cinti B, Leroux A, et al. A high performance biofilter for VOC emission control[J]. Journal of the Air & Waste Management Association, 1999, 49 (2): 185-192.
    [17] Iliuta I, Larachi F. Transient biofilter aerodynamics and clogging for VOC degradation[J]. Chemical Engineering Science, 2004, 59: 3293-3302.
    [18] Devinny J, Deshusses M, Webster T. Biofiltration for Air Pollution Control [M]. Washington: Lewis Publishers, 1999.
    [19]博尼科(美).气态污染物工业控制设备[M].北京:化学工业出版社, 1982.
    [20]朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社, 2001.
    [21]张丽,张小平,叶代启.气—固流化床光催化氧化甲苯的研究[J].环境污染治理技术与设备, 2005, 6(9): 68-71.
    [22]黄立维,谭天恩,施耀.高压脉冲电晕法治理有机废气试验研究[J].环境污染与防治, 1998, 20 (1): 4-7.
    [23]侯健,潘循皙,赵太杰,等.常压非平衡态等离子体降解挥发性烃类污染物[J].中国环境科学, 1999, 19 (3): 277-280.
    [24]吴健婷,李胜利,汪晓熙,等.放电等离子体方法处理二甲苯废气的试验研究[J].武汉科技大学学报(自然科学版), 2005, 28 (1): 35-37.
    [25]张宇峰,邵春燕,张雪英,等.挥发性有机化合物的污染控制技术[J].南京工业大学学报, 2003, 25 (3): 89-92.
    [26]陈建孟,王家德,唐翔宇.生物技术在有机废气处理中的研究进展[J].环境科学进展, 1998,6 (3):30-35.
    [27]何坚,羌宁,季学李.控制挥发性有机污染物的革新方法——生物滴滤池法[J].污染防治技术, 1999, 12 (1): 197-199.
    [28]王家德,陈建孟,唐翔宇.有机废气的生物处理概述[J].上海环境科学, 1998, 17 (4): 21-24.
    [29] Corsi R, Sees L. Biofiltration of BTEX: media, substrate and loading effect [J]. Environmental progress, 1995, 14 (3): 151-159.
    [30] Sorial G A, Smith F L, Suidan M T, et al. Evaluation of trickle bed air biofilter perfomance for BTEX removal[J]. J Environ Eng., ASCE, 1997, 123 (6): 530-540.
    [31] Prado O′J, Veiga M C, Kennes C. Effect of key parameters on the removal of formaldehyde and methanol in gas-phase biotrickling filters[J]. Journal of Hazardous Materials, 2006: 543-54.
    [32] Burgess J E, Parsons S A, Stuetz R M. Developments in odour control and waste gas treatment biotechnology: a review[J]. Biotechnology Advances, 2001, 19: 35-63.
    [33] Sorial G A, Smith F L, Smith P J, et al. Biofilters treat contaminated air[J]. Wat Environ. Tech, 1994, 6: 50-54.
    [34] Deshusses M A, Cox H H J. A cost benefit approach to reactor sizing and nutrient supply for biotrickling filters for air pollution control[J]. Environ Prog, 1999, 18: 188-196.
    [35] Deshusses M A, Johnson C T. Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment[J]. Environ Sci Technol, 2000, 34: 461-467.
    [36] Collins L D, Daugulis A J. Use of a two phase partitioning bioreactor for the biodegradation ofphenol[J]. Biotechnol Tech. 1996, 10: 643-648.
    [37] Collins L D, Daugulis A J. Characterization and optimization of a two-phase partitioning bioreactor for the biodegradation of phenol[J]. Appl Microbial Biotechnol, 1997, 48:18-22.
    [38] Eunsung Kan. Development of a foamed emulsion bioreactor for air pollution control[D]. Riverside: University of California, 2005.
    [39] Santiago R M, Villaverde, Benoit Guieysse, et al. Two-phase partitioning bioreactors for treatment of volatile organic compounds[J]. Biotechnology Advances, 2007, 25: 410-422.
    [40]郑曼曼.生物滴滤法净化挥发性有机废气的试验研究[D].南京:南京理工大学. 2004.
    [41]郭晓芬.生物滤塔降解甲苯废气的填料评选和性能研究[D].杭州:浙江大学,2005.
    [42]安莹玉,张兴文,杨凤林.有机废气生物处理技术现状与展望[J].四川环境, 2006, 25 (1).
