用户名: 密码: 验证码:
中国畜牧业环境污染防治问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改革开放以来,我国畜牧业取得了显著的发展成就,畜产品总产量和人均产量均大幅增加,畜牧业产值在农业总产值中的比重大幅提高。2010年我国生猪、蛋鸡和奶牛规模化养殖所占比例分别为64.5%、78.8%和46.5%,规模化水平不断提高。畜牧业饲养模式的转变直接导致了我国畜禽粪便排放密度增加、农牧脱节严重,对环境造成严重威胁。第一次全国污染源普查动态更新数据显示,2010年我国畜禽养殖业主要水污染物排放量中COD、NH3-N排放量分别是当年工业源排放量的3.23倍、2.3倍,分别占全国污染物排放总量的45%、25%,畜牧业已成为我国环境污染的重要来源。同时,畜牧业还是重要的温室气体排放源,2006年联合国粮农组织发布的《畜牧业长长的阴影—环境问题与解决方案》指出,若将畜牧业饲料生产用地及养殖场土地占用引起的土地用途变化考虑在内,按CO2当量计算,全球畜牧业温室气体排放占人类活动温室气体排放总量的18%,畜牧业已成为造成气候变化的重要威胁。
     本文从宏观上把握我国畜牧业发展现状,科学量化我国畜牧业氮磷排放对水体、土壤造成的污染和畜牧业全生命周期温室气体排放状况,进一步把握我国畜牧业环境污染的时空特征,分析畜牧业环境污染与经济增长之间的长期关系;从微观上分析畜禽养殖场开展环境污染防治意愿的影响因素,并选择典型案例剖析养殖场开展污染防治的措施及效益。在此基础上,梳理和评述我国中央和地方现行的畜牧业环境污染防治政策,并借鉴欧美等发达国家的防治经验,提出适于我国畜牧业发展实际的环境污染防治策略,具有良好的理论和实践价值。
     本文主要研究内容为:研究背景、研究目的与意义、国内外研究动态与述评、概念界定与理论基础(第1、2章),我国畜牧业发展与环境污染时空特征(第3章),我国畜牧业环境污染与经济增长关系分析(第4章),畜禽养殖场环境污染防治意愿分析:以武汉市为例(第5章),畜禽养殖场环境污染防治个案分析(第6章)和我国畜牧业环境污染防治策略(第7章)。主要研究结论如下:
     (1)我国畜牧业在迅速发展的同时,环境污染问题显现。基于环境承载力和生命周期理论的实证分析表明,我国畜牧业环境污染形势严峻,畜牧业氮磷排放造成水体和土壤环境的承载压力超标的同时,畜牧业温室气体排放总量呈上升趋势,已成为新的环境污染问题。与改革开放初期相比,我国畜牧业综合生产能力显著增强,人均畜禽产品占有量大幅提高,畜禽产品结构逐步优化,形成了区域化的畜禽生产布局,畜禽养殖标准化、规模化水平提高,畜禽良种建设成效显著,已建立起完善的畜牧技术推广体系,畜禽养殖上下游产业链间进一步融合,涌现出广东温氏、中粮肉食、新希望、罗牛山、雏鹰农牧等一系列大型畜禽养殖企业集团,加速了我国畜牧业现代化进程。基于环境承载力理论的实证分析表明:考虑化肥使用和农作物需肥量等因素,1990-2011年22年间我国畜牧业对水体、土壤环境的污染压力总体上呈现出“逐年上升—平稳回落”的两阶段特征。水环境超载已成为各地区畜牧业发展面临的首要环境约束,土壤环境超载次之。2011年,除西藏外我国大陆地区其它省份畜牧业氮磷排放均呈现环境承载超标;经济区划间对比表明:土壤环境承载压力指数从大到小依此为中部、东部、西部和东北地区,水体环境承载压力指数从大到小依此为东部、中部、东北和西部地区;畜牧业区划间对比表明:土壤环境承载压力指数从大到小依此为农区、牧区和农牧交错区,水体环境承载压力指数从大到小依此为农牧交错区、农区和牧区。基于生命周期评价方法的实证分析表明:1990-2011年22年间我国畜牧业全生命周期及各个环节的CO2当量排放量均呈现上升趋势,尤其是畜禽饲养耗能、饲料粮种植、饲料粮运输加工和畜禽屠宰加工环节的增长更为显著,但历年饲料粮运输加工和畜禽屠宰加工环节占畜牧业全生命周期C02当量排放总量的比重均低于1%和0.05%;家畜胃肠道发酵和粪便管理系统环节占畜牧业全生命周期C02当量排放总量的比重呈下降趋势;22年间,反刍家畜的C02当量排放量占55.25%,非反刍畜禽占44.75%。2011年,我国大陆地区内蒙古、辽宁和云南的畜牧业全生命周期CO2排放当量和排放强度均位居全国前10位;西部地区畜牧业全生命周期CO2当量排放量所占比重最大,并且西部地区的排放强度最高;农区畜牧业全生命周期CO2当量排放量占63.88%,牧区占14.07%,但牧区的排放强度最高,农区最低。
     (2)运用EKC理论验证我国畜牧业环境污染与经济增长之间的关系发现:畜牧业对水体和土壤造成的环境污染与人均GDP之间符合倒“U”型曲线关系,且已跨过曲线“拐点”呈良性发展趋势;畜牧业温室气体排放强度呈线性下降趋势,与人均GDP之间不符合倒“U”型曲线关系。本文在系统阐述环境污染与经济增长理论关系的基础上,采用1990-2011年22年间反映我国畜牧业环境污染程度的3项指标:畜禽粪便排放引起的土壤氮素超载量、水环境承载压力指数和畜牧业温室气体排放强度,在时间序列平稳的前提下,分别对历年人均GDP进行回归分析,验证是否符合EKC曲线。研究表明:畜牧业氮磷排放对土壤和水体造成的环境污染与人均GDP之间符合倒“U”型曲线关系,且已跨过曲线“拐点”呈良性发展趋势;畜牧业全生命周期温室气体排放强度呈线性下降趋势,与人均GDP之间不符合倒“U”型曲线关系。总体而言,我国畜牧业环境污染随着经济增长已呈现出缓和的趋势。
     (3)运用二元Logistic回归模型分析畜禽养殖场环境污染防治意愿的影响因素,研究表明:养殖场养殖规模、土地经营规模、畜禽污染防治经济成本和来自环保部门的监管压力对养殖场开展环境污染防治的概率具有显著的正向影响。武汉市畜牧业的发展在一定程度上是我国畜牧业发展的一个缩影,选择武汉市作为样本区域,具有一定的代表性。2000年后,针对畜牧业发展引发的环境污染问题,武汉市政府先后出台了一系列污染防治政策。本文在梳理武汉市畜牧业发展与环境污染防治政策的基础上,选取武汉市年出栏500头以上的103家猪场为样本,运用二元Logistisc回归模型对养殖场开展环境污染防治的意愿进行实证分析,研究表明:养殖场养殖规模、土地经营规模、畜禽污染治理经济成本和来自环保部门的监管压力对规模化养殖场开展畜禽污染治理的概率具有显著的正向影响。养殖场决策者年龄、文化程度、养殖年限、近3年效益情况、融资渠道是否畅通、对畜禽污染程度的认知、是否认为畜禽养殖会加剧全球气候变暖、是否因养殖场环保问题影响到与周边村民、村委会或政府的关系对养殖场开展环境污染防治不具有显著影响。
     (4)采用案例分析方法,研究武汉银河猪场开展环境污染防治的效益,研究表明:武汉银河猪场通过建设大型沼气治污工程、实施土地流转与整理开发、严格规范生猪饲养管理、开展粪污资源化利用和农牧一体化经营,较好地解决了猪场环境污染问题,并构建起种养结合循环农业系统,实现了良好的经济效益,与单纯的生猪养殖相比,该循环农业系统在资源减量化程度、环境承载压力状况、生产效率和经济效益方面均占优势。
     (5)提出我国畜牧业环境污染防治策略。结合前文研究结果,梳理和评述我国现行的畜牧业环境污染防治政策,借鉴欧美等发达国家的污染防治经验,充分考虑我国畜牧业在国民经济中的地位和行业特点,统筹兼顾畜牧业发展和环境污染防治两大目标,提出强化畜牧业环境污染防治体系建设,加大政策扶持力度、健全激励机制,完善污染防治技术标准和规范,加强污染防治技术研发、示范和推广,推动污染防治宣传教育和大力推动畜牧业温室气体减排等污染防治策略。
     本文可能以下有3点创新:(1)研究选题具有新颖性。现有研究多集中于对畜牧业氮磷污染领域的分析,本文将畜牧业氮磷排放和温室气体排放一并纳入畜牧业环境污染的分析框架,运用环境承载理论和生命周期分析方法定量测度我国畜牧业环境污染时空特征,并进一步把握我国畜牧业环境污染与经济增长之间的长期关系,拓展了既定的研究内容,丰富了现有的研究体系,研究选题具有一定新颖性。(2)研究方法的应用有所创新。在现有的研究中,大多集中于畜牧业氮磷污染所形成的对土壤或水体单个领域污染的风险分析,本文则基于环境承载理论,综合考虑化肥使用、农作物吸收、牧区粪便燃烧等因素,科学测算了我国畜牧业对土壤、水体环境的污染程度及时空特征;与此同时,在对畜牧业温室气体排放研究方面,目前的研究大多侧重于对畜禽饲养和粪便管理系统等直接排放的温室气体的分析,而本文则运用生命周期理论,依据家畜胃肠道发酵、粪便管理系统、畜禽饲养环节耗能、饲料粮种植、饲料粮运输加工和畜禽产品屠宰加工6大环节的调查数据,从全生命周期的角度测算了我国畜牧业温室气体的排放量及排放特征,在研究方法上具有一定的创新性。(3)研究内容具有一定创新,获得了一些有价值的结论。在宏观研究层面,基于环境承载力和生命周期理论方法测算我国畜牧业环境污染时空特征,并运用EKC理论验证我国畜牧业环境污染与经济增长之间的长期关系;在微观研究层面,选择典型区域开展问卷调查,分析畜禽养殖场污染防治意愿的影响因素,并采用典型案例剖析养殖场开展污染防治的措施及效益;在污染防治策略的提出层面,梳理我国现行的畜牧业环境污染防治政策,借鉴国际畜牧业环境污染防治经验,统筹兼顾畜牧业发展和环境污染防治两大目标,提出适于我国国情的畜牧业环境污染防治策略,具有一定创新性。
Livestock industry has achieved remarkable development effectiveness in China, the livestock production and per capita output increased substantially, the proportion of animal husbandry output value of agricultural output increased significantly, since the Reform and Opening-up. In2010, the proportion of large-scale breeding pigs, hens and cows in our country were64.5%,78.8%, and46.5%, the level of large-scale farming of our country's livestock is increasing. The changes in livestock feeding patterns directly lead to increased emissions from livestock manure density and pastoral disjointed seriously, that threat to the environment seriously. The first national census of pollution sources dynamically updated data show that the water pollutant emissions of COD, NH3-N from livestock are respectively3.23times,2.3times from industrial sources, respectively accounting to the country's total emissions45%,25%, livestock industry has become an important source of our country's environmental pollution in2010. Meanwhile, livestock industry is also an important source of GHG emissions,"Livestock's Long Shadow: Environmental Issues and Solutions" which was published by FAO in2006pointed that, if take the livestock feed production land and the use change of land caused by farm land occupation, the global livestock sector accounts for18percent of GHG emissions from human activities'GHG calculated by CO2equivalent. Livestock industry has become a major threat to climate change.
