用户名: 密码: 验证码:
沼液规模化培养小球藻的能源利用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球正面临着能源紧张及其价格持续上涨,微藻是具有替代石油等化石能源潜力的生物质资源,可用于生产运输用燃料。然而微藻能源发展至今,成本问题始终制约着产业的发展。另一方面,随着养殖业的迅猛发展,畜禽粪便发酵产生大量沼液,属高污染物,无法直接排放至环境中。随着废水养殖微藻技术的出现,利用沼液进行小球藻的培养,不仅对其进行无害化处理、资源化利用,而且降低微藻生物能源生产成本,实现废物的能源化利用。本研究针对奶牛场沼液培养小球藻,通过分离纯化小球藻,并对其扩大培养,建设一定规模的示范基地,并研究后续收集、破壁和提油过程。本文的主要研究内容及结论如下:
     研究了小球藻(Chlorella sp.)在沼液中的生长以及沼液中有机物的清除情况。结果显示:小球藻在培养第6d生长速率达到0.307,生物量最大为1.30g/L,表明小球藻能够很好的适应沼液环境;处理14d后,沼液中有机物含量均有明显的降低。规模化养殖发现小球藻能够有效的利用沼液中的氨氮、磷等元素,可以实现净化处理。同时以聚合氯化铝(Polyaluminium Chloride, PAC)作为絮凝剂,探讨了其对小球藻的絮凝效果及其动力学模型,并对其实际应用的成本进行了评价。结果显示:5种不同剂量PAC在8min内均能高效絮凝小球藻,絮凝效率在86%以上,浓度为123.5mg/L时絮凝效率达到了98.6%,随着PAC浓度增大,小球藻的絮凝效率也提高,絮凝1t小球藻,絮凝剂成本为300-460元。
     针对沼液培养小球藻进行油脂含量、灰分、蛋白、脂肪酸组成、挥发性成分及在不同加热温度下的组分鉴别进行测定和研究。结果显示,所得小球藻干基油脂含量为10.14%。脂肪酸组成主要为多不饱和脂肪酸,含量为84.76%。通过挥发性组分的测定,主要包括烃类、醛类、酮类、醇类、酸类、胺类、杂环化合物等化合物。利用电子鼻对小球藻在不同温度下的气体成分变化进行研究,发现在60℃到90℃气体变化较小,然而继续加热成分明显变化。
     提出湿法超高压有机溶剂同步作用提取小球藻油脂,并与其他方法(超声波、高压均质和微波处理)进行比较。结果显示:超高压作用能达到最高细胞破碎率和油脂得率(10.02%和86.80%),且油脂提取和细胞破碎率均随着压力的增强而提高。总结四种破壁提取方法,细胞破碎率水平依次为超高压、高压均质、超声波和微波处理。油脂得率水平依次为超高压、超声波、高压均质和微波处理。探索小球藻细胞破壁和油脂提取同步完成工艺。实验结果显示,超高压效果最佳,细胞破碎率和油脂得率分别达到11.24%和92.75%。将同步法与分步法进行比较,发现同步法提取油脂和细胞破碎率均明显高于分步法。并对湿法超高压油脂同步提取小球藻油脂工艺进行响应面分析,得出最佳条件:压力580MPa,作用时间699s,溶剂比1:2.25。
The use of fossil energy has economic and environmental consequences including increased energy prices from growing shortages, and detrimental emissions to the environment. Yet, fuels derived from algae can be used to displace fossil fuels without competing with food and crop production, which is a major drawback of first-generation biofuels. However, because of its high cost, algal biodiesel production at a commercial scale is not yet feasible. Algae production requires the input of macronutrients, and this can be a major operational expense when synthetic fertilizers are used. Agricultural wastes and other wastewaters containing sufficient nitrogen and phosphorus concentrations may be used in their place to offset these costs, while preventing these nutrients from entering the environment.
     In this study, Chlorella was grown using anaerobic digested dairy manure, and later separated, purified, and enriched. Using this growth culture, we then investigated the collection, pre-treatment, and oil extraction from the algae biomass. During cultivation of Chlorella sp, the growth rate and maximum biomass yield reached0.307/d and1.30g/L, and entered the stable phase within6days, which suggested this wastewater was a suitable substrate for Chlorella cultivation. After14days, the amount of available nutrients and organic carbon in the growth medium significantly decreased. With the enriched culture, the removal rate of TN, TP, NH4-N, NO3-N, POP and COD was53.95%,99.67%,78.81%,98.22%and85.88%, respectively. These results demonstrated that Chlorella can be used to effectively assimilate wastewater nutrients and reduce COD, while simultaneously generating commercially valuable microalgae products.
     Also, magnesium chloride (PAC) was used to test flocculation efficiency and kinetics. An economic evaluation was then performed using these data. Different dosages of PAC were added into microalgae suspensions. After stirring at200rpm for lmin, the contents of Chlorophyll were recorded at different times. The results showed that5different dosages of PAC exhibited flocculation efficiencies as high as over86%after8min. The flocculation efficiency was98.6%when the dosage of PAC was123.5mg/L. The flocculation efficiency increased significantly along with the dosage of PAC. And the cost was300-460Yuan when flocculating microalgae biomass was1ton. The results indicated that the flocculation of PAC obeyed second-order kinetics.