    [43]闫勇.有机废气中VOCs的回收方法[J].化工环保,1997, 17 (1): 34-38。
    [44] Schindler I, Sara M, Friedl A. Influence of physiologically relevant parameters on biomass formation in a trickling-bed bioreactor used for waste gas cleaning[J]. Appl. Microbiol. Biotechnology, 1996, 45: 286-292.
    [45] Hartmans S, Tramper J, Dichloromethane removal from waste gases with a biotrickling filter[J]. Bioproc. Eng, 1991, 6: 83-92.
    [46] Pol A, Van H, Camp O D. Styrene removal from waste gas with a bacterial biotrickling filter[J]. Biotechnol. Letters, 1998, 20: 407-410.
    [47] Zhu X Q, Rihn M J, Suidan M T. The effect of nitrate on VOC removal in trickle bed biofilters[J]. Wat.Sci.Tech, 1996, 34(3): 573-581.
    [48] Oh Y S, Bartha R. Removal of nitrobenzene vapors by a trickling air biofilter [J]. J. Industrial Microbiol. & Biotechnol., 1997, 18: 293-296.
    [49] Disk R M M, Ottengraf S P P. Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter (partΠ)[J]. Bioproc. Eng. 1991, 6: 131-140.
    [50] Oh Y S, Bartha R. Design and Performance of a trickling air biofilter for chlorobenzene and o-dichlorobenzene vapors[J]. Appl. Environ. Microbiol, 1994, 60: 2717-2722.
    [51] Pedersen A R, Arvin E. Removal of Toluene in waste gases using a biological trickling filter[J]. Biodegradation, 1995, 6(2): 109-118.
    [52] Smith F L, Sorial G A, Suidan M T, et al. Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loading[J]. Eviron. Sci. Technol. 1996, 30: 1744-1751.
    [53] Weber, F J, Hartmans S. Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air[J]. Bioeng., 1996, 50: 91-97.
    [54] Cox H H J, Deshusses M A. Biomass control in waste air biotrickling filters by protozoan predation[J]. Biotechnol.Bioeng, 1999, 62: 216-224.
    [55] Fortin N Y, Deshusses M A. Treatment of methyl tert-butyl ether vapors in biotrickling filters: Reactor startup, stead-state proformance, and culture characteristics[J]. Environ.Sci. Technol, 1999, 33: 2980-2986.
    [56] Cai Z, Kim D, Sorial G A. A comparative study in treating two VOC mixtures in trickle bed air biofilters[J]. Chemosphere, 2007, 68: 1090-1097.
    [57] Jin Y, Veiga M C. Kennes C. Co-treatment of hydrogen sulfide and methanol in a single-stage biotrickling filter under acidic conditions[J]. Chemosphere, 2007, 68: 1186-1193.
    [58] Qi B, Moe W M. Performance of low pH biofilters treating a paint solvent mixture: Continuous and intermittent loading[J]. Journal of Hazardous Materials, 2006, 135: 303-310.
    [59] Moe W M, Qi B. Performance of a fungal biofilter treating gas-phase solvent mixtures during intermittent loading[J]. Water Research, 2004, 38: 2258-2267.
    [60] Aizpuru A, Malhautier L, Roux J C, et al. Biofiltration of a mixture of Volatile Organic Emissions[J]. Air & Waste Management Association, 2001, 12(51): 1662-1670.
    [61] Pagans E, Font X, Sánchez A. Coupling composting and biofiltration for ammonia and volatile organic compound removal[J]. Biosystems Engineering, 2007, 97: 491-500.
    [62] Mathur A K, Majumder C B. Biofiltration and kinetic aspects of a biotrickling filter for the removal of paint solvent mixture laden air stream[J]. Journal of Hazardous Materials, 2007: 1-10.
    [63]孙佩石.生物膜填科塔对低浓度甲苯废气的净化性能研究[J].环境污染与防治, 1997, 19(3):8-11.
    [64]孙佩石.生物滴滤塔净化低浓度甲苯废气研究[D].昆明:昆明理工大学, 1999.
    [65]马红,羌宁,季学李.苯系混合气体生物滴滤器净化性能研究[J].四川环境,2005,24(2): 24-26.
    [66]羌宁,季学李,都基峻,等.苯系混合气体生物滴滤器非稳态工况性能[J].环境科学, 2005, 26(1): 16-19.
    [67]席劲瑛.生物过滤塔处理挥发性有机物气体的研究[D].北京:清华大学, 2005.
