用户名: 密码: 验证码:
橡胶集料混凝土的耐久性能及在桥面铺装上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶集料混凝土作为一种新型水泥混凝土材料具有重量轻、韧性高、变形大、阻尼高、抗冲击性强、干缩性小、导热低、吸声性好的突出特点,弥补了传统水泥混凝土的诸多缺陷,成为了当今混凝土材料学科新的生长点。天津大学朱涵教授及其课题组研究发现橡胶集料混凝土还表现出高抗渗性和低氯离子渗透性的宏观现象。因此,对橡胶集料混凝土耐久性的分析和研究对于扩大橡胶集料混凝土的应用范围,解决工程实际问题,延长混凝土结构使用寿命具非常重要的意义。
     本文主要针对橡胶集料混凝土的抗渗性、氯离子渗透性、抗盐冻性以及氯盐侵蚀环境下橡胶集料混凝土内钢筋锈蚀性机理进行研究;同时,橡胶集料混凝土的特点使得其作为桥面铺装材料具有很大优势,结合工程实际,本文对用于桥面铺装的橡胶集料混凝土性能进行了研究。所采用的研究方法、主要结论及成果总结如下:
     (1)通过对橡胶集料表面物理化学性能的研究发现橡胶集料混凝土产生高抗渗性的根本原因在于橡胶集料这种非极性材料的引入降低了混凝土毛细孔压力,进而阻碍了混凝土中水分的渗流。本文首次对橡胶的水接触角测定发现该接触角介于80?~116?,且接触角大小受橡胶品种及表面粗糙程度的影响,由此计算的毛细孔压力可降至普通混凝土的38%~80%。对5个橡胶集料掺量下的14个配比的试验研究发现橡胶集料混凝土渗透性很低。
     (2)分析了橡胶集料混凝土氯离子渗透性机理,建立了干湿交替区域橡胶集料混凝土的氯离子渗透模型,分析了电场对橡胶集料混凝土氯离子渗透的加速作用,用ASTM C1202-97直流电量法研究了橡胶集料混凝土的氯离子渗透性。结果表明,干湿交替区域橡胶集料混凝土的氯离子渗透模型实质上是非饱和状态下混凝土中液相渗流和氯离子扩散的耦合;电场作用下橡胶集料混凝土氯离子渗透性主要受电迁作用支配;试验结果表明橡胶集料混凝土氯离子渗透性属于或接近“很低”范畴,且掺入1mm~2mm橡胶集料的氯离子渗透性低于掺4mm~6mm橡胶集料的混凝土。
     (3)针对氯盐侵蚀环境下橡胶集料混凝土中钢筋的锈蚀性进行研究,采用电化学加速锈蚀方法,对0.45和0.55两种水灰比下四个橡胶集料掺量下(0 ~150kg/m~3)的钢筋混凝土梁进行了锈蚀试验,测试了试件在3.5%NaCl溶液中5d、10d两个周期下的钢筋失重率和混凝土裂缝宽度,测试了锈蚀后混凝土梁的受弯性能,得到了锈蚀前后不同橡胶集料掺量下的承载力、挠度和破坏形态。结果表明,掺入橡胶集料能够降低混凝土内钢筋的失重率,且随着掺量的增加,失重率降低幅度增大,橡胶集料混凝土梁的裂缝宽度和表面锈斑面积都小于普通混凝土;受弯试验结果表明橡胶集料混凝土与钢筋之间的粘结强度较高;荷载-位移曲线表明随着橡胶集料的增加承载力损失基本呈降低趋势,150kg/m~3掺量的橡胶集料混凝土小于5%;破坏过程表现出很好的延性。
     (4)利用有限元方法对橡胶集料混凝土的毛细孔冻胀应力进行计算,考虑液相为0~20%浓度NaCl溶液,并对0~150kg/m~3橡胶集料掺量的混凝土进行盐冻试验。结果表明,橡胶集料混凝土中水泥石的拉应力平均值低于普通混凝土,且随着NaCl浓度提高,降幅增大,其中纯水、10%、20%NaCl浓度下分别下降了67.7%,、68.3%和72.4%;橡胶集料产生的拉应力值较低,小于0.5MPa,本文认为产生这种现象的根本原因在于橡胶本身产生了很大的弹性变形,吸纳了孔溶液结冰所产生的体积膨胀,降低了冻结过程对水泥石的损伤;试验结果表面随着橡胶集料掺量的增加剥落量降低,当橡胶掺量达到120kg/m~3以上时,剥落量变化不大。
     (5)首次将橡胶集料混凝土应用于桥面铺装工程中,对橡胶集料混凝土的压、弯性能和冲击韧性进行了试验分析,结果表明单轴受压下橡胶集料混凝土表现出很高的压缩变形,弯曲开裂应变可达到260×10~(-6)~640×10~(-6),大大的超过了普通混凝土,冲击破坏次数是普通混凝土的1倍以上;在天津某桥梁桥面上设计并建造了一段7m×24m,厚度为120mm的橡胶集料混凝土桥面铺装试验段,结果表明橡胶集料混凝土用于桥面值得进一步推广。
The use of crumb rubber in Portland Cement Concrete (Crumb Rubber Concrete, CRC) has been the growing point of the concrete material research field in the last few years. It has been reported that putting crumb rubber in concrete mixtures compensates the deficiencies of plain concrete and results in low density and plastic shrinkage, significant increase of ductility and toughness, very high damping ratio, and extremely good thermal and sound properties. Recently, Prof. Han Zhu and his research panel in Tianjin University discovered that CRC has the properties of low permeability and low chloride penetration. Therefore, the study on the issue of the durability of CRC is of great importance concerning resolving engineering problem, securing construction quality, enlonging structure’s service life, and promoting the application of CRC.