     We tested the fat content, ash, protein, fatty acid composition, and identification of volatile components in different temperatures of microalgae cultured in anaerobic digested dairy manure. The results show that the lipid content of dry Chlorella was10.14%and fatty acid content accounted for84.76%, mainly as polyunsaturated fatty-acids. The volatile components included hydrocarbons, aldehydes, ketones, alcohols, acids, amines, heterocyclic compounds and similar compounds. The gas compositions of Chlorella at different temperatures were identified by electronic nose, and the results indicated minimal changes over temperatures of60℃to90℃. At higher temperatures, composition changed significantly.
     Compared to other oil extraction methods, the results show that ultra high pressure achieves the highest cell breakage rate and oil extraction rate, which were10.02%and86.80%respectively. Oil extraction and cell disruption rate increased with increasing pressure. Regarding the cell disruption rates with four extraction methods, ultra high pressure was greatest, followed by high pressure homogenizer, ultrasonic and microwave. For oil extraction, the order was ultra high pressure, ultrasound, high pressure homogenization and microwave processing.
     Finally, we explored the possibility of combining the pre-treatment and extraction process into synchronous step. Experimental results show that at an optimum high pressure, cell disruption and oil extraction rates reached11.24%and92.75%respectively. Compared to separated pre-treatment and extraction, the cell disruption rates using the one-step approach were significantly higher. Thus, synchronous step can effectively improve the crushing ratio and oil extraction rate, reduce processing steps, particularly when ultra-high pressure is used. After analysis response surface, we received an optimum condition:pressure580MPa, time699s and solvent rate1:2.25.
引文
[1]Chiari L, Zecca A. Constraints of fossil fuels depletion on global warming projections [J]. Eneigy Policy, 2011,39(9):5026-34.
    [2]Nel W P, Cooper C J. Implications of fossil fuel constraints on economic growth and global warming [J].
    Energy Policy,2009,37(1):166-80.[3]周中仁,吴文良.生物质能研究现状及展望[J].农业工程学报,2006,21(12):12-5.
    [4]郭金瑞,许华明.世界一次能源消费分析[J].资源与产业,2010,12(1):28-32.
    [5]Shafiee S, Topal E. When will fossil fuel reserves be diminished? [J]. Energy Policy,2009,37(1):181-9.
    [6]Fritz S, See L, Van Der Velde M, et al. Downgrading recent estimates of land available for biofuel production [J]. Environmental science & technology,2013,47(3):1688-94.
    [7]游金坤,余旭亚,崔佳丽.微藻生物柴油的发展现状及趋势[J].中国油脂,2011,36(3):47-51.
    [8]Chisti Y. Biodiesel from microalgae [J]. Biotechnology advances,2007,25(3):294-306.
    [9]李道义,李树君,刘天舒,等.微藻能源产业化关键技术的研究进展[J].农业机械学报,2010,v.41(S1):160-6.
    [10]刘小澄,刘永平.中国微藻生物柴油产业的发展机遇和挑战[J].现代化工,2011,31(002):1-5.
    [11]Razon L F, Tan R R. Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis [J]. Applied Energy,2011,88(10):3507-14.
    [12]Kleinegris D M M, Janssen M, Brandenburg W A, et al. Two-phase systems:Potential for in situ extraction of microalgal products [J]. Biotechnology advances,2011,29(5):502-7.
    [13]Torres C M, Rios S D, Torras C, et al. Microalgae-based biodiesel:A multicriteria analysis of the production process using realistic scenarios [J]. Bioresource technology,2013,147:7-16.
    [14]隋倩雯,董红敏,朱志平,等.沼液深度处理技术研究与应用现状[J].中国农业科技导报,2011,01:83-7.
    [15]李文英,彭智平,杨少海,等.不同菌剂组合处理猪场沼液试验效果评价[J].广东农业科学,2010,11):88-90.
    [16]陈斌,张妙仙,单胜道.沼液的生态处理研究进展[J].浙江农业科学,2010,04:872-4.
    [17]张玲玲,李兆华,鲁敏,等.沼液利用途径分析[J].资源开发与市场,2011,03:260-2.
    [18]张全国,杨群发,李随亮,等.猪粪沼液中氨态氮含量的影响因素实验研究[J].农业工程学报,2005,06:114-7.
    [19]Martinez M E, Sanchez S, Jimenez J M, et al. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus [J]. Bioresource Technology,2000,73(3):263-72.
    [20]Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts [J]. Biotechnology Advances,2011,29(6):686-702.
    [21]Woertz I, Feffer A, Lundquist T, et al. Algae Grown on Dairy and Municipal Wastewater for Simultaneous Nutrient Removal and Lipid Production for Biofuel Feedstock [J]. Journal of Environmental Engineering-Asce, 2009,135(11):1115-22.
    [22]Aslan S, Kapdan I K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae [J]. Ecological Engineering,2006,28(1):64-70.