    [68] Xi J Y, Hu H Y, Qian Y. Effect of operating conditions on long-term performance of a biofilter treating gaseous toluene: Biomass accumulation and stable-run time estimation[J]. Biochemical Engineering Journal, 2006, 31:165-172.
    [69]刘强.生物滴滤法净化挥发性有机废气(VOC)的研究[D].西安:西安建筑科技大学, 2003.
    [70]王宝庆.生物过滤法净化含苯系物废气的研究[D].西安:西安建筑科技大学, 2004.
    [71]陈蓉,廖强,朱恂.分段进气生物膜滴滤塔的废气净化效率[J].重庆大学学报, 2004, 27(4): 78-81.
    [72]陈蓉,廖强,朱恂.生物膜滴滤塔的净化效率[J].工程热物理学报,2005,26(1): 122-124.
    [73]徐峰,钟秦.生物滴滤塔净化甲苯废气的研究[J].南京理工大学学报,2004,28(3):299-302.
    [74]王娟,钟秦.生物滴滤器净化低浓度甲苯废气的非稳态工况研究[J].环境污染治理技术与设备,2005,6(12): 48-51.
    [75]王丽萍.生物滴滤法净化BTX废气研究[D].徐州:中国矿业大学, 2005.
    [76]王丽萍,周敏,华素兰,等.高性能生物滴滤器净化甲苯气体的研究[J].环境工程, 2004, 22(3): 73-75.
    [77] Warren J S, Raymond C L. Biofiltration: Fundamentals, design and operations principles and applications[J]. Journal of Environmental Engineering, 1997, 123(6): 538-545.
    [78] William M M , Robert L I. Polyurethane foam medium for biofiltration I: Characterizatin[J].Journal of Environm ental Enginering,2000,126(9): 815-825.
    [79] William M M,Robert L I. Polyurethane foam medium for biofiltration II: Operation and r~ onnance[J].Journal of Environmental Engineering,2000,126(9): 826-832.
    [80] George A S,Francis L S,Makram T S,et a1.Evaluation of tricle bed air biofilter performance for BTEX remova1[J].Journal of Environmental Engineering,1997,123(6): 530-537.
    [81]孙珮石,黄兵,黄岩华,等.生物膜填料塔净化工业废气用填料的研究[J].化工环保, 2002, 22(4): 195-198.
    [82]魏在山,孙石,黄若华.新型生物轻质陶块填料塔净化低浓度有机废气的试验研究[J].中国环境监测,2001,17(6): 21-22.
    [83]羌宁,季学李,顾国维.气体生物滴滤池载体性能比较实验研究[J].环境科学, 2000, 21(1):45-48.
    [84]周卫列,王家德,郑荣勤,等.塔填料生物成膜工艺及其特性参数研究[J].浙江工业大学学报, 1999, 27(4): 300-305.
    [85]都基峻,季学李,羌宁,等.新型丝网填料滴滤器净化含苯废气的实验研究[J].环境保护科学, 2004, 30(6): 1-4.
    [86]王娟,钟秦,郑曼曼.石化污泥混合菌和白腐真菌对气相苯系物的降解能力比较[J].安全与环境学报, 2005, 5(2): 14-16.
    [87]郭晓芬,郑连英.微生物处理甲苯废气的菌种选育[J].食品与生物技术学报, 2005, 24(3): 12-15.
    [88] Bruns M A, Hanson J R, Mefford J, et al. Isolate PM1 polulations are dominant and novel methyl tert-butyl ether-degrading bacteria in compost biofilter enrichments[J]. Envion. Microbiol, 2001, 3: 220-225.
    [89] Pedersen A R, Moller S, Molin S, et al. Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment[J]. Biotechnology and Bioengineering, 1997, 54(2): 131-141.
    [90] Li C, Moe W M. Assessment of microbial populations in methyl ethyl ketone degrading biofiltersby denaturing gradient gel electrophoresis[J]. Applied Microbiology and Biotechnology, 2004, 64(4): 568-575.
    [91] Sercu B, Nú?ez D, Aroca G, et al. Inoculation and start-up of a biotricking filter removing dimethyl sulfide[J], Chemical Engineering Journal, 2005, 113(2-3): 127-134.
    [92] Cai Z, Kim D, Sorial G A, et al. Performance and microbial diversity of a trickle-bed air biofilter under interchanging contaminants[J]. Engineering in Life Sciences, 2006, 6(1): 37-42.
    [93] Smith F L, Sorial G A, Suidan M T, et a1. Development of two biomass control strategies for extended, stable operation of hightly efficient biofilters with high toluene loadings[J]. Environ Sci Technol, 1996, 30(5): 1 744-1 751.