     This paper focuses on the properties of the permeability under hydraulic pressure, penetration of chloride ions, salt scaling, and steel bar corrosion in salt enviroment of CRC. Moreover, for the purpose of using CRC as bridge deck pavement, a series of material performance have been discussed in the article. The research methods, conclusions, and findings are generalized as follow:
     (1)The surface physical chemistry theory is adopted to analyze the mechanism of permeability of CRC under hydraulic pressure. Result shows that due to the extremely low polarity and the hydrophobic rough surface, the capillary pressure in concrete is decreased. For the first time, the rubber-water contact angle is experimentally measured, results demonstrated that the contact angle is of 80°-116°, and the angle is influenced by the rubber varieties and the scale of surface roughness. The incorporated rubber decreases the capillary pressure by 38% to 80% compared to the plain concrete. Fourteen groups of specimens, containing five levels of crumb rubber proportion, are tested. Results indicate that all CRC specimens exhibit low permeability.
     (2)The penetration model of chloride ions into CRC under wetting-drying cycle is established. The mechanism of electro-accelerated penetration is analyzed. CRC specimens are tested using ASTM C1202-97 rapid testing method. Results show that the penetration process is the coupling of pore solution infiltration and the chloride ions diffusion. The electro-accelerated penetration is dominated by electro-migration. Test results indicate that the dielectric flux of CRC is at the round of 1000C, which means a“very low”penetration according to ASTM C1202-97. And the CRC specimens incorporate 1mm~2mm crumb rubber exhibit better penetration resistance than those with 4mm~6mm rubber, which are approximately the same to the controlled group.
     (3)The electrochemical acceleration method is adopted to investigate the corrosion property of reinforced crumb rubber concrete (CRC). Two levels of water cement ratio were chosen, and a total of 24 beams, which contained four levels of crumb rubber from 0~150kg/m~3 were tested. The weight loss and spalling crack width were measured after the exposure of 5 and 10 days of current flow. To investigate the bearing capacity, deflection, and failure model of CRC beams that had been corroded, the four-point bending test was carried out. Results showed that putting crumb rubber into concrete mixture advanced the steel bar corrosion resistance, and minimized the corrosion while the crumb rubber volume proportion increases. The rust stains area and spalling crack width of CRC beams were much smaller than the controlled group. The shear failure was obsreved in four-point bending test. CRC beams exhibited high bond strength and large ductility. The load-deflection curves presented that CRC beams got lesser bearing capacity loss compared to the controlled group.