     Based on the macro-perspective, this paper described the current situation of our country's livestock development, quantified the pollution levels of water or soil by manure emissions and the status of livestock GHG emissions, analyzed the spatial and temporal characteristics of livestock pollution, seized the long-term relationship between livestock environmental pollution and economic growth. Based on the micro-perspective, this paper analyzed the factors which affecting the livestock and poultry farms to carry out the wishes of environmental pollution prevention, and selected the typical case which carried out environmental pollution prevention, analyzed its measures and benefits. Then, this paper combing and commentary the existing central and local prevention policies in livestock pollution, and learned from the prevention experience of American and European countries. Finally, proposed the environmental pollution prevention strategies for the actual development of the livestock. This paper has good theoretical and practical value. The main contents of this paper include:research background, purpose and meaning, dynamic and commentary, concepts definition theoretical basis(Chapter1, Chapter2), Chinese livestock development and environmental pollution temporal characteristics (Chapter3), Analyze the relationship between livestock environmental pollution and economic growth in China (Chapter4). Analyze the farm's livestock wishes of environmental pollution prevention:A Case of Wuhan (Chapter5), A Case Study of Livestock Industry Environmental Pollution(Chapter6) and The prevention and control strategies of our livestock pollution (Chapter7).The main conclusions are as follows:
     (1) Environmental pollution problem has appeared with the rapid development of Chinese livestock. Based on the environmental carrying capacity and life-cycle theory empirical analysis showed that our country's livestock pollution situation is grim, the environment carrying capacity of water and soil are excessive caused by the emissions of nitrogen and phosphorus from livestock, and the total GHG emission from livestock is rising, has become the new environmental problems. Compared with the beginning of Reform and Opening-up, the production capacity of Chinese livestock increased significantly, the per capita consumption of livestock products increased substantially, the product structure of livestock optimized gradually, the production layout regionalization formed gradually, the level of standardization and scale increased substantially, the construction of livestock breeding had significant results, have established a sound livestock technology promotion system. Further integration between the upstream and downstream industry chain in livestock appeared, emerged series of large-scale livestock breeding group such as WENS, COFCO MEAT, New Hope Group, LUONIUSHAN, TRUE IN GROUP and on, which accelerate the modernization process of our country's livestock. Based on the environmental carrying capacity and life-cycle theory empirical analysis showed that the water and soil environment pollution pressures showed a two-stage-characteristic, namely "increased year by year-decreased steadily" from1990to2011, consider the use of fertilizers and crop nutrient requirement and other factors, in the temporal characteristics of nitrogen and phosphorus pollution of livestock;. In the spatial characteristics of nitrogen and phosphorus pollution of livestock, the overload of water environment has been the primary environmental constraints, while the overload of soil environment follows that, which are hindering the livestock development in Chinese various regions in the spatial characteristics of nitrogen and phosphorus pollution of livestock, In2011, the nitrogen and phosphorus emissions from livestock are showing environmental carrying excessive in all mainland provinces except Tibet. Compare different economic divisions showed that the soil environment carrying pressure index was descending so for the central, eastern, western and northeastern regions and the water environment carrying pressure index descending so for the eastern, central, northeastern and western regions. Compare different livestock divisions showed that the soil environment carrying pressure index was descending so for agricultural areas, pastoral and farming-pastoral areas, and the water environment carrying pressure index descending so for farming-pastoral areas, agricultural areas and pastoral areas. In the temporal characteristics of livestock GHG emissions, the emissions of CO2equivalent of livestock by life-cycle assessment and various aspects are showing an upward trend over the past22years, particularly the growth of rearing phase, planting feed grain, processing and transporting feed grain, slaughtering and processing animal products are even more significant, but the emissions of CO2equivalent from processing and transporting feed grain and slaughtering and processing animal products accounted for the total emissions from Chinese livestock are less than1%and0.05%. The emissions of CO2equivalent from gastrointestinal fermentation and manure management system, show a downward trend. The emissions from ruminant livestock account for55.25%, while non-ruminant livestock account for44.75%over the past22years. In the spatial characteristics of livestock GHG emissions, in2011both the emissions and emissions-intensity of CO2equivalent from Inner Mongolia, Liaoning and Yunnan's livestock are among the nation's top10. Comparing between different economic divisions shows that the emissions of livestock in the western region account for the largest share, and the emissions-intensity of Western and Northeastern are significantly higher than the Eastern and Central in China. Comparing between different livestock divisions shows that the emissions of CO2equivalent from agricultural areas' livestock accounted for63.88%of China, however the emission-intensity of pastoral areas is the highest, while the emission-intensity of agriculture areas is the lowest.