    [23]Min M, Wang L, Li Y, et al. Cultivating Chlorella sp in a Pilot-Scale Photobioreactor Using Centrate Wastewater for Microalgae Biomass Production and Wastewater Nutrient Removal [J]. Applied Biochemistry and Biotechnology,2011,165(1):123-37.
    [24]Wang L, Min M, Li Y, et al. Cultivation of Green Algae Chlorella sp in Different Wastewaters from Municipal Wastewater Treatment Plant [J]. Applied Biochemistry and Biotechnology,2010,162(4):1174-86.
    [25]Zheng J, Li Z, Lu Y, et al. Cultivation of the microalga, Chlorella pyrenoidosa, in biogas wastewater [J]. African Journal of Biotechnology,2011,10(61):13115-20.
    [26]Oswald W. Wastewater treatment with microalgae [J]. Journal of Phycology;(United States),1992, 28(CONF-9208211-).
    [27]Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications:a review [J]. Renewable and Sustainable Energy Reviews,2010,14(1):217-32.
    [28]陈晓峰,逢勇,颜润润.竞争条件下光照对两种淡水藻生长的影响[J].环境科学与技术,2009,32(6):6-11.
    [29]Hirata S, Taya M, Tone S. Continuous cultures of Spirulina platensis under photoautotrophic conditions with change in light intensity [J]. Journal of chemical engineering of Japan,1998,31(4):636-9.
    [30]Trabelsi L, Ben Ouada H, Zili F, et al. Evaluation of Arthrospira platensis extracellular polymeric substances production in photoautotrophic, heterotrophic and mixotrophic conditions [J]. Folia Microbiologica,
    2013,58(1):39-45.
    [31]Rochet M, Legendre L, Demers S. Photosynthetic and pigment responses of sea-ice microalgae to changes in light intensity and quality [J]. Journal of experimental marine biology and ecology,1986,101(3):211-26.
    [32]Ho S-H, Chen C-Y, Chang J-S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N [J]. Bioresource
    Technology,2012,113:244-52.
    [33]Ruangsomboon S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2 [J]. Bioresource Technology,2012,109:
    261-5. [34] Yeesang C, Cheirsilp B. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand [J]. Bioresource Technology, 2011,102(3):3034-40.
    [35]Cepak V, Pribyl P, Kohoutkova J, et al. Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus [J]. Journal of Applied Phycology,2014,26(1):181-90.
    [36]Lv J-M, Cheng L-H, Xu X-H, et al. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions [J]. Bioresource Technology,2010,101(17):6797-804.
    [37]Tredici M, Carlozzi P, Chini Zittelli G, et al. A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria [J]. Bioresource Technology,1991,38(2):153-9.
    [38]Tredici M R, Zittelli G C. Efficiency of sunlight utilization:tubular versus flat photobioreactors [J]. Biotechnology and bioengineering,1998,57(2):187-97.
    [39]Carlozzi P. Dilution of solar radiation through "culture" lamination in photobioreactor rows facing south-north:a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis) [J]. Biotechnology and bioengineering,2003,81(3):305-15.
    [40]Zittelli G C, Pastorelli R, Tredici M R. A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp. under artificial illumination [J]. Journal of applied phycology,2000,12(3-5:521-6.
    [41]Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil:Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor [J]. Biotechnology and bioengineering,2009, 102(1):100-12.
    [42]Olivieri G, Salatino P, Marzocchella A. Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications [J]. Journal of Chemical Technology and Biotechnology, 2014,89(2):178-95.
    [43]Stephenson P G, Moore C M, Terry M J, et al. Improving photosynthesis for algal biofuels:toward a green revolution [J]. Trends in biotechnology,2011,29(12):615-23.
    [44]Sheets J P, Ge X, Park S Y, et al. Effect of outdoor conditions on Nannochloropsis salina cultivation in artificial seawater using nutrients from anaerobic digestion effluent [J]. Bioresource Technology,2014,152: 154-61.
    [45]杨忠华,李方芳,曹亚飞,等.微藻减排C02制备生物柴油的研究进展[J].生物加工过程,2012,10(1):70-6.
    [46]Montoya E Y O, De Carvalho J M, Converti A. Effect of Temperature and Nitrogen Concentration on Growth and Lipid Content of Nannochloropsis oculata for Biodiesel Production; proceedings of the Simposio Brasil-Japao, F,2010 [C].
    [47]葛亚明.葡萄藻在废弃物中培养的适应性及调控研究[D].浙江大学,2012.
    [48]Chiu S-Y, Kao C-Y, Chen C-H, et al. Reduction of CO2 by a high-density culture of Chlorella sp in a semicontinuous photobioreactor [J]. Bioresource Technology,2008,99(9):3389-96.
    [49]Degen J, Uebele A, Retze A, et al. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect [J]. Journal of biotechnology,2001,92(2):89-94.
    [50]Meiser A, Schmid-Staiger U, Trosch W. Optimization of eicosapentaenoic acid production byPhaeodactylum tricornutumin the flat panel airlift (FPA) reactor [J]. Journal of applied phycology,2004, 16(3):215-25.
    [51]Bergmann P, Ripplinger P, Beyer L, et al. Disposable flat panel airlift photobioreactors [J]. Chemie Ingenieur Technik,2013,85(1-2):202-5.