     (4)The FEM is adopted to calculate the stress and strain of pore wall, which is compressed by the spalling of 0~20% NaCl pore solution. The scaling of CRC, 0 ~150kg/m~3 rubber, is experimentally investigated. Results demonstrate that the mean values of stress of C-S-H pore wall of CRC are lower than that of the controlled group. The stress decreases 67.7%, 68.3%, and 72.4% respectively by pure water, 10%, 20% NaCl pore solution. However, the stress of rubber is no more than 0.5MPa. The reason for the pressure relief is the rubber yield large elastic deformation, which releases the expansion of pore solution, and reduces the damage of C-S-H. Test results show that the scaling mass decreases when increasing the rubber content. The scaling mass presents consistence while rubber content exceeding 120 kg/m~3.
     (5)For the first time, CRC is used as bridge deck pavement. The mechanical properties and impact ductility are tested. Results show that CRC exhibits ductile failure, the flexural and impact ductility is highly improved. A 7m×24m, 120mm thick CRC bridge deck test spot is constructed. The performance of the test site proofs that CRC bridge deck deserves further promotion.
引文
[1]Eldin, Neil N., Senouci, A. B., Rubber-tired particles as concrete aggregate, Journal of Materials in Civil Engineering, 1993, 5(4): 478-496.
    [2]H. Rostami, Jlepore, T. Silverstrim et al, Use of recycled rubber tyres in concrete, Concrete 2000, 1993:391-399
    [3]I. B. Top?u, The properties of rubberized concrete, Cement and Concrete Research, 1995,25(2):304-310
    [4]Savas, B.Z., Ahmad S. Fedroff D., Freeze-Thaw durability of concrete with ground waste tire rubber, Transportation Research Record, 1997,Vol.1574: 80~88.
    [5]D. Raghavan, H. Huynh, Workalility, mechanical properties, and chemical stability of a recycled tyre rubber-Filled cementitous composite, Journal of Material Science, 1998, Vol.22:1745-1752
    [6]Rafat Siddique, Tanrun R. N., Properties of concrete containing scrap-tire rubber- an overview, Wast Management, 2004,Vol.24:563-569
    [7]M. M. Reda Taha, A. S. EI-Dieb, et al, Mechanical, fracture, and microstructal investigations of rubber concrete, Journal of Materials in Civil Engineering, 2008, 20(10):640-649
    [8]宋少民,轲红娟,金树新.橡胶粉改性的高韧性混凝土研究,混凝土与水泥制品,1997, (1): 10-12
    [9]田薇,郑磊,袁勇.橡胶混凝土脆性的试验研究,混凝土,2007 (12):37-40
    [10]M. K. Batayneh, Iqbal Marie, Ibrahim Asi. Promoting the use of crumb rubber concrete in developing countries, Wast Management, 2008, Vol.28:2171-2176
    [11]李丽娟.橡胶粉改性高强混凝土高温后性能研究:[硕士学位论文],广州,广东工业大学,2007
    [12]潘东平,刘锋,李丽娟,陈应钦.橡胶混凝土的应用和研究概况,橡胶工业,2007,Vol.54:182-185
    [13]Baoshan Huang,Guoqiang Li,Su-Seng Pang, John Eggers. Investigation into waste tire rubber-filled concrete,Journal of Materials in Civil Engineering,2004,16(3):187-196