     (2) Using the EKC theory to verify the relationship between livestock environmental pollution and economic growth found that the water and soil pollution with the per capita GDP meet the inverted "U"-shaped curve relationship, and has crossed the curve "turning point" showing positive trends, while livestock GHG emission intensity linearly decreasing trend, which does not meet the inverted "U"-shaped curve relationship with the per capita GDP. This paper systematically describes the theoretical relationship between environmental pollution and economic growth, Using three indicators:soil nitrogen overload capacity, the water environment carrying pressure index and livestock GHG intensity in1990-2011years, which reflect the degree of environmental pollution livestock to verify the EKC curve with the per capita GDP, under the premise of stationary sequence. Studies have shown that the water and soil pollution with the per capita GDP meet the inverted "U"-shaped curve relationship, and has crossed the curve "turning point" showing positive trends, while livestock GHG emission intensity linearly decreasing trend, which does not meet the inverted "U"-shaped curve relationship with the per capita GDP. Overall, livestock environmental pollution has emerged easing trend with the economic growth in our country.
     (3) Analyze the factors which influence Farms's wishes to carry out Pollution Prevention using binary Logistic regression models, studies have shown that the farming scale, land scale, economic costs of pollution prevention and the regulatory pressure from the environmental protection department have a significant positive effect to the probability of large-scale farms for environmental pollution prevention. The livestock development of Wuhan City is a microcosm of our country's livestock to some extent, this paper selected Wuhan City a sample area has some representation. After2000, the Wuhan municipal government has issued a series of livestock pollution prevention policy, for the environmental pollution problems caused by the development of livestock. Carding the policies about livestock development and environmental pollution prevention in Wuhan, and selecting103large-scale pig farms as a sample whose slaughter are more than500heads, analyzing the factors which influence Farms's wishes to carry out Pollution Prevention using binary Logistic regression models, studies have shown that the farming scale, land scale, economic costs of pollution prevention and the regulatory pressure from the environmental protection department have a significant positive effect to the probability of large-scale farms for environmental pollution prevention. While the farms policymakers'age, education, breeding age, economic situation in recent years, financing channels, the cognition degree of pollution on livestock, claiming that livestock will aggravate global warming or not, the relations with neighboring villagers, village or government because of environmental issues does not have a significant impact.
     (4) Using case analysis, select Wuhan Yinhe Pig Farm for the study showed that Wuhan Yinhe Pig Farm has solved the problem of environmental pollution and achieved a good ecological and economic benefits through constructing the large-scale biogas, transfering and developing the land, strictly regulate the management of pig rearing, manure utilization, using the manure as resources, integrated operating the agriculture and animal husbandry. Through these measures,Yinhe Pig Farms has solved the problem of environmental pollution and builded planting combined circulation of agricultural systems. Compared with pure pig farming, this circulation system of agricultural are dominant in resource reduction, environmental bearing pressures, system productivity and economic efficiency.
     (5) Proposed strategies for our country's livestock environmental pollution prevention. Combing those earlier findings, combing and reviewing existing policies in livestock pollution prevention, learning from the prevention experience of American and European countries, fully considering the livestock's status in our national economy and the industry characteristics, balancing the livestock development and environmental pollution control, proposing the environmental pollution prevention strategies for the actual livestock development, such as strengthening the construction of livestock pollution control system, intensifying policy support, improving the incentive mechanism, improving pollution prevention technical standards and specifications, strengthening the research, demonstration and promotion of technology in livestock pollution control, promoting pollution prevention education, exploring the establishment of technical systems and policy mechanisms in livestock GHG emissions.
     In this paper, there may be three innovations. First,the research topic is innovative. In this paper, the nitrogen and phosphorus emissions from livestock and livestock GHG emissions have been included in the environmental pollution research system, while existing researches has focused in the field of nitrogen and phosphorus pollution from livestock, so this research topics have some innovation. Second, the research methods are innovative. On the one hand, existing researches on nitrogen and phosphorus pollution from livestock are more focused on the risk of contamination of the soil or water in a single field, this paper considering the use of fertilizers, crop absorption, pastoral manure burning and other factors, scientific measured the degree of contamination from livestock and the temporal and spatial characteristics of soil, water environment, based on environmental carrying theory, reflecting innovative. On the other hand, the existing researches on livestock GHG emissions mostly concentrated in the breeding of livestock and manure management system, which are direct emissions. Comprehensive consideration of livestock's direct production and upstream and downstream industry chain, this paper considers six major link of livestock:gastrointestinal fermentation, manure management system, energy consumption in rearing phase, planting feed grain, processing and transporting feed grain, slaughtering and processing animal products, to estimate the emissions of Chinese livestock's GHG during1990to2011by life-circle assessment, in every part of China using panel data, reflecting innovative. Third, the conclusions is innovative. This paper considered the pollution from nitrogen, phosphorus and GHG emissions of livestock, seized the long-term relationship between livestock environmental pollution and economic growth, analyzed the factors which affecting the livestock and poultry farms to carry out the wishes of environmental pollution prevention, and selected the typical case which carried out environmental pollution prevention, analyzed its measures and benefits. Then, this paper combing and commentary the existing central and local prevention policies in livestock pollution, learned from the prevention experience of American and European countries, proposed the environmental pollution prevention strategies for the actual development of the livestock, conclusions have some innovative.