    [94] Auria R, Frere G, Morales M, et a1. Influence of mixing and water addition on the removal rate of toluene vapors in a biofilter[J]. Biotechnology and Bioengineering, 2000, 68(4): 448-454.
    [95] Kennes C, Veiga M C. Inert filter media for the biofiltration of waste gases characteristics and biomass control[J]. Reviews in Environmental Science & Biotechonology, 2002, (1): 201-214.
    [96] Prado O J, Mendoza J A, Veiga M C, et al. Optimization of nutrient supply in a downflow gas-phase biofilter packed with an inert carrier[J]. Appl Microbiol Biotechnol, 2002, 59: 569-573.
    [97] Prado O J, Veiga M C, Kennes C. Removal of formaldehyde, methanol, dimethylether and carbon monoxide from waste gases of synthetic resin-producing industries[J]. Chemosphere, 2008, 70: 1357-1365.
    [98] Santos S, Jones K, Abdul R, et al. Treatment of wet process hardboard plant VOC emissions by a pilot scale biological system[J]. Biochemical Engineering Journal, 2007, 37: 261-270.
    [99] Moussavi G, Mohseni M. Using UV pretreatment to enhance biofiltration of mixtures of aromatic VOCs[J]. Journal of Hazardous Materials, 2007, 144: 59-66.
    [100] Li L, Liu J X. Removal of xylene from off-gas using a bioreactor containing bacteria and fungi[J]. International Biodeterioration & Biodegradation, 2006, 58: 60-64.
    [101] Ottengraf S P P, Van der Oever A H C. Kinetics of organic compound removal from waste gas with biological filter[J]. Biotech. & Bioeng., 1983, 25(12): 3089-3092.
    [102] Alonso, C, Suidan, MT, Sorial G A, et al. Gas treatment in trickle-bed biofilters: biomass, how much is enough?[J]. Biotech. & Bioeng., 1997, 54: 583-594。
    [103] Li H. Modeling and optimization of biofiltration for odor control[M]. Doctor of philosophy in Environmental Engineering. Michigan: Ann Arbor, 2002.
    [104]田鑫.净化低浓度有机废气生物膜滴滤塔传输及降解特性[D].重庆:重庆大学, 2006.
    [105] Mpanias C J, Baltzis B C. An experimental and modeling study on the removal of monochlorobenzene vapor in biotrickling filters biotechnol[J]. Bioeng., 1998, 59(3): 323-343.
    [106] Alonso C, Zhu X, Suidan M T et al .Mathematical model for the biodegration of VOCs in tricking bed biofilters[J]. Wat. Sci. Tech., 1999, 39(7): 139-146.
    [107] McNevin, Barford J. Modelling adsorption and biological degradation of nutrients on peat[J]. Biochemical Engineering Journal, 1998: 217-228.
    [108] Hekmat D, Stephan M, Bauer R, et al. Modelling of multispecies biofilm population dynamics in a trickle-bed bioreactor used for waste gas treatment[J]. Process Biochemistry, 2006, 41: 1409-1416.
    [109]孙佩石,黄兵,黄若华,等.生物法净化挥发性有机废气的吸附-生物膜理论模型与模拟研究[J].环境科学, 2002, 23(3): 14-17.
    [110]廖强,陈蓉,朱恂.生物膜滴滤床降解低浓度有机废气的理论模型[J].中国科学,2003, 33(5):435-442.
    [111]廖强,朱寿礼,朱恂.生物膜填料床内含有生化反应的多相传输模型[J].化工学报,2005,56(9):1743-1749.
    [112] Yu H, Kim B J, Rittmann B E. The roles of intermediates in biodegradation of benzene, toluene, and p-xylene by Pseudomonas putida F1[J]. biodegradation, 2001, 12(6): 455-463.
    [113] Yu H, Kim B J, Rittmann B E. A two-step for the kinetics of BTX degradation and intermediate formation by Pseudomonas putida F1[J]. biodegradation, 2001, 12(6): 465-475.
    [114] Stoffels M, Amann R, Ludwig W, et al. Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds[J]. Applied and Environmental Microbiology, 1998, 64(3): 930-939.
    [115] Parales R E, Harwood C S. Bacterial chemotaxis to pollutants and plant-derived aromatic molecules[J]. Current Opinion in Microbiology, 2002, 5: 266–273.