    [14]C. E. Pierce, M. C. Blackwell. Potential of scrap tire as lightweight aggregate in flowable fill, Waste Management, 2003,Vol.23:197-208
    [15]赵旭涛,刘大华.合成橡胶工业手册,北京:化学工业出版社,2006
    [16]Piti Sukontasukkul. Use of crumb rubber to improve thermal and sound properties of pre-cast conrete panel, Construction and Building Materials, 2009,Vol.23:1084-1092
    [17]钱伯章.美国废旧轮胎回收利用现状,橡塑资源利用,2007,(5):34-35
    [18]何永峰.胶粉生产及其应用,北京:中国石化出版社,2001
    [19]Jason Y. Wu, Mufan Tsai. Feasibility study of a soil-based rubberized CLSM,Waste Management,2008,doi:10.1016/j.wasman.2008.06.017
    [20]曹卫东,陈旭,吕伟民.简述国内外低噪声沥青路面研究状况,石油沥青,2005,19(1):50-54
    [21]袁德明,刘冬,廖克俭.废旧橡胶粉改性沥青研究进展,合成橡胶工业,2007,30 (2):159~162
    [22]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组,混凝土结构耐久性设计与施工指南,北京:中国建筑工业出版社,2004
    [23]P. K. Metha. Durbaility of concerete—fifty yeasr of Progress-Durabiliy of Coneerte—G.M. Idorn International Symposium.SP-126 , American Concrete Intenrational,Dertoit,1991
    [24]吴建成.低水泥用量配制高性能混凝土的研究:[硕士学位论文],重庆;重庆大学,2001
    [25]S. R. Duwadi. Structural applications & cost effectiveness of high performance concrete,Presentation of FHWA
    [26]刘振清.大掺量低质粉煤灰混凝土耐腐蚀性能研究及低质粉煤灰活化初探:[硕士学位论文],南京:河海大学,2001
    [27]卢木.混凝土耐久性研究现状和研究方向,工业建筑,1997,27(5):1-6
    [28]P. K. Metha. Durability-critical issues for the Future. Concrete International, 1997, 20(7): 27-33
    [29]夏宝驹,朱建国,闻宝联.滨海新区混凝土桥梁耐久性调查与建议,天津建设科技,2008(4): 39-40
    [30]Khatib, Zaher K., Bayomy Fouad M., Rubberized portland cement concrete, Journal of Materials in Civil Engineering, August, 1999, 206~213.
    [31]A. Turatsinzea,M. Garros. On the modulus of elasticity and strain Capacity of self-compacting concrete incorporating rubber aggregates,Resource, Conservation and Recycling, 2008, Vol.52:1209-1215
    [32]M. C. Bignozzi ,F. Sandrolini. Tyre rubber waste recycling in self-compacting concrete, Cement and Concrete Research, 2006,Vol.36: 735-739
    [33]Ali N. A., Amos A. D., et al. Use of ground rubber tires in portland cement concrete, Proceedings of the International Conference on Concrete 2000, 1993,University of Dundee, Scotland, UK:379-390
    [34]Fattuhi N. I., Clark N. A. Cement-based materials containing tire rubber, Journal of Construction and Building Materials, 1996. 10 (4):229-236
    [35]Rostami H.,Lepore J. Silverstraim T., et al, Use of recycled rubber tires in concrete,Proceedings of the International Conference on Concrete 2000, 1993. University of Dundee, Scotland, UK:391–399
    [36]Segre N.,Joekes I. Use of tire rubber particles as addition to cement paste,Cement and Concrete Research,2000,30 (9):1421-1425
    [37]F. Hernádez-Olivares, G. Barluenga, et al. Fatigue behaviour of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements, Construction and Building Materials, 2007,Vol.21:1918-1927
    [38]I. B. Top?u,Nuri Avcular. Analysis of rubberized concrete as a composite material,Cement and Concrete Research, 1997,27(8):1135-1139