引文
1. Adams P L, Daniel T C, Edwards D R, et al. Poultry litter and manure contributions to nitrate eaching through the vadose zone [J].Soil Sci.Soc.Sm.J,1994,58(4):1206-1211.
    2. Andrew B, Abel, Ben S, Bernanke, Dean Croushore.中级宏观经济学 [M]. 北京: 机械工业出 版社,2009.
    3. Arrow K, Bolin,Costanza R, et al. Economic Growth,Carrying Capacity,and the Environment [J].Science,1995,268:520-521.
    4. Arrow K. Economic Implications of Learning by Doing, Review of Econmic Studies.Vol. 29,80(June 1962).
    5. Basset-Mens C, Van Der Werf H M G. Scenario-based environmental assessment of farming systems:the case of pig production in France[J]. Agriculture, Ecosystems and Environment, 2005,105:127-144.
    6. Berlin J. Environmental life cycle assessment (LCA) of Swedish semi-hard cheese[J]. International Dairy Journal,2002,12:939-953.
    7. Brown M T, Ulgiati S. Energy quality, energy, and transformity:H.T. Odum's contributions to quantifying and understanding systems. Ecological Modeling,2004,10,201-213
    8. Casey J W, Holden N M. The relationship between greenhouse gas emissions and the intensity of milk production in Ireland[J]. Journal of Environmental Quality,2005,34:429-436.
    9. Cederberg C, Mattson B. Life cycle assessment of milk production:a comparison of conventional and organic farming[J]. Journal of Cleaner Production,2000(8):49-60.
    10. Cederberg C, Stadig M. System expansion and allocation in life cycle assessment of milk and beef production[J]. International Journal of Life Cycle Assessment,2003,8(6):350-356.
    11. Choudhary M,Balley L D,Grant C A. Review of the use of swine manure in crop production:effects on yield and composition and on soil and water quality [J]. Waste Management & Research,1996,14:581-595.
    12. Clapham.J.H. On Empty Economic Boxes [J].Economic Journal,1922(32):305.
    13. Committee on Climate Change. Building a low-carbon economy:the UK's contribution to tackling climate change[R]. The First Report of the Committee on Climate Change. London, UK: The Stationary Office, London,2008:463-467.
    14. Daniel T C, Sharpley A N, Stewart S J, et al. Environmental impact of animal manure management in the southern plains[R]. Spokane, Washington:USDA-ARS,1993:6-7.
    15. Druckman A, Bradley P, Papathanasopoulou E, et al. Measuring progress towards carbon reduction in the UK [J]. Ecological Economics,2007,66(4):594-604.
    16. Elferink E V, Nonhebel S, Schoot U A J M. Does the Amazon suffer from BSE prevention? [J]. Agriculture, Ecosystems and Environment,2007,120:467-469.
    17. Evans P O, Westerman P W, Overcash M R. Subsurface drainage water quality from land application of seine lagoon effluent[J]. Transactions of the American Society of Agricultural and Biological Engineers,1984,27(2):473-480.
    18. FAO,2006. Livestock's Long Shadow—Environmental Issues and Options. Food and Agriculture Organisation, Rome, Italy.
    19. Foster C, Green K, Bleda M,, et al. Environmental impacts of food production and consumption: A report produced for the department for environment, food and rural affairs[R]. London:Defra. 2006:82-98.
    20. Gerbens-Leenes P W, Nonhebel S. Consumption patterns and their effects on land required for food [J]. Ecological Economics,2002,42:185-199.
    21. Gold M. The Global Benefits of Eating Less Meat[M]. Petersfield, UK: Compassion in World Farming Trust,2004:22-24.
    22. Goodland R. Environmental sustainability in agriculture:diet matters[J].Ecological Economics, 1997,23:189-200.
    23. Griffin R.C., Bromley D.W. Agricultural Runoff as a Nonpoint Externality:A Theoretical Development. American Journal of Agricultural Eco-nomics,1982,64 (3):547-552.
    24. Grossman G, Krueger. Environmental Impacts of a North American Free Trade Agreement [C], National Bureau Economic Research Working Paper 3914,NBER,Cambridge MA.1991.
    25. Hall Beyer M, Nepstad D C, Stickler C M, et al. Globalization of the Amazon soy and beef industries:op portunities for conservation[J]. Conservation Biology,2006,20(6):1595-1603.
    26. Hansen L.G. A Damage Based Tax Mechanism for Regulation of Non-Point Emissions. Environmental and Resource Economics,1998,12 (1):99-112.
    27. Hooda P S, Truesdale V W, Edwards A C, et al. Manuring and fertilization effects on phosphorus accumulation in soils and potential environmental implications [J]?Advances in Environmental Research,2001,5(1):13-21.
    28. http://www.whbgt.gov.cn/documents.php?c=1&list=new
    29. Huang Liming. Financing rural renewable energy:A comparison between China and India [J]. Renewable and Sustainable Energy Reviews,2009,13(5):1096-1103.
    30. Jackson T, Papathanasopoulou E, Bradley P, et al.. Attributing carbon emissions to functional household needs:a pilot framework for the UK[C]. Brussels:International Conference on Regional and Urban Modelling,2006:1-28.
    31. Jan Maarten Dros. Managing the Soy Boom:Two scenarios of soy production expansion in South America[R]. Amsterdam:Aidenvironment,2004:21-31.
    32. Keyzer M A, Merbis M D, Pavel I F P W, et al. Diet shifts towards meat and the effects on cereal use:can we feed the animals in 2030?[J]. Ecological Economics,2005,55(2):187-202.
    33. Lovett D K, Shalloo L, Dillon P, et al. A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime[J]. Agricultural Systems,2006,88 (2/3):156-179.
    34. Lu H F, Li L J,Daniel E, Campbell, Ren H. Energy algebra:Improving matrix methods for calculating transformities. Ecological Modelling,2009,10,411-422.
    35. Mallin M A, Cahoon L B. Industrialized animal reduction:a major source of nutrient and microbial pollution to aquatic ecosystems [J]. Population and Environment,2003,24(5):369-385.
    36. Marshall. A Principles of Economics [M]. London:Macmillan,1920,266.
    37. Mcalpine C A., Etter A, Fearnside P M, et al. Inreasing world consumption of beef as a driver of regional and global change:A call for policy action based on evidence from Queensland (Australia), Colombia and Brazil[J]. Global Environmental Change,2009,19:21-23.
    38. Mcmichael A J, Powles J W, Butler C D, et al. Food, livestock production, energy, climate change, and health. The Lancet,2007,370(9594):1253-1263.
    39. Nepstad D C, Stickler C M, Almeida O T. Globalization of the Amazon soy and beef industries: op portunities for conservation[J]. Conservation Biology,2006,20(6):1595-1603.
    40. Odum H T. Living with Complexity. In:Crafoord Prize in the Biosciences, Crafoord Lectures, Royal Swedish Academy of Science, Stockholm,1987:19-85.