    [52]Ketheesan B, Nirmalakhandan N. Development of a new airlift-driven raceway reactor for algal cultivation [J]. Applied Energy,2011,88(10):3370-6.
    [53]Ketheesan B, Nirmalakhandan N. Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor [J]. Bioresource technology,2012,108:196-202.
    [54]Ketheesan B, Nirmalakhandan N. Modeling microalgal growth in an airlift-driven raceway reactor [J]. Bioresource technology,2013,136:689-96.
    [55]程海翔.一株栅藻的分离培养及其应用于养猪废水处理的潜力研究[D].浙江大学,2013.
    [56]Shah S M U, Radziah C C, Ibrahim S, et al. Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri [J]. Annals of Microbiology,2013,1-8.
    [57]Griffiths M J, Harrison S T. Lipid productivity as a key characteristic for choosing algal species for biodiesel production [J]. Journal of Applied Phycology,2009,21(5):493-507.
    [58]Wang C, Li H, Wang Q, et al. [Effect of pH on growth and lipid content of Chlorella vulgaris cultured in biogas slurry] [J]. Sheng wu gong cheng xue bao= Chinese journal of biotechnology,2010,26(8):1074-9.
    [59]王翠,李环,王钦琪,等.pH值对沼液培养的普通小球藻生长及油含量积累的影响[J].生物工程学报,2010,26(8):1074-9.
    [60]欧阳峥嵘,温小斌,耿亚红,等.光照强度,温度,pH,盐度对小球藻(Chlorella)光合作用的影响[J].植物科学学报,2010,28(1):49-55.
    [61]Chen P, Min M, Chen Y, et al. Review of the biological and engineering aspects of algae to fuels approach [J]. International Journal of Agricultural & Biological Engineering,2009,2(4):
    [62]Tsuru S. Preservation of marine and fresh water algae by means of freezing and freeze-drying [J]. Cryobiology,1973,10(5):445-52.
    [63]Wang L, Min M, Li Y, et al. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant [J]. Applied biochemistry and biotechnology,2010,162(4):1174-86.
    [64]Wang L, Li Y, Chen P, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp [J]. Bioresource Technology,2010,101(8):2623-8.
    [65]De-Bashan L E, Hernandez J-P, Morey T, et al. Microalgae growth-promoting bacteria as "helpers" for microalgae:a novel approach for removing ammonium and phosphorus from municipal wastewater [J]. Water
    Res,2004,38(2):466-74. [66] Chiu S-Y, Kao C-Y, Tsai M-T, et al. Lipid accumulation and CO(2) utilization of Nannochloropsis oculata in response to CO(2) aeration [J]. Bioresource Technology,2009,100(2):833-8.
    [67]Ozkurt I. Qualifying of safflower and algae for energy [J]. Energy Education Science and Technology Part a-Energy Science and Research,2009,23(1-2):145-51.
    [68]Li Y, Horsman M, Wu N, et al. Biofuels from microalgae [J]. Biotechnology progress,2008,24(4):815-20.
    [69]Richmond A. Handbook of microalgal culture:biotechnology and applied phycology [M]. John Wiley& Sons,2008.
    [70]李道义.养殖废弃物干式厌氧发酵技术与装备研究[D].中国农业大学,2012.
    [71]Chinnasamy S, Bhatnagar A, Hunt R W, et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications [J]. Bioresource technology,2010,101(9):3097-105.
    [72]Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants:a review [J]. Water Res,2006,40(15):2799-815.
    [73]Demirbas M F. Biofuels from algae for sustainable development [J]. Applied Energy,2011,88(10):3473-80.
    [74]Ugwu C, Ogbonna J, Tanaka H. Design of static mixers for inclined tubular photobioreactors [J]. Journal of applied phycology,2003,15(2-3):217-23.
    [75]Wijffels R H, Barbosa M J. An outlook on microalgal biofuels [J]. Science(Washington),2010,329(5993): 796-9.
    [76]Santos C A, Caldeira M L, Lopes Da Silva T, et al. Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture [J]. Bioresource Technology,2013,138:48-54.
    [77]Wen Z-Y, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae [J]. Biotechnology advances,2003,21(4):273-94.
    [78]Xiong W, Li X, Xiang J, et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production [J]. Applied microbiology and biotechnology,2008,78(1):29-36.
    [79]Wu Z-Y, Shi C-L, Shi X-M. Modeling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures [J]. World Journal of Microbiology and Biotechnology,2007,23(9):1233-8.
    [80]Alabi A O, Bibeau E, Tampier M, et al. Microalgae Technologies & Processes for Biofuels-bioenergy Production in British Columbia:Current Technology, Suitability & Barriers to Implementation:Final Report [M]. British Columbia Innovation Council,2009.
    [81]Chen G-Q, Chen F. Growing phototrophic cells without light [J]. Biotechnology letters,2006,28(9):607-16.
    [82]Clark G J, Bushell M E. Oxygen limitation can induce microbial secondary metabolite formation: investigations with miniature electrodes in shaker and bioreactor culture [J]. Microbiology,1995,141(3):663-9.