    [39]Erhan G., Mehmet G., et al. Properties of rubberized concretes containing silica fume, Cement and Concrete Research, 2004,Vol.34:2309-2317
    [40]F. Hernádez-Olivares, G. Barluenga, et al. Static and dynamic behaviour of recycled tyre rubber-filled concrete, Cement and Concrete Research, 2002,Vol.32: 1587-1596
    [41]L. Zheng, X. Sharon Huo, Y. Yuan. Experimental investigation on dynamic properties of rubberized concrete, Construction and Building Materials, 2008,Vol.22:939-947
    [42]许静.橡胶集料混凝土阻尼测试及框架结构设计分析,[硕士学位论文]:天津,天津大学,2007
    [43]Thuman A., Miller R. M. Foundation of noise control engineering, Georgia: FairMart Inc., 1986
    [44]F. Hernádez-Olivares, G. Barluenga. Fire performance of recycled rubber-filled high-strength concrete, Cement and Concrete Research,2004,Vol.34.109-117
    [45]吴中伟.高性能混凝土,北京:中国铁道出版社, 1999
    [46]A.Abbas. Permeability of mortars and the degree of saturation. 1er recontre International de Toulouse, 1998
    [47]P.K.Mahta, D.Manmohan. Pore size distribution and permeability of hardened cement paste, 7th International Symposium of the Chemistry of Cement, Paris,Ш,Paris: International Congress on the Chemistry of Cement, 1980:1-5
    [48]B.K.Marsh. Relationship between engineering properties and micro structural properties of hardened cement paste containing PFA as a partial cement replacement. [Ph.D thesis], Hatfield Polytechnic, 1984
    [49]HUA C., ACKER P., EHRACHER A. Analyses and models of autogenous shrinkage of hardening cement paste. Cement And Concrete Research, 1995 ,25 (7) :1457-1468
    [50]Santos , Mohamed , Bannwart , et al. Contact anglemeasurement s and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water. J Petrol Eng , 2006 ,51 (1/ 2):9
    [51]A. W.亚当森,顾惕人译.表面的物理化学,北京:科学出版社,1984
    [52]Smedley , Coles. A refractive tilting-plate technique for measurement of dynamic contact angles. J Colloid Interf Sci , 2005 ,286 (1) :310 - 311
    [53]宁乔,朱志强,吕旭涛等.图像法求液滴表面张力和接触角,空间科学学报,2008,28(1):74-79
    [54]Dingle, Harris. A robust algorithm for the simultaneous parameter estimation of interfacial tension and contact angle from sessile drop profiles. J Colloid Interf Sci , 2005 ,286 (2) :670 - 680
    [55]杜文琴,巫莹柱.接触角测量的量高法和量角法的比较,纺织学报,2007,28(7): 29-32
    [56]李捷,唐星科,蒋延军.几种边缘检测算法的比较研究,信息技术. 2007, 38 (9) : 106-108
    [57]李弼程,彭天强,彭波,等.智能图像处理技术,北京:电子工业出版社, 2004
    [58]Gonzalez R., Woods R.,阮秋琦,阮宇智,等译.数字图像处理.北京:电子工业出版社, 2003
    [59]Bateni, Susnar, Amirfazli, et al. A high-accuracy polynomial fitting approach to determine contact angles. Colloid Surface A , 2003 ,219 (1/ 3) :215 - 219
    [60]Seheidegger A.E. Physics of flow through Porousmedia,University of Toronto Press,1974
    [61]Christensen Bruce J., et a1. Comparison of measured and calculated permabilities for hardened cement pastes,Cement an d Concrete Research,1996.26(9)