    41. Odum H T. Self-organization, transformity and information[J]. Science,1983,1132-1139.
    42. Oenema O, Van Liere E, Plette S, et al. Environmental effects of manure policy options in the Netherlands [J]. Water Science and Technology,2004,49(3):101-108.
    43. Oenema O, Van Liere E, Plette S., et al. Environmental effects of manure policy options in the Netherlands [J]. Water Science and Technology,2004,49(3):101-108.
    44. Olesen J E, Schelde K, Weiske A. Modelling greenhouse gas emissions from European conventional and organic dairy farms[J]. Agriculture, Ecosystems and Environment 2006,112: 207-220.
    45. Olesen J E, Schelde K, Weiske A. Modelling greenhouse gas emissions from European conventional and organic dairy farms[J]. Agriculture, Ecosystems and Environment 2006,112: 207-220.
    46. Panayotou T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development[C]. Working Paper WP238,1993.
    47.R·科斯.企业、市场与法律[M].上海:上海三联书店,1990:76.
    48. Romer P, Increasing Returns and Long-Run Growth, Journal of Political Economy,Vol. 94,5(October 1986).
    49. Sainz, R. Framework for calculating fossil fuel use in livestock systems. Livestock, Environment and Development initiative report. (Available at ftp://ftp.fao.org/docrep/nonfao/LEAD/X6100E/ X6100E00.PDF).2003.
    50. Segerson K. Uncertainty and Incentives for Nonpoint Pollution Control-Journal of Environmental Economics and Management,1988,15:87-98.
    51. Shortle J.S., and J.W. Dunn. The Relative Efficiency of Agricultural SourceWaterPollution Control Policies. American Journal of Agricultural Economics,1986,64 (3):668-677.
    52. Simone Bastianoni, Federico M. Pulselli, Cesare Castellini, Claudio Granai, Alessandro Dal Boseo, Mauro Brunetti. Emergye valuation and the management of systems towards sustainability: A response to Sholto Maud[J]. Agriculture, Ecosystems and Environment,2007.120:472-474.
    53. Soumyananda Dinda. Environmental Kuznets Curve Hypothesis:A Survey [J]. Ecological Economics,2004,49(4),431-455.
    54. Steinfield H, Gerber P, Wassenaar T D, et al. Livestock's Long Shadow:Environmental Issues and Options[R]. Rome, Italy:Food and Agriculture Organisation,2006:43-44.
    55. Tamminga S. Polluiton due to nutrient losses and its control in European animal production. Livestock Production Science,2003,84:101-111.
    56. Tara G. Livestock-related greenhouse gas emissions:impacts and options for policy makers[J]. Environmental Science & Policy,2009,12:491-503.
    57. Williams A G, Audsley E, Sandars D L. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities[R]. Bedford:Cranfield University and Defra,2006:4; 72-76.
    58. Wirsenius S. Efficiencies and biomass appropriation of food commodities on global and regional levels [J].Agricultural Systems,2003,77:219-255.
    59. Wu J., M. L. Teague, H. P. Mapp, and D. J. Bernardo. An Empirical Analysis of the Relative Efficiency of Policy Instruments to Reduce Nitrate Water Pollution in the U. S. Southern High Plains, Canadian Journal of Agricultural Economics,1995,43 (3):403-420.
    60.奥德姆.生态学基础[M].北京:高等教育出版,2009.
    61.白瑜,陆宏芳,何江华,任海.基于能值方法的广东省农业系统分析[J].生态环境,2006,15(1):103-108.
    62.边淑娟,黄民生,李娟,陈晓丽.基于能值生态足迹理论的福建省农业废弃物再利用方式评估[J].生态学报,2010,30(10):2678-2686.
    63.蔡晓明.系统生态学[M].北京:科学出版社,2000.194-200
    64.陈丹,陈菁,关松,陈祥.基于能值理论的区域水资源复合系统生态经济评价[J].水利学报,2008,39(12):1384-1389.
    65.陈德明,杨劲松,刘广明.规模化牲畜养殖场的环境效应及其对策[J].上海环境科学,2002,21(8):488-490.
    66.陈莉,左停.中国农村户用沼气发展的多元话语分析[J].农村经济,2011(6):88-92.
    67.陈敏鹏,陈吉宁.中国区域土壤表观氮磷平衡清单及政策建议[J].环境科学,2007,28(6):1305-1310.
    68.陈默,王晓莉,吴林海.R&D投入能力、企业特征、政府作用与企业低碳生产意愿研究[J].科技进步与对策,2010,27(22):112-116.
    69.陈绍晴,陈彬,宋丹.沼气农业复合生态系统能值分析[J].中国人口.资源与环境,2012,22(4):80-89.
    70.陈笑,史剑茹,孟蝶,赵言文.沼气与沼肥在农业和环境方面的运用与成效[J].中国沼气,2011,29(1):44-47.
    71.陈勇,李首成,税伟,康银红.基于EKC模型的西南地区农业生态系统碳足迹研究[J].农业技术经济,2013,(2):120-128.
    72.程火生,崔哲浩.长白山地区生态旅游环境承载力与可持续发展研究[J].延边大学农学学报,2010,32(1):39-43.
    73.程磊磊,尹昌斌,鲁明中,米健.国外农业面源污染控制政策的研究进展及启示[J].中国农业资源与区划,2010,31(3):76-80.
    74.仇焕广,严健标,蔡亚庆,李瑾.我国专业畜禽养殖的污染排放与治理对策分析—基于五省调查的实证研究[J].农业技术经济,2012,05:29-35.
    75.崔风暴.宜宾市复合生态系统的能值评价及其可持续发展探析[J].特区经济,2007,(7):179-180.
    76.单正军.加拿大畜牧业环境保护管理考察报告[J].农村生态环境,2000,16(4):61-62.
    77.董巍,刘听,孙铭,余媛嫒,王祥荣.生态旅游承载力评价与功能分区研究—以金华市为例[J].复旦学报(自然科学版),2004,43(6):1024-1029.
    78.杜江,刘渝.中国农业增长与化学品投入的库兹涅茨假说及验证[J].世界经济文汇,2009,(3):96-108.
    79.范小杉,高吉喜.中国农业生态经济系统能值利用现状及其演变态势[J].干旱区资源与环境,2010,24(7):1-9.
    80.范小杉,高吉喜.中国生态经济系统资源利用状况及演变趋势[J].中国人口.资源与环境,2009,19(5):37-44.
    81.付伟,蒋芳玲,刘洪文,吴震.沛县蔬菜生态系统能值分析[J].中国生态农业学报,2011,19(4):940-946.
    82.高定,陈同斌,刘斌,郑袁明,郑国砥,李艳霞.我国畜禽养殖业粪便污染风险与控制策略[J].地理研究,2006,02:311-319.
    83.高宏霞,杨林,王节.经济增长与环境污染关系的研究—基于环境库兹涅茨曲线的实证分析[J].云南财经大学学报,2012,(2):70-77.
    84.郭冬生,彭小兰,龚群辉,夏维福.畜禽粪便污染与治理利用方法研究进展[J].浙江农业学报,2012,24(6):1164-1170.