    [83]Behrens P. Photobioreactors and fermentors:the light and dark sides of growing algae [J]. Algal culturing techniques,2005,189-204.
    [84]Miao X, Wu Q. Biodiesel production from heterotrophic microalgal oil [J]. Bioresource technology,2006, 97(6):841-6.
    [85]Yu H, Jia S, Dai Y. Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation [J]. Journal of applied phycology,2009,21(1):127-33.
    [86]Pulz O. Photobioreactors:production systems for phototrophic microorganisms [J]. Applied Microbiology and Biotechnology,2001,57(3):287-93.
    [87]Carlsson A S, Bowles D J. Micro-and Macro-algae:Utility for Industrial Applications:Outputs from the EPOBIO Project, September 2007 [M]. CPL Press,2007.
    [88]Graverholt O S, Eriksen N T. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin [J]. Applied microbiology and biotechnology,2007,77(1): 69-75.
    [89]Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters [J]. Journal of Biotechnology,2006,126(4):499-507.
    [90]Zhu L, Hiltunen E, Antila E, et al. Microalgal biofuels:Flexible bioenergies for sustainable development [J]. Renewable and Sustainable Energy Reviews,2014,30:1035-46.
    [91]霍莹,张艳芳,陈军,等.微波处理废水方法概况[J].化工科技市场,2010,7:31-3.
    [92]Flotats X, Bonmati A, Fernandez B, et al. Manure treatment technologies:on-farm versus centralized strategies. NE Spain as case study [J]. Bioresource technology,2009,100(22):5519-26.
    [93]Pittman J K, Dean A P, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources [J]. Bioresource technology,2011,102(1):17-25.
    [94]Abdel-Raouf N, Al-Homaidan A, Ibraheem I. Microalgae and wastewater treatment [J]. Saudi Journal of Biological Sciences,2012,19(3):257-75.
    [95]吕素娟,张维,彭小伟,等.城市生活废水用于产油微藻培养[J].生物工程学报,2011,03:445-52.
    [96]吕素娟.城市生活废水用于培养产油微藻[D].中国海洋大学,2011.
    [97]刘玉环,阮榕生,孔庆学,等.利用市政废水和火电厂烟道气大规模培养高油微藻[J].生物加工过程,2008,03:29-33.
    [98]常园园.尿液和城市废水应用于微藻的培养[D].浙江大学,2013.
    [99]Wang M, Kuo-Dahab W C, Dolan S, et al. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment [J]. Bioresource technology,2014,154:131-7.
    [100]Komolafe O, Velasquez Orta S B, Monje-Ramirez I, et al. Biodiesel production from indigenous microalgae grown in wastewater [J]. Bioresource technology,2014,154:297-304.
    [101]Ruiz-Martinez A, Martin Garcia N, Romero I, et al. Microalgae cultivation in wastewater:nutrient removal from anaerobic membrane bioreactor effluent [J]. Bioresource technology,2012,126:247-53.
    [102]Wang M, Kuo-Dahab W C, Dolan S, et al. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp and Micractinium sp., in wastewater treatment [J]. Bioresource Technology,2014,154:131-7.
    [103]Sacristan De Alva M, Luna-Pabello V M, Cadena E, et al. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production [J]. Bioresource Technology,2013,146:744-8.
    [104]Waki M, Yokoyama H, Ogino A, et al. Nitrogen removal from purified swine wastewater using biogas by semi-partitioned reactor [J]. Bioresource technology,2008,99(13):5335-40.
    [105]An J-Y, Sim S-J, Lee J S, et al. Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii [J]. Journal of Applied Phycology,2003,15(2-3):185-91.
    [106]Kang C D, An J Y, Park T H, et al. Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater [J]. Biochemical Engineering Journal,
    2006,31(3):234-8. [107] Usack J G, Wiratni W, Angenent L T. Improved Design of Anaerobic Digesters for Household Biogas Production in Indonesia:One Cow, One Digester, and One Hour of Cooking per Day [J]. The Scientific
    World Journal,2014
    [108]孔源,韩鲁佳.我国畜牧业粪便废弃物的污染及其治理对策的探讨[J].中国农业大学学报,2002,7(6):92-6.
    [109]刘伟.利用猪场沼液养殖微藻连续系统的设计和应用[D].南昌大学,2013.
    [110]刘振强.微藻优化培养、采收及沼液培养微藻的研究[D].浙江工业大学,2012.
    [111]高婷.沼液培养微藻及光生物反应器的设计[D].浙江工业大学,2012.
    [112]王翠,李环,韦萍.沼液培养小球藻生产油脂的研究[J].环境工程学报,2010,08):1753-8.
    [113]Wu L F, Chen P C, Huang A P, et al. The feasibility of biodiesel production by microalgae using industrial wastewater [J]. Bioresource technology,2012,113:14-8.
    [114]Shelef G, Sukenik A, Green M:Technion Research and Development Foundation Ltd., Haifa (Israel), 1984.
    [115]Molina Grima E, Belarbi E-H, Acien Fernandez F, et al. Recovery of microalgal biomass and metabolites:process options and economics [J]. Biotechnology advances,2003,20(7):491-515.