    [62]Katz A., Z. Thorn. A. H. Prediction of rock electrical conductivity.1998
    [63]Garboezi E. J. Permeability,diffusivity and microstructure parameters :a critical review.Cement and concrete Research,1990,Vol.20,591-601
    [64]Koichi Maekawa, Rajesh Chaube, et al. Modeling of concrete performance, E&FN Spon, London, 1999
    [65]Halamickava P. Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter, Cement and Concrete Research, 1995,25(4):790-802
    [66]Feldman R. F., Sereda P. J. A model for hydrated Portland cement as deduced from sorption-length change and mechanical properties, Materials and Structures, 1968,(1):509-519
    [67]Nyame B. K., Illston J. M. Relationships between permeability and pore structure of hardened cement paste, Magazine of Concrete Research, 1981,33(116):139-146
    [68]Chaube R.P., Shimomura T.,Maekawa K. Multiphase water movement in concrete as a multi-componenet systen, Proceedings of the 5th RILEM International Symposium on Creep and Shrinkage in Concrete, Barcelona, E&FN Spon, London, 1993:139-144
    [69]ШEЙKИH A. E.,胡春芝译.水泥混凝土的结构与性能,北京:中国建筑工业出版社,1984
    [70]李富成.流体力学及流体机械,北京:冶金工业出版社,1980
    [71]黄士元,蒋家奋,杨南如,等.近代混凝土技术.西安:陕西科学出版社,1998
    [72]亢景付,金秋莲,王家瑛,刘欣梅. GH矿粉对粉煤灰混凝土的增强效果,天津大学学报, 2005, 38(6): 543-546
    [73]中华人民共和国水利部,SL352-2006,水工混凝土试验规程:北京,水利水电出版社,2006
    [74]Han Zhu. Crumb rubber concrete,Rapra Handbook on Polymers Use in Construction. Shawbury, SY44NR, UK:Rapra Technology,2004:389-405
    [75]Han Zhu. Rubber crumbs in concrete. Concrete Technology Today,2003,135(8):30-33
    [76]姚昌健.沿海码头混凝土设施受氯离子侵蚀的规律研究,[硕士学位论文],杭州:浙江大学,2007
    [77]Philip H. Electrochemistrey, 2nd Edition, Chapman & Hall, New York, 1994
    [78]Bockris, J. O. M., Reddy,A. K. N. Moden Electrochemistrey, 3rd Edition, Plenurr Press, New York, 1977
    [79]Newman, J. S. Electrochemical System, 2nd Edition, New Jersey, 1991
    [80]刘光,邱贞花.离子溶液物理化学,福州:福建科学技术出版社,1987
    [81]Zhang T.W., Odd E.G. Diffusion behavior of chloride ions in concrete, Cement and Concrete Research, 1996, 26(6):907-917
    [82]Zhang T.W. Odd E.G. Effect of chloride source concentration on chloride diffusivity in concrete, ACI Material Journals, 2005,102(5):295-298
    [83]姚诗伟.氯离子扩散理论,港工技术与营理,2003,(5):1-4
    [84]Skelland A. H. P. Diffusional mass transfer, New York, Wiley, 1974
    [85]陈绍亭等.化工传递过程,北京:化学工业出版社,1980
    [86]冯乃谦.实用混凝土大全(第三版),北京:科学出版社,2001
    [87]Tang L., Nilsson L.O. Rapid determination of the choride diffusivity in concrete by applying an electrical field, ACI Material Journal, 1992, Vol.89:49-53
    [88]万小梅.用交流电测量混凝土的渗透性,[硕士学位论文],青岛:青岛建筑工程学院,2002
    [89]高小霞,电分析化学导论,北京:科学出版社,1986
    [90]邝生鲁等,应用电化学,武汉:华中理工大学出版社,1994
    [91]Samson E., Marchand J., Snyder K. A. Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures, 2003, 36(257): 156-165