    85.国家发展和改革委员会.中华人民共和国气候变化初始国家信息通报[EB/OL].[2005].
    86.国家环境保护总局自然生态司.全国规模化畜禽养殖业污染情况调查及防止对策[M].北京:中国环境科学出版社,2002.
    87.韩瑞玲,佟连军,佟伟铭,于建辉.经济与环境发展关系研究进展与述评[J].中国人口.资源与环境,2012,22(2):119-124.
    88.何秋香,王菲凤.福州青口投资区工业系统能值分析[J].福建师范大学学报(自然科学 版),2010,26(3):104-111.
    89.何如海,江激宇,张士云,尹昌斌,柯木飞.规模化养殖下的污染清洁处理技术采纳意愿研究—基于安徽省3市奶牛养殖场的调研数据[J].南京农业大学学报(社会科学版),2013,13(3):47-53.
    90.洪华生,曾悦,张珞平,陈能汪,李永玉,郑或.九龙江流域畜牧养殖系统的氮磷流失研究[J].厦门大学学报:自然科学版,2004,43(4):542-546.
    91.侯茂章,朱玉林.基于能值理论的湖南环洞庭湖区域农业产出研究[J].中国农学通报,2013,29(14):61-68.
    92.侯勇,高志岭,马文奇,Lisa Heimann,Marco Roelcke,Rolf Nieder.京郊典型集约化“农田-畜牧”生产系统氮素流动特征[J].生态学报,2012,32(4):24-32.
    93.侯勇,高志岭,马文奇,等.京郊典型集约化“农田-畜牧”生产系统氮素流动特征[J].生态学报,2012,32(4):1028-1036.
    94.胡向东,王济民.中国畜禽温室气体排放量估算[J].农业工程学报,2010,26(10):247-252.
    95.胡艳霞,李红,王宇,严茂超,任万涛,周连第.北京郊区多目标产出循环型农业效益评估—以房山区南韩继大型养猪—沼气生态经济系统为例[J].中国农学通报,2009,25(9):251-257.
    96.化肥使用环境安全技术导则(编制说明).中华人民共和国环境保护部,2010.
    97.环境保护部,农业部.全国畜禽养殖污染防治“十二五”规划.2013.
    98.黄灿,李季.畜禽粪便恶臭的污染及其治理对策的探讨[J].家畜生态,2004,25(4):211-213,217.
    99.黄冠庆,安立龙.运用营养调控措施降低动物养殖业环境污染[J].家畜生态,2002,23(4):29-33.
    100.黄敬宝.外部性理论的演进及其启示[J].生产力研究,2006,(7):22-24.
    101.贾丽虹.外部性理论及其政策边界[D].华南师范大学,2003.
    102.江希流,华小梅,张胜田.我国畜禽养殖业的环境污染状况、存在问题与防治建议[J].农业环境与发展,2007,24(4):61-64.
    103.蒋萍,余厚强.EKC拐点类型、形成过程及影响因素[J].财经问题研究,2010,06:3-9.
    104.景栋林,陈希萍,于辉,等.佛山市畜禽粪便排放量与农田负荷量分析[J].生态与农村环境学报,2012,28(1):108-1]1.
    105.康文星,王东,邹金伶,胡燕平,崔莎莎.基于能值分析法核算的怀化市绿色GDP[J].生态学报,2010,30(8):2151-2158.
    106.李飞,董锁成.西部地区畜禽养殖污染负荷与资源化路径研究[J].资源科学,2011,33(11):2204-2211.
    107.李国江.安达地区家畜粪便处理的现状及有效利用[J].兽医导刊,2007,(12):15-17.
    108.李金华.中国可持续发展核算体系(SSDA) [M].北京:社会科学文献出版社,2000.
    109.李景明,薛梅.中国沼气产业发展的回顾与展望[J].可再生能源,2010,28(3):1-5.
    110.李君,庄国泰.中国农业源主要污染物产生量与经济发展水平的环境库兹涅茨曲线特征分析[J].生态与农村环境学报,2011,27(6):19-25.
    111.李庆康,吴雷,刘海琴,蒋永忠,潘玉梅.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护,2000,19(4):251-254.
    112.李太平,张锋,胡浩.中国化肥面源污染EKC验证及其驱动因素[J].中国人口.资源与环境,2011,21(11):118-123.
    113.李玉文,徐中民,王勇,焦文献.环境库兹涅茨曲线研究进展[J].中国人口.资源与环境,2005,15(5):11-18.
    114.李祖章,谢金防,蔡华东,等.农田土壤承载畜禽粪便能力研究[J].江西农业学报,2010,22(8):140-145,149.
    115.梁春玲,谷胜利.南四湖湿地生态系统能值分析与区域发展[J].水土保持研究,2012,19(2):185-188.
    116.梁流涛.农业发展与协调性评价及影响因素分析[J].中国环境科学,2012,32(9):1702-1708.
    117.林聪,魏晓明,姜文藤.沼气工程生态模式能值分析[C].2008中国农村生物质能源国际研讨会暨东盟与中日韩生物质能源论坛论文集.
    118.林妮娜,庞昌乐,陈理,董仁杰.利用能值方法评价沼气工程性能—山东淄博案例分析[J].可再生能源,2011,29(3):61-66.
    119.刘传江,朱劲松.三峡库区土地资源承载力现状与可持续发展对策[J].长江流域资源与环境,2008,17(4):522-528.
    120.刘东,封志明,杨艳昭,游珍.中国粮食生产发展特征及土地资源承载力空间格局现状[J].农业工程学报,2011,27(7):1-6,398.
    121.刘刚,沈镭.中国生物质能源的定量评价及其地理分布[J].自然资源学报,2007,22(1):9-19.
    122.刘佳骏,董锁成,李泽红.中国水资源承载力综合评价研究[J].自然资源学报,2011,26(2):258-269.
    123.刘建昌,陈伟琪,张珞平,洪华生.构建流域农业非点源污染控制的环境经济手段研究—以福建省九龙江流域为例[J].中国生态农业学报,2005,13(3):186-190.
    124.刘可群,陈正洪,夏智宏.湖北省太阳能资源时空分布特征及区划研究[J].华中农业大学学报,2007,26(6):888-893.
    125.刘炜.加拿大畜牧业清洁养殖特点及启示[J].中国牧业通讯,2008,(10):18-19.
    126.刘晓利,许俊香,王方浩,等.我国畜禽粪便中氮素养分资源及其分布状况[J].河北农业大学学报,2005,28(5):27-32.
    127.刘勇,张宁珍,刘善军,张建安,胡俊林.沼肥在农业生态模式中转化应用研究[J].江西农业大学学报,1999,(2):117-120.
    128.刘源远,孙玉涛,刘凤朝.中国工业化条件下环境治理模式的实证研究[J].中国人口.资源与环境,2008,18(4):195-200.
    129.刘志杰,陈克龙,赵志强,苏茂新,韩艳莉.基于能值分析的区域循环经济研究—以柴达木盆地为例[J].水土保持研究,2011,18(1):141-145.
    130.刘忠,增院强.中国主要农区畜禽粪尿资源分布及其环境负荷[J].资源科学,2010,32(5):946-950.