    [116] Parales R E, Ditty J L, Harwood C S. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene and trichloroethylene[J]. Appl Environ Microbiol, 2000, 66: 4098-4104.
    [117]何泽,李桂英,安太成,等.生物滴滤塔中两种优势菌种对高浓度甲苯废气净化对比实验[J].环境工程, 2007, (2):39-42.
    [118]邓献存.生物法降解低浓度甲苯废气的菌种选育及动力学研究[D].杭州:浙江大学, 2003.
    [119] Sung H Y, Andrew J D. Benzene degradation in a two-phase partitioning bioreator by Alcaligenes xylosoxidans Y234, Process Biochemistry[J], 2001, 36: 765-772.
    [120] Kim D, Kim Y S, Kim S K, et a1.Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17[J].Appl Environ Microbiol, 2002, 68(7): 3270-3278.
    [121]王亮.机油降解菌群的驯化及其活性与结构分析[D].上海:同济大学,2007.
    [122] Marie-caroline D, Louise B, Julie G, et al. Degradation of toluene, xylene and trimethyl -benzene vapors by biofiltration: a comparison [J]. Air & Waste Management Association. 2003, 53: 217-226.
    [123]翁酥颖,戚蓓静,史家樑,等.环境微生物学[M].北京:科学出版社, 1995: 102-151.
    [124]徐亚同.污染控制微生物学[M].北京:化学工业出版社,2001:188-194.
    [125]程树培.环境生物技术[M].南京:南京大学出版社. 1994.
    [126]刘文强,贾玉萍,赵宏坤. 16S rRNA在细菌分类鉴定研究中的应用[J].动物医学进展, 2006, 27(11): 15-18.
    [127] Sakamoto M, Umeda M, Benno Y J. Molecular analysis of human oral microbiota[J]. Periontal Res, 2005, 40(3): 277-285.
    [128]周煜. 16S rRNA序列分析法在医学微生物鉴定中的应用[J].生物技术通讯, 1999, 10(4) : 297-305.
    [129]夏颖,闵航,周德平,等.两株菲降解菌株的特性及其系统发育分析[J].中国环境科学, 2003, 23(2): 162-166.
    [130]【德国】K.布赫霍尔茨, V.卡谢, U.T.博恩舒尔,等.魏东芝,马昱澍,马兴元,等译.生物催化剂与酶工程[M].北京:科学出版社, 2008.
    [131]布坎南R E,吉本斯N E,等.伯杰细菌鉴定手册(第8版)[M].北京:科学出版社,1984.
    [132]刘磊,李习武,刘双江,等.降解多环芳烃的菌株Gordonia sp. He4的分离鉴定及其在菲污染土壤修复过程中的动态变化[J].环境科学, 2007, (3): 617-622.
    [133]李国强,李京浩,马挺,等.苯并噻吩脱硫菌株的筛选及脱硫活性研究[J].环境科学, 2006, (6): 1181-1185.
    [134]李宝明,阮志勇,姜瑞波.石油降解菌的筛选、鉴定及菌群构建[J].中国土壤与肥料, 2007, (3): 68-72.
    [135]高平平,陈迎春,刘彬彬,等.原废水培养基分离活性污泥中的苯酚降解细菌[J].应用与环境生物学报, 2003, (2): 189-192.
    [136]张瑞福,吴旭平,樊奔,等.污染土壤中有机磷农药降解菌的分离及其多样性[J].生态学报, 2005, (6): 1502-1508.
    [137]胡丽娟.假单胞菌(Pseudomonas)芳香族化合物降解基因的研究[D].成都:四川师范大学,2001.
    [138]王丽萍,吴光前,何士龙,等.高效生物滴滤系统净化甲苯废气快速启动研究[J],哈尔滨工业大学学报, 2004, 36(4): 446-449.
    [139]朱亮.生物降解微生态系统优化技术的基础研究[D].南京:河海大学,2004.
    [140] Yuan Z G, Blackall L L. Sludge population optimization: a new dimension for the control of biological wastewater treatment systems[J]. Water Research, 2002, 36(2): 482-490.
    [141]吴晓.生物滴滤法净化甲苯的中间产物及其作用机理研究[D].徐州:中国矿业大学,2007.
    [142] Jang J H, Hirai M, Shoda M. Effect of shutdown on styrene removal in a biofilter inoculated with Pseudomonas sp. SR-5[J]. Journal of Hazardous Materials, 2006, 129: 223–227.
    [143] Moe W M, Irvine R L. Effect of nitrogen limitation on performance of toluene degrading biofilters[J]. Wat. Res., 2001, 35(6) : 1407-1414.