    [92]Samson E.,Archand J. M. Numerical solution of the extended Nernst-Planck mode, Journal of Colloid and Interface Science, 1999, Vol.215 :1-8
    [93]Zhang T., Gj?rv O. E. Electrochemical method for accelerated testing of chloride diffusivity in concrete, Cement and Concrete Research, 1994, Vol.24:1534-1548
    [94]Streicher P.E., Alexander M. G. A cholride conduction test for concrete, Cement and Concrete Research, 1995, 25(6): 1284-1294
    [95]American Association of State Highway and Transporation Officials,T259-80,Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration,Washington:1984
    [96]Nordtest Method:Accelerated Chloride Penetration into Hardened Concrete,Nordtest,Espoo,Finland,Proj, 11,54-94,1995
    [97]LIFECON. LIFECON Deliverables, Life Cycle Management of Concrete Infrastructure for Improved Sustainability. 2003
    [98]Whiting D. Rapid Measurement of the Chloride Permeability of Concrete,Public Roads,1981,45(3): 101-112
    [99]ASTM C 1202-94, Standard Test Method for Electrical Indication of Concrete Ability to Resist Chloride Ion Penetration, 1994
    [100]Delagrave A.,Marchaud J.,Samson E. Prediction of Diffusion Coefficients in Cement Based Materials on The Basis of Migration Experiments,Cement and concrete Research,1996,26(12): 1831-1842
    [101]Lu X. Application of the Nernst-Einstein equation to concrete, Cement and Concrete Research, 1997, 27(2): 293-302
    [102]陈肈元.混凝土结构的耐久性设计方法,建筑技术,2003,34(5): 328-333
    [103]陆晗,刘伟,邢锋. ASTM C1202与RCM法测定混凝土氯离子渗透性的对比试验,混凝土,2007,(4):6-10
    [104]易成,郭婷婷,等. NEL法与ASTM C1202法氯离子渗透性对比试验研究,混凝土,2007,(3): 4-10
    [105]冯仲伟,谢永江,等.混凝土电通量和氯离子扩散系数的若干问题研究,混凝土,2007,(10):7-11
    [106]冯乃谦,邢锋.高性能混凝土技术,北京:原子能出版社,2000
    [107]肖建庄,卢福海,孙振平.淡化海砂高性能混凝土氯离子渗透性研究,工业建筑,2004,34(5): 4-6
    [108]叶建雄,李晓筝,等.矿物掺合料对混凝土氯离子渗透扩散性研究,重庆建筑大学学报,2005,27(3): 89-92
    [109]杨建森,崔自治.氯离子对混凝土中钢筋的催蚀机理与防腐技术,工业建筑,2000,32(2): 1-4
    [110]Adam Neville. Chloride attack of reinforced concrete: an overview. Structures and Materials,1993,Vol.28: 63-70
    [111]Hausman D. A. Steel in concrete. Materials Protection, 1967, (6) :19-22
    [112]Gorda V. K. Corrosion and corrosion inhibition of reinforcing steelⅠ:Immersed in alkaline solution. British corrosion Journal, 1970,(5) : 198-203
    [113]Page C. L., Treadaway K.W. J. Aspects of the electrochemistry of steel in concrete, Nature, 1991, Vol.297: 109-114
    [114]Mehta P. K. Effect of cement composition on corrosion of reinforcing steel in concrete, chloride corrosion of steel in concrete, ASTM STP329, Tonini D. E. and Dean S.W., Jr. , 1997:12-19
    [115]王建业,徐家文.电解加工原理及应用,北京:国防工业出版社,2001
    [116]贾红梅,阎贵平,闫光杰.混凝土中钢筋锈蚀的研究.中国安全科学学报, 2005 ,15 (5) : 56-59
    [117]仲伟秋,贡金鑫.钢筋电化学快速锈蚀实验控制方法.建筑技术开发, 2002,29 (4) : 28-29.
    [118]D. Coronelli, P. Gambarova. Structural assessment of corroded reinforced concrete beams :modeling guidelines. Journal of Structural engineering ASCE ,2004 ,130(8) :1214-1224.