    131.吕翠美,吴泽宁.区域水资源生态经济系统可持续发展评价的能值分析方法[J].系统工程理论与实践,2010,30(7):1293-1298.
    132.吕文魁,王夏晖,李志涛,张惠远,孔源,王波.发达国家畜禽养殖业环境政策与我国治理成本分析[J].农业环境与发展,2011,28(6):22-26.
    133.罗士俐.外部性理论的困境及其出路[J].当代经济研究,2009,(10):26-31.
    134.马林,王方浩,马文奇,等.中国东北地区中长期畜禽粪尿资源与污染潜势估算[J].农业工程学报,2006,22(8):170-174.
    135.毛留喜,侯英雨,钱拴,等.牧草产量的遥感估算与载畜能力研究[J].农业工程学报,2008,24(8):147-151.
    136.孟祥海,张俊飚,李鹏.中国畜牧业资源环境承载压力时空特征分析[J].农业现代化研究,2012,33(5):556-560.
    137.潘霞,陈励科,卜元卿,等.畜禽有机肥对典型蔬果地土壤剖面重金属与抗生素分布的影响[J].生态与农村环境学报,2012,(5):518-525.
    138.彭里.畜禽粪便环境污染的产生及危害[J].家畜生态学报,2005,26(4):103-106.
    139.彭水军,包群.经济增长与环境污染—环境库兹涅茨曲线假说的中国检验[J].财经问题研究,2006,(8):3-17.
    140.全国科学技术名词审定委员会(2014)http://www.cnctst.gov.cn/pages/homepage/result.jsp#
    141.沈根祥,汪雅谷,袁大伟.上海市郊农田畜禽粪便负荷量及其警报与分级[J].上海农业学报,1994,10(增刊):6-11.
    142.沈其荣.土壤肥料学通论[M].北京:高等教育出版社,2001.
    143.沈晓昆,戴网成.畜禽粪便污染警世录[J].农业装备技术,2011,37(5):62-64.
    144.施雅凤,曲耀光.乌鲁木齐河流域水资源承载力及其合理利用[M].北京:科学出版社,1992.
    145.史光华.北京郊区集约化畜牧业发展的生态环境影响及其对策研究[D].中国农业大学,2004.
    146.世界银行.1992年世界发展报告:发展与环境[M].北京:中国财政经济出版社,1992.
    147.宋大平,庄大方,陈巍.安徽省畜禽粪便污染耕地、水体现状及其风险评价[J].环境科学,2012,33(1):110-116.
    148.宋国君,金书秦,傅毅明.基于外部性理论的中国环境管理体制设计[J].中国人口.资源与环境,2008,18(2):154-159.
    149.孙鳌.治理环境外部性的政策工具[J].云南社会科学,2009,(5):94-97.
    150.孙凡,杨松,左首军,姚孟佳,刘伯云.基于能值理论的自然生态系统经济价值研究—以大巴山南坡雪宝山自然生态系统为例[J].西南师范大学学报(自然科学版),2009,34(5):205-209.
    151.孙铁珩,宋雪英.中国农业环境问题与对策[J].农业现代化研究,2008,29(6):646-648,652.
    152.孙亚男,刘继军,马宗虎.规模化奶牛场温室气体排放量评估[J].农业工程学报,2010,26(6):296-301.
    153.索东让,王平.河西走廊有机肥增产效应研究[J].土壤通报,2002,33(5):396-398.
    154.覃春富,张佩华,张继红,张养东,周振峰.畜牧业温室气体排放机制及其减排研究进展[J].中国畜牧兽医,2011,38(11):209-214.
    155.谭秋成.中国农业温室气体排放:现状及挑战[J].中国人口.资源与环境,2011,21(10):69-75.
    156.唐剑武,叶文虎.环境承载力的本质及其定量化初步研究[J].中国环境科学,1998,18(3):36-39.
    157.陶群山,胡浩,王其巨.环境约束条件下农户对农业新技术采纳意愿的影响因素分析[J].统计与决策,2013,(1):106-110.
    158.陶涛.国内外畜禽养殖业粪便管理及立法的比较[J].华中科技大学学报:城市科学版,1998,15(2):37-40.
    159.童玉芬.北京市水资源人口承载力的动态模拟与分析[J].中国人口.资源与环境,2010,20(9):42-47.
    160.汪开英,黄丹丹,应洪仓.畜牧业温室气体排放与减排技术[J].中国畜牧杂志,2010,46(24):20-22,26.
    161.王尔大.美国畜牧业环境污染控制政策概述[J].世界环境,1998,(3):17-18,11.
    162.王方浩,马文奇,窦争霞,等.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,26(5):614-617.
    163.王会,王奇.基于污染控制的畜禽养殖场适度规模的理论分析[J].长江流域资源与环境,2011,200:622-627.
    164.王建源,薛德强,田晓萍,陈艳春.山东省农业生态系统能值分析[J].生态学杂志,2007,26(5):718-722.
    165.王凯军,金冬霞,赵淑霞,等.畜禽养殖污染防治技术与政策[M].北京:化学工业出版社:2004:7-69.
    166.王凯荣.农业现代化进程中的环境问题及其对策[J].农业现代化研究,1999,20(5):270-273.
    167.王奇,陈海丹,王会.基于土地氮磷承载力的区域畜禽养殖总量控制研究[J].中国农学通报,2011,27(3):279-284.
    168.王效琴,梁东丽,王旭东,等.运用生命周期评价方法评估奶牛养殖系统温室气体排放量[J].农业工程学报,2012,28(13):179-184.
    169.王修川,王腾,袁新国.运用循环经济理论治理畜禽粪便污染[J].环境与可持续发展,2008,(1):55-57.
    170.王玉新,吕萍,张艳荣.生态畜牧业视角下农户经济行为的实证研究——基于甘肃省576个牧户的样本数据[J].干旱区资源与环境,2012,26(1):55-59.
    171.吴兵兵,陈燕,李辉,王希强,张建明.宁夏各市生态经济系统能值对比研究[J].干旱区资源与环境,2010,28(7):15-21.
    172.武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D].中国农业科学院,2005.
    173.谢宏佐,陈涛.中国公众应对气候变化行动意愿影响因素分析——基于国内网民3489份的调查问卷[J].中国软科学,2012,(3):79-92.
    174.谢鸿宇,陈贤生,杨木壮,等.中国单位畜牧产品生态足迹分析[J].生态学报,2009,29(6):3264-3270.
    175.徐桂华,杨定华.外部性理论的演变与发展[J].社会科学,2004,(3):26-30.
    176.阎波杰,赵春江,潘瑜春,闫静杰,郭欣.大兴区农用地畜禽粪便氮负荷估算及污染风险评价[J].环境科学,2010,31(2):437-443.
    177.杨凤林,陈金贤,杨晶玉.经济增长理论及其发展[J].经济科学,1996,(1):71-75.
    178.杨宏青,刘敏,冯光柳,周月华,万君.湖北省风能资源评估[J].华中农业大学学报,2006,25(6):683-686.