    [116]王晓昌,王锦.横向流超滤膜污染动力学模型[J].环境化学,2002,21(6):552-7.
    [117]Kwon B, Park N, Cho J. Effect of algae on fouling and efficiency of UF membranes [J]. Desalination, 2005,179(1):203-14.
    [118]Rossignol N, Vandanjon L, Jaouen P, et al. Membrane technology for the continuous separation microalgae/culture medium:compared performances of cross-flow microfiltration and ultrafiltration [J]. Aquacultural engineering,1999,20(3):191-208.
    [119]Brou A, Ding L, Boulnois P, et al. Dynamic microfiltration of yeast suspensions using rotating disks equipped with vanes [J]. Journal of membrane science,2002,197(1):269-82.
    [120]Frappart M, Masse A, Jaffrin M Y, et al. Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation [J]. Desalination,2011,265(1):279-83.
    [121]Zhang X, Hu Q, Sommerfeld M, et al. Harvesting algal biomass for biofuels using ultrafiltration membranes [J]. Bioresource technology,2010,101(14):5297-304.
    [122]Rios S D, Clavero E, Salvado J, et al. Dynamic microfiltration in microalgae harvesting for biodiesel production [J]. Industrial & Engineering Chemistry Research,2010,50(4):2455-60.
    [123]Rossi N, Jaouen O, Legentilhomme P, et al. Harvesting of cyanobacterium Arthrospira platensis usmg organic filtration membranes [J]. Food Bioprod Process,2004,82(C3):244-50.
    [124]张亚杰,罗生军,蒋礼玲,等.阳离子絮凝剂对小球藻浓缩收集效果的研究[J].可再生能源,2010,28(3):35-8.
    [125]Vandamme D, Foubert I, Meesschaert B, et al. Flocculation of microalgae using cationic starch [J]. Journal of Applied Phycology,2010,22(4):525-30.
    [126]Halim R, Harun R, Danquah M K, et al. Microalgal cell disruption for biofuel development [J]. Applied Energy,2012,91(1):116-21.
    [127]Brennan L, Owende P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products [J]. Renewable & Sustainable Energy Reviews,2010, 14(2):557-77.
    [128]Huang Y, Hong A, Zhang D, et al. Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris [J]. Environmental Technology,2014,35(8):931-7.
    [129]Bahadar A, Bilal Khan M. Progress in energy from microalgae:A review [J]. Renewable and Sustainable Energy Reviews,2013,27:128-48.
    [130]黄雄超.微藻油脂的提取及制备生物柴油的研究[D].华侨大学,2012.
    [131]里伟,杜伟,李永红,等.生物酶法转化酵母油脂合成生物柴油[J].过程工程学报,2007,7(1):137-40.
    [132]Prabakaran P, Ravindran A. A comparative study on effective cell disruption methods for lipid extraction from microalgae [J]. Letters in applied microbiology,2011,53(2):150-4.
    [133]马帅,付莉莉,汪萌,等.从微藻中提取粗脂的方法比较[J].中国油脂,2010,5:77-9.
    [134]Ryckebosch E, Muylaert K, Foubert I. Optimization of an analytical procedure for extraction of lipids from microalgae [J]. Journal of the American Oil Chemists'Society,2012,89(2):189-98.
    [135]Gong Y, Jiang M. Biodiesel production with microalgae as feedstock:from strains to biodiesel [J]. Biotechnology letters,2011,33(7):1269-84.
    [136]Carvalho Junior R M, Vargas J V, Ramos L P, et al. Microalgae biodiesel via in situ methanolysis [J]. Journal of Chemical Technology and Biotechnology,2011,86(11):1418-27.
    [137]Kim Y-H, Choi Y-K, Park J, et al. Ionic liquid-mediated extraction of lipids from algal biomass [J]. Bioresource technology,2012,109:312-5.
    [138]Xu L, Brilman D W, Withag J A, et al. Assessment of a dry and a wet route for the production of biofuels from microalgae:energy balance analysis [J]. Bioresource technology,2011,102(8):5113-22.
    [139]Becker E W. Microalgae:biotechnology and microbiology [M]. Cambridge University Press,1994.
    [140]Nagle N, Lemke P. Production of methyl ester fuel from microalgae [J]. Applied Biochemistry and Biotechnology,1990,24(1):355-61.
    [141]Fajardo A R, Cerdan L E, Medina A R, et al. Lipid extraction from the microalga Phaeodactylum tricornutum [J]. European Journal of Lipid Science and Technology,2007,109(2):120-6.
    [142]Chen M, Chen X, Liu T, et al. Subcritical Ethanol Extraction of Lipid from Wet Microalgae Paste of Nannochloropsis sp [J]. Journal of Biobased Materials and Bioenergy,2011,5(3):385-9.
    [143]Halim R, Gladman B, Danquah M K, et al. Oil extraction from microalgae for biodiesel production [J]. Bioresource technology,2011,102(1):178-85.
    [144]Wahlen B D, Willis R M, Seefeldt L C. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures [J]. Bioresource technology, 2011,102(3):2724-30.
    [145]Liu C-Z, Zheng S, Xu L, et al. Algal oil extraction from wet biomass of Botryococcus braunii by 1,2-dimethoxyethane [J]. Applied Energy,2013,102:971-4.