    [119]曾严红,顾祥林,张伟平,等.混凝土中钢筋加速锈蚀方法探讨.结构工程师, 2009, 25(1): 101-105
    [120]ASTM G102-89, Stnadard Practice of Calculation Rates and Related Information from Electrochemical Measurement, ASTM, 1989, 400-406
    [121]Powers T. C.,A working hypothesis of further studies of frost resistance, Journal of The American Conerete Institute,1945,16(4): 245-272
    [122]Powers T. C.,Vold spacing as a basis for Producing air-entrained concrete.ACI Journal, proceedings,1954,50(9): 741-760
    [123]Powers T. C., Helmuth R.A. Theory of volumne change in hardened Portland cement pastes during freezing. Proeeedings of the Highway Research Board,1949,Vol.32:285-297
    [124]Powers T. C. Freezing effect in concrete. In: School C F , Durability of concrete. Detroit: American Concrete Institute,1975
    [125]Fagerlund G. The significance of critical degree of saturation at freezing of pore and brittle materials. In: School C F , Durability of concrete. Detroit: American Concrete Institute,1975
    [126]Pigeon M. et. al. Critical air void spacing factors for concrete as submitted to slow freezing-thaw cycle . ACI Journal, 1981,78(4): 282-291
    [127]李天瑗.试论混凝土冻害机理-静水压与渗透压的作用.混凝土与水泥制品,1989(5): 8-11
    [128]金伟良,赵羽书著.混凝土结构耐久性.北京:科学出版社,2002
    [129]杨全兵.混凝土盐冻破坏机理(Ⅰ)—毛细管饱水度和结冰压,建筑材料学报,2007,10(5): 522-527
    [130]Example fluid-structural analysis using physics environments,Release 11.0 Documentation for ANSYS
    [131]RILEM TC117一FDC/95,Test method for the freeze—thaw resistance of concrete with water(CF)or with sodium chloride solution.Materials and Structures,1995,Vol.28:175-182
    [132]H. A. Toutanji. The use of rubber tire particles in concrete to replace mineral aggregates, Cement & Concrete Composites, 1996, Vol.18:135-139
    [133]朱涵.新型弹性混凝土的研究综述,天津建设科技,2004,14(2): 35-37
    [134]杨林虎,朱涵,王庆余.路面橡胶集料混凝土抗折强度的试验研究,工业建筑,2007,37(9): 97-112
    [135]孙增智.水泥混凝土桥面铺装材料与技术研究.西安:长安大学,2004
    [136]林汐,薛景为,巨琰君.水泥混凝土桥面铺装产生裂缝的原因及防治,北方交通,2007,(9): 46-48
    [137]董强,郑智能.水泥混凝土桥面沥青铺装结构力学性能分析,北方交通, 2007, (11): 46-49
    [138]杨子业,金伟,俞林军.水泥混凝土桥面防水黏结材料性能试验研究,中国市政工程, 2007, (5):9-11
    [139]刘志华.桥面水泥混凝土铺装层疲劳性能的研究,山西交通科技, 2007, (1):39-41
    [140]孙进省.桥面铺装上部结构渗水原因及预防措施,交通世界, 2007, (2):91-92
    [141]李素珍.粉煤灰混凝土在公路桥梁工程中的应用,山西交通科技, 2008,(3):62-64
    [142]杨增兴,钟辉虹.钢纤维混凝土材料在桥面工程中的应用,广州大学学报, 2004, 3(4) :376-378
    [143]罗立峰.钢纤维增强聚合物改性混凝土的冲击性能,中国公路学报, 2006, 19(5):71-76
    [144]朱伟超,张荣辉.水性环氧树脂在路面及桥面铺装层维修中的应用,新型建筑材料, 2008, (4):78-80
    [145]方志禾,应子龙.柔性防水层上水泥混凝土桥面铺装的设计,公路, 1991, (4):9-12
    [146]王虎,徐勤武.混凝土桥水泥混凝土铺装荷载应力,长安大学学报, 2005, 25(3): 11-15
    [147]罗立峰,钟鸣.桥面铺装设计理论的研究,华南理工大学学报, 2002, 30(4): 91-96
    [148]罗立峰,钟鸣,等.水泥混凝土桥面铺装设计方法的研究,华南理工大学学报, 2002, 30(3):61-71
    [149]杨再富,钱觉时.混凝土常用原材料对混凝土技术经济性的影响,重庆建筑,2004, (4): 45-49
    [150]迟培云,郭卫国,等.粉煤灰混凝土的技术经济性研究,混凝土, 2001, (2): 16-18
    [151]迟培云,李金波,杨旭.提高混凝土技术经济性的有效途径,低温建筑技术, 2000,(4): 58-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700