    [144] Wright W F. Transient response of vapor-phase biofilters[J]. Chemical Engineering Journal, 2005,113: 161-173.
    [145]范荣桂.旋流微絮凝深床过滤同步脱氮除磷理论与实践的研究[D].北京:中国矿业大学(北京校区), 2005.
    [146] Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of community-level sole-carbon-source utilization[J]. Appl. Environ. Microbiol. 1991, 57: 2351-2359.
    [147] Guckert J B, Cart G J, Johnson T D, et al. Community analysis by Biolog: curve integration for statistical analysis of activated sludge microbial habitats[J]. Journal of Microbiological Methods, 1996, 27: 183-197.
    [148] Weber K P, Grove J A, Gehder M, et al. Data transformations in the analysis of community-level substrate utilization data from microplates [J]. Journal of Microbiological Methods, 2007, 69: 461-469.
    [149] Choi K, Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities[J]. J. Microb. Methods, 1999, 36: 203-213.
    [150]时亚南.不同施肥处理对水稻土微生物生态特性的影响[D].杭州:浙江大学,2007.
    [151] Grove J A, Kautola H, Javadpour, et al. Assessment of changes in the microorganism community in a biofilter[J]. Biochemical Engineering Journal, 2004, 18: 111-114.
    [152] Garland J L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization[J]. Soil Biol. Biochem., 1996, 28: 213-221.
    [153] Magurran A E. Ecological diversity and its measurement[M]. Princeton: Princeton University Press, 1988.
    [154]张力. SPSS 13.0在生物统计中的应用[M].厦门:厦门大学出版社, 2006.
    [155]严兴. A2/O固定生物膜法焦化废水处理系统群落空间演替模式的系统轨迹分析及应用[D].上海:上海交通大学, 2007.
    [156]骆世明,等.农业生态学[M].北京:中国农业出版社, 2001.
    [157]卢升高,吕军.环境生态学[M].杭州:浙江大学出版社, 2004.
    [158] Wang S J, Loh K C. Modeling the role of metabolic intermediates in kinetics of phenol biodegradation[J]. Enzyme and Microbial Technology, 1999, 25: 177-184.
    [159] Wittorf F, Klein J, Unterlohner K, et al. Biocatalytic treatment of waste air[J]. Chem. Eng.Technol., 1993, 16: 40-45.
    [160]袁勤生.酶与酶工程[M].上海:华东理工大学出版社, 2005.
    [161]臧荣春,夏凤毅.微生物动力学模型[M].北京:化学工业出版社,2003.
    [162]黄永安,马路,刘慧敏. MATLAB 7.0/Simulink 6.0建模仿真开发与高级工程应用[M].北京:清华大学出版社, 2005.
    [163]钟益林,彭乐群,刘炳文.常微分方程及其Maple, MATLAB求解[M].北京:清华大学出版社,2007.
    [164] Grimm A C, Harwood C S. Chemotaxis of Pseudomonas spp. to the Polyaromatic Hydrocarbon Naphthalene[J]. Applied and Environmental Microbiology, 1997, 63(10): 4111-4115.
    [165]赵非.有机污染物降解菌的基因克隆、突变型筛选及趋化研究[D].武汉:中国科学院武汉病毒研究所,2004.
    [166]范国昌.微生物的趋性运动[J].生物学通报, 1996, 31(11): 20-21.
    [167] Yu H S, Alam M. An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum[J]. FEMS Microbiology Letters, 1997,156: 265-269.
    [168] Pratt L A, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili[J]. Mol. Microbiol., 1998, 30 (2): 285-293.
    [169] Singh R, Paul D, Jain R K. Biofilms: implications in bioremediation. Trends in Microbiology, 2006, 14(9): 389-397.
    [170]何争光.大气污染控制工程及应用实例[M].北京:化学工业出版社, 2004.
    [171]韩贻仁.分子细胞生物学[M].北京:科学出版社, 2001.
    [172] Cox H H J, Nguyen T T, Deshusses M A. Toluene degradation in the recycle liquid of biotrickling filters for air pollution control[J]. Microbiol. Biotechnol., 2000, 54: 133-140.
    [173] US EPA. Soil Screening Guidance: User’s Guide. EPA540/R-96/018, 1996.
    [174] Morales M, Hernandez S, Cornabe T, et al. Effect of drying on biofilter performance: modeling and experimental approach[J]. Environ. Sci. Technol., 2003, 37: 985–992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700