    [146]Kanda H, Li P, Ikehara T, et al. Lipids extracted from several species of natural blue-green microalgae by dimethyl ether:Extraction yield and properties [J]. Fuel,2012,95:88-92.
    [147]Kanda H, Li P. Simple extraction method of green crude from natural blue-green microalgae by dimethyl ether [J]. Fuel,2011,90(3):1264-6.
    [148]Kanda H, Li P, Yoshimura T, et al. Wet extraction of hydrocarbons from Botryococcus braunii by dimethyl ether as compared with dry extraction by hexane [J]. Fuel,2013,105:535-9.
    [149]Boyd A R, Champagne P, Mcginn P J, et al. Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production [J]. Bioresource Technology,2012,118:628-32.
    [150]Samori C, Torri C, Samori G, et al. Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents [J]. Bioresource Technology,2010,101(9):3274-9.
    [151]Samori C, Barreiro D L, Vet R, et al. Effective lipid extraction from algae cultures using switchable solvents [J]. Green Chemistry,2013,15(2):353-6.
    [152]Cao X F, Xie H B, Wu Z L, et al. Phase-switching Homogeneous Catalysis for Clean Production of Biodiesel and Glycerol from Soybean and Microbial Lipids [J]. ChemCatChem,2012,4(9):1272-8.
    [153]Kates M, Work T S, Work E. Techniques of lipidology:isolation, analysis and identification of lipids [J].1972,
    [154]Halim R, Danquah M K, Webley P A. Extraction of oil from microalgae for biodiesel production:A review [J]. Biotechnology advances,2012,30(3):709-32.
    [155]王赤炎,吕学功,王丽红.绿色化学中的智能溶剂[J].唐山师范学院学报,2012,05):
    [156]Jessop P G, Heldebrant D J, Li X W, et al. Green chemistry-Reversible nonpolar-to-polar solvent [J]. Nature,2005,436(7054):1102-.
    [157]Liu Y, Jessop P G, Cunningham M, et al. Switchable surfactants [J]. Science,2006,313(5789):958-60.
    [158]Phan L, Chiu D, Heldebrant D J, et al. Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures [J]. Industrial & Engineering Chemistry Research,2008,47(3):539-45.
    [159]Yamada T, Lukac P J, Yu T, et al. Reversible, room-temperature, chiral ionic liquids, amidinium carbamates derived from amidines and amino-acid esters with carbon dioxide [J]. Chem Mat,2007,19(19): 4761-8.
    [160]Mihara M, Jessop P, Cunningham M. Redispersible Polymer Colloids Using Carbon Dioxide as an External Trigger [J]. Macromolecules,2011,44(10):3688-93.
    [161]Vinci D, Donaldson M, Hallett J P, et al. Piperylene sulfone:a labile and recyclable DMSO substitute [J]. Chemical Communications,2007,14:1427-9.
    [162]Holland A, Wechsler D, Patel A, et al. Separation of bitumen from oil sands using a switchable hydrophilicity solvent [J]. Canadian Journal of Chemistry,2012,90(10):805-10.
    [163]Phan L, Brown H, White J, et al. Soybean oil extraction and separation using switchable or expanded solvents [J]. Green Chemistry,2009,11(1):53-9.
    [164]Li Y C, Chen Y F, Chen P, et al. Characterization of a microalga Chlorella sp well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production [J]. Bioresource Technology, 2011,102(8):5138-44.
    [165]Wang L, Li Y C, Chen P, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp [J]. Bioresource Technology,2010,101(8):2623-8.
    [166]Kumar M S, Miao Z H, Wyatt S K. Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium [J]. Bioresource Technology, 2010,101(15):6012-8.
    [167]Perez-Garcia O, Escalante F M E, De-Bashan L E, et al. Heterotrophic cultures of microalgae: Metabolism and potential products [J]. Water Res,2011,45(1):11-36.
    [168]李岩,周文广,张晓东,等.微藻培养技术处理猪粪厌氧发酵废水效果;proceedings of the全国农村清洁能源与低碳技术学术研讨会,中国河南郑州,F, 2011[C].
    [169]Wang H Y, Xiong H R, Hui Z L, et al. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids [J]. Bioresource Technology,2012,104:215-20.
    [170]Widjaja A, Chien C-C, Ju Y-H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris [J]. Journal of the Taiwan Institute of Chemical Engineers,2009,40(1):13-20.
    [171]Miao X L, Wu Q Y. Biodiesel production from heterotrophic microalgal oil [J]. Bioresource Technology,2006,97(6):841-6.
    [172]张亚杰,罗生军,蒋礼玲,等.阳离子絮凝剂对小球藻浓缩收集效果的研究[J].可再生能源,2010,03:35-8.
    [173]Surendhiran D, Vijay M. Study on flocculation efficiency for harvesting Nannochloropsis oculata for biodiesel production [J]. International Journal of ChemTech Research,2013,5(4):1761-9.
    [174]Zheng H, Gao Z, Yin J, et al. Harvesting of microalgae by flocculation with poly (gamma-glutamic acid) [J]. Bioresource Technology,2012,112:212-20.