    179.杨建州,高敏珲,张平海,陈丽娜,邓美珍.农业农村节能减排技术选择影响因素的实证分析[J].中国农学通报,2009,25(23):406-412.
    180.杨松,孙凡,刘伯云,杜洋文,李霞.重庆市农业生态经济系统能值分析[J].西南大学学报(自然科学版),2007,29(8):49-54.
    181.杨万平,袁晓玲.环境库兹涅茨曲线假说在中国的经验研究[J].长江流域资源与环境,2009,18(8):704-710.
    182.杨泽霖方炎.国外畜禽养殖业的环境是怎样管理的[N].中国畜牧报,2002-04-07(007).
    183.杨志武,钟甫宁.农户种植业决策中的外部性研究[J].农业技术经济,2010,(1):27-33.
    184.姚成胜,朱鹤健,刘耀彬.能值理论研究中存在的几个问题探讨[J].生态环境,2008,17(5):2117-2122.
    185.姚成胜,朱鹤健.基于能值理论的福建省农业系统动态研究[J].长江流域资源与环境,2008,17(2):247-251.
    186.叶文虎,梅凤桥,关伯仁.环境承载力理论及其科学意义.环境科学研究,1992,(5)(增刊):108-111
    187.尹红.美国与欧盟的农业环保计划[J].中国环保产业,2005,(3):42-45.
    188.袁婕,樊鸿涛,张炳,毕军,王仕,袁增伟.基于能值理论的工业生态系统分析—以龙盛科技工业园为例[J].环境保护科学,2008,34(2):74-77.
    189.张彩英.日本畜产环境污染的现状及其对策[J].农业环境与发展,1992,2:6-9,26,49.
    190.张宏军.外部性理论发展的基本脉络[J].生产力研究,2008,(13):20-22.
    191.张华,陈晓东,常文越,等.畜禽养殖污水生态处理及资源化利用方式的探讨[J].环境保护科学,2007,33(3):38-40.
    192.张晖,胡浩.农业面源污染的环境库兹涅茨曲线验证—基于江苏省时序数据的分析[J].中国农村经济,2009,(4):48-53,71.
    193.张晖,虞袢,胡浩.基于农户视角的畜牧业污染处理意愿研究——基于长三角生猪养殖户的调查[J].农村经济,2011,(10):92-94.
    194.张利国.农户从事环境友好型农业生产行为研究——基于江西省278份农户问卷调查的实证分析[J].农业技术经济,2011,(6):114-120.
    195.张乃弟,沙茜,普劲松.武汉市畜禽养殖污染状况调查及建议[J].环境科学与技术,2011,34(6):404-410.
    196.张树清,张夫道,刘秀梅,等.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报,2005,11(6):822-829.
    197.张婷.农户绿色蔬菜生产行为影响因素分析—以四川省512户绿色蔬菜生产农户为例[J].统计与信息论坛,2012,27(12):88-95.
    198.张天宇.青岛市环境承载力综合评价研究[D].中国海洋大学,2008.
    199.张微微,李红,霍霄妮,孙丹峰,周连第.基于能值分析的农业土地利用强度[J].农业工程学报,2009,25(7):204-210.
    200.张维理,武淑霞,冀宏杰,Kolbe H.中国农业面源污染形势估计及控制对策Ⅰ:21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    201.张无敌,宗德彬,宋洪川.沼气发酵系统在生态农业中的地位和作用[J].生态农业研究,1994,2(1):58-63.
    202.张五常.合约结构与界外效应[A].经济解释(三卷本)[C].台湾:花千树出版公司,2002:179-181.
    203.张小洪,邓仕槐,肖鸿,张延宗.废物处理方式对工业系统可持续性影响的能值分析[J].资源科学,2010,32(9):1806-1813.
    204.张绪美,董元华,王辉,等.中国畜禽养殖结构及其粪便N污染负荷特征分析[J.环境科学,2007,28(6):1311-1318.
    205.张永成,李德发.减少养猪业对环境污染的营养措施[J].饲料工业,1999,(12):1-4.
    206.张岳.沼气及其发酵物在生态农业中的综合利用[J].农业环境保护,1998,(2):47-48.
    207.张志勇,王丽瑜.西方现代经济增长理论及其新发展[J].东岳论丛,2009,30(10):129-133.
    208.赵细康,李建民,王金营,周春旗.环境库兹涅茨曲线及在中国的检验[J].南开经济研究,2005,3(3):48-54.
    209.赵妍,郭新春,伦小文.腰井子羊草草原自然保护区生物多样性现状及其能值估算[J].井冈山师范学院学报,2004,25(6):63-65,80.
    210.郑丽琳,朱启贵.中国碳排放库兹涅茨曲线存在性研究[J].统计研究,2012,29(5):58-65.
    211.中国爱畜牧人网.常用饲料成分及营养价值表.[EB/OL].[2010].http://www.xumuren.cn/thread-234060-1-1.html
    212.中国环境年鉴编辑委员会.中国环境年鉴[M].北京:中国环境年鉴出版社,2003:54-72.
    213.中国畜牧业年鉴编辑委员会.中国畜牧业年鉴[M].北京:中国农业出版社,2011:3.
    214.中国羊网.豆科牧草的经济价值[EB/OL].[2011].http://www.chinasheep.com/kxyyShow.asp?cid=6&sid=179
    215.钟茂初,张学刚.环境库兹涅茨曲线理论及研究的批评综论[J].中国人口.资源与环境,2010,20(2):62-67.
    216.钟珍梅,黄勤楼,翁伯琦,黄秀声,冯德庆,陈钟佃.以沼气为纽带的种养结合循环农业系统能值分析[J].农业工程学报,2012,28(14):196-200.
    217.周捷,陈理,吴树彪,董仁杰,庞昌乐.猪粪管理系统温室气体排放研究[A].中国农业生态环境保护协会、农业部环境保护科研监测所.十一五农业环境研究回顾与展望——第四届全国农业环境科学学术研讨会论文集[C].中国农业生态环境保护协会、农业部环境保护科研监测所:,2011:1.
    218.周轶韬.规模化养殖污染治理的思考[J].内蒙古农业大学学报:社会科学版,2009,11(1):117-120.
    219.朱宁,马骥,秦富.主要蛋鸡养殖国家蛋鸡粪处理概况及其对我国的启示[J].中国家禽,2011,33(6):1-5.
    220.朱玉林,李明杰,侯茂章,王茂溪.湖南农业生态系统能值结构功能效率分析[J].中国农学通报,2012,28(20):270-277.
    221.朱玉林,李明杰,龙雨孜,王茂溪,侯茂章,李晓敏.基于能值分析的环洞庭湖区农业生态系统结构功能和效率[J].生态学杂志,2012,31(12):3086-3093.
    222.朱玉林,李明杰.湖南省农业生态系统能值演变与趋势[J].应用生态学报,2012,23(2):499-505.
    223.朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    224.邹晓霞,李玉娥,高清竹,等.中国农业领域温室气体主要减排措施研究分析[J].生态环境学报,2011,20(8):1348-1358.
    225.左大培.经济学、经济增长理论与经济增长理论模型[J].社会科学管理与评论,2005,(3):33-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700