    [175]Lee K, Lee S Y, Na J-G, et al. Magnetophoretic harvesting of oleaginous Chlorella sp by using biocompatible chitosan/magnetic nanoparticle composites [J]. Bioresource Technology,2013,149:575-8.
    [176]沈英,赵云,李麒龙.微藻生物质采收方法的经济性和效率研究进展[J].湖北农业科学,2012,22):4982-4+91.
    [177]Knuckey R M, Brown M R, Robert R, et al. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds [J]. Aquacultural Engineering,2006,35(3):300-13.
    [178]Chen L, Wang C, Wang W, et al. Optimal conditions of different flocculation methods for harvesting Scenedesmus sp cultivated in an open-pond system [J]. Bioresource Technology,2013,133:9-15.
    [179]Rwehumbiza V M, Harrison R, Thomsen L. Alum-induced flocculation of preconcentrated Nannochloropsis salina:Residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling [J]. Chemical Engineering Journal,2012,200:168-75.
    [180]Yang Z, Shang Y, Huang X, et al. Cationic content effects of biodegradable amphoteric chitosan-based flocculants on the flocculation properties [J]. Journal of Environmental Sciences-China,2012,24(8): 1378-85.
    [181]Ahmad A L, Yasin N H M, Derek C J C, et al. Optimization of microalgae coagulation process using chitosan [J]. Chemical Engineering Journal,2011,173(3):879-82.
    [182]Divakaran R, Pillai V N S. Flocculation of algae using chitosan [J]. Journal of Applied Phycology, 2002,14(5):419-22.
    [183]Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production [J]. Trends in biotechnology,2013,31(4):233-9.
    [184]Schlesinger A, Eisenstadt D, Bar-Gil A, et al. Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production [J]. Biotechnology advances,2012, 30(5):1023-30.
    [185]Heasman M, Diemar J, O'connor W, et al. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs-a summary [J]. Aquaculture Research, 2000,31(8-9):637-59.
    [186]Haugen J-E, Lundby F, Wold J P, et al. Detection of rancidity in freeze stored turkey meat using a commercial gas-sensor array system [J]. Sensors and Actuators B:Chemical,2006,116(1):78-84.
    [187]Rajamaki T, Alakomi H-L, Ritvanen T, et al. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat [J]. Food control,2006,17(1):5-13.
    [188]Jiajie Xu, Fangfang Miao, Fengmin Zhao, Youfu Cao, Haiwen Yu, Xiurong Su. Electronic nose and HS-SPME-GC-MS analysis of volatile substances in Enteromorpha prolifera: evaluation of different processing temperatures [J]. IAEJ,2013,22(4):21-9.
    [189]王雪青,苗惠,翟燕.微藻细胞破碎方法的研究[J].天津科技大学学报,2007,22(1):21-5.
    [190]孙利芹,王长海,江涛.紫球藻细胞破碎方法研究[J].海洋通报,2004,23(4):71-4.
    [191]徐嘉杰,苏秀榕,邵亮亮,等.养殖大黄鱼不同部位营养成分研究[J].中国水产,2009,6:45-6.
    [192]梅帅,赵凤敏,曹有福,等.三种小球藻生物柴油品质指标评价[J].农业工程学报,2013,15:229-35.
    [193]李琴,朱科学,周惠明.利用电子鼻分析熬制时间对3种食用菌汤风味的影响[J].食品科学,2010,16:151-5.
    [194]苏秀榕郑缪.电子鼻在8种贝类气味差异研究中的应用[J].食品科学,
    [195]Taranu I, Marin D E, Untea A, et al. Effect of dietary natural supplements on immune response and mineral bioavailability in piglets after weaning [J]. Czech Journal of Animal Science,2012,57(7):332-43.
    [196]Morris H J, Carrillo O V, Alonso M E, et al. Oral Administration of an Enzymatic Protein Hydrolysate from the Green Microalga Chlorella vulgaris Enhances the Nutritional Recovery of Malnourished Mice [J]. Journal of Medicinal Food,2011,14(12):1583-9.
    [197]Cheng J, Huang R, Yu T, et al. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction [J]. Bioresource Technology,2014,151:415-8.
    [198]Kanda H, Li P, Ikehara T, et al. Lipids extracted from several species of natural blue-green microalgae by dimethyl ether:Extraction yield and properties [J]. Fuel,2012,95:88-92.
    [199]Frenz J, Largeau C, Casadevall E, et al. Hydrocarbon recovery and biocompatibility of solvents for extraction from cultures of Botryococcus braunii [J]. Biotechnology and bioengineering,1989,34(6):755-62.
    [200]Liu C-Z, Zheng S, Xu L, et al. Algal oil extraction from wet biomass of Botryococcus braunii by 1,2-dimethoxyethane [J]. Applied Energy,2013,102(0):971-4.
    [201]赵莎,丁玉栋,廖强,等.微藻悬浮液中CO2气泡生长及脱离特性研究[J].工程热物理学报,2013,34(003):526-9.
    [202]石勋祥.小球藻光生物反应器设计及其在煤化工废水处理中的应用[D].宁夏大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700