用户名: 密码: 验证码:
机械振动作用下激光熔覆镍基合金涂层凝固组织及应力控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆能使金属材料快速熔凝,但高裂纹敏感性镍基合金涂层制备过程中一直受到涂层开裂的影响,阻碍了该技术在表面工程领域的发展进程。为解决此问题,本文首次提出了机械振动辅助激光熔覆新技术,拓展了机械振动作用下激光熔覆镍基合金涂层凝固组织形成机理及应力控制理论研究。涵盖复合技术所制备涂层的组织凝固特征、宏观形貌、开裂机理、开裂行为、应力控制和性能等主要内容。采用了有限元数值模拟、实际测试结果和理论分析相结合的方式,探讨了机械振动对涂层表面、结合界面、基材热影响区等部位应力分布的影响,对激光熔覆镍基合金涂层的应力控制、改善和消除裂纹具有理论指导和现实意义。
     采用ANSYS有限元软件,以无和有机械振动辅助Ni60合金涂层的最终凝固尺寸为基础,模拟了材料热物性参数随时间变化的涂层沿激光扫描方向(Z轴)的应力场,讨论了机械振动对其应力-应变场分布规律的影响,预测最优的机械振动工艺参数。结果表明,优化的振动参数使得残余应变峰值在涂层表面由4.36×10-4降至3.17×10-4,结合界面边缘处由2.88×10-4降至2.1×10-4,在基材热影响区由4.24×10-5降至3.09×10-5。表面残余拉应力峰值在涂层表面由114MPa降至19.7MPa,在结合界面处压应力峰值由197MPa降至165MPa,在基材热影响区拉应力峰值由74.8MPa降至50.5MPa。证明机械振动能改善激光熔覆Ni60合金涂层及其周边的应力-应变分布状态,起到应力控制的作用。
     利用X射线衍射法进行涂层表面、结合界面、基材热影响区的Z轴方向残余应力分布测量。结果表明,有和无机械振动辅助试样相比在涂层表面的残余拉应力值,结合界面到基材热影响区的残余压应力值呈下降趋势。比较有限元数值模拟与实际测量值之间的关联性发现,应力性质在不同区域的模拟和实测结果是几乎相同的,而且模拟数值反映出的应力变化规律与实测值较为符合,证明了数值模拟的可行性。最优振动参数下Z轴方向测量值在涂层表面残余拉应力为251.1±60MPa,结合界面处残余压应力为121.6MPa,基材热影响区残余压应力为13.5MPa。
     通过SEM、EDS、XRD等观察和表征手段,研究了机械振动辅助激光熔覆镍基合金涂层的凝固组织特征。发现机械振动作用下Ni60/TiC复合涂层的组织更加均匀,基体相由树枝晶向近等轴晶转变、细化,碳化物数量及尺寸有明显增加;晶间网状相的分离使得基体相的连续性增强,且晶体结构完整性得到改善。Ni60CuMoW合金涂层基体相向短小枝晶和近等轴晶转变,硬质相分布均匀性增强,残留气孔减少。
     机械振动作用下激光熔覆过程受激振能量的影响,凝固过程转变为固-液前沿多游离核心,推进速度放缓的胞状晶、等轴晶的方式。熔池微区内存在的“平流层”影响了涂层液相的凝固机理,表现在冲断了基底胞状初生枝晶,增加了熔池内固-液界面前沿游离核心数量;削弱了结晶前沿与液相的成分过冷,抑制了胞状晶向树枝晶的转变进程;减缓了液相中形核长大的颗粒随固-液界面推进的上浮速率和熔池内各元素的浓度起伏。起到的效果体现在改善了硬质相颗粒尺寸并优化了其分布状态;增强了基体相的连续性,降低了镍基合金涂层的裂纹敏感性。
     在涂层表面宏观质量影响方面,“平流层”缓解了熔池内的对流翻转,涂层表面的波纹状不再明显,整体分布也较为平滑。考察定振幅机械振动辅助Ni60CuMoW合金涂层的宏观裂纹分布时发现,涂层表面裂纹交叉减少,单位长度内裂纹数由0.17条/mm下降至0.08条/mm。而定频率的涂层在振幅为0.17mm时宏观裂纹数为零。激光熔覆镍基合金涂层开裂的发展源于在结合界面处的萌生,后以穿晶开裂和沿晶开裂方式向涂层顶部扩展,且存在内部裂纹交叉现象。而有机械振动辅助的涂层内部已无裂纹交叉,换以单个贯穿方式存在,削弱了裂纹对涂层的破坏作用。
     有和无机械振动Ni60CuMoW合金涂层相比,自腐蚀电位正移了1134.9mVSCE,腐蚀电流密度从0.076到0.008μA·cm-2,下降了近一个数量级,耐蚀性能显著提高。熔覆区平均显微硬度由720上升到835HVo.5,提高了近16%,且显微硬度值波动明显减缓。热影响区到基材远端的显微硬度值从468迅速且无波动地下降到182HV0.5。合金涂层的平均磨损质量损失由9.2mg降至7.6mg,下降了17%;平均摩擦系数由0.081降至0.068,下降了16%,且曲线波动减弱。磨损表面无深沟,呈现出均匀的浅犁沟状分布,只有少量黏着磨损发生,归因于基体相与颗粒之间结合强度的增强:优化了涂层的抗磨损性能和磨损过程的稳定性。
Laser cladding can make metal materials rapid melting-coagulation, but the influence of coating cracking in the process of preparing high crack sensitivity nickel-based alloy coatings that has hindered the development of the technology in surface engineering field. To overcome this difficulty, a new technology of mechanical vibration assisted laser cladding is proposed in this dissertation, which extends the microstructure forming mechanism of nickel-based alloy coating and the stress control theory. The research contents will cover the organization solidification characteristics, macro-appearance, cracking mechanism and behavior, stress control, mechanical properties. The method of finite element numerical simulation combining with the theoretical analysis and actual test results was used. The stress distribution of the coating surface, interface, substrate heat-affected zone and influence of mechanical vibration were discussed. The research has theoretical innovation and practical significance to the stress control, improve and eliminate of Ni-based alloy coating crack.
     Build the ANSYS finite element model in the basis of the solidification alloy coating final size without and with mechanical vibration Ni60coating. The stress field of coating along the laser scanning direction (Z-axis) with the material thermal physical parameters those changes over time was simulated. The distributing characteristic of stress and strain field with the mechanical vibration was discussed. The optimum mechanical vibration process parameters are predicted. Results show that the strain peak value dropped from4.36×10-4to3.17×10-4in coating surface,2.88×10-4to2.1×10-4in interface and from4.24×10-5to3.09×10-5in the heat affected zone. The stress peak value of Z axis direction (parallel to the laser scanning direction) dropped from114MPa to81.3MPa (residual tensile stress) in the surface of coating, from197MPa to165MPa (residual compressive stress) in the interface and from74.8MPa to50.5MPa (residual tensile stress) in heat affected zone. The improvement of the stress distribution showed that the mechanical vibration in cladding process can play a role of stress control and improve the stress and strain distribution in and around the Ni60alloy laser cladding coating effectively.
     The Z axis residual stress distribution in coating surface, interface and substrate heat affected zone was measured by X-ray diffraction method. Results show that residual tensile stress value in coating surface and residual compressive stress in the interface and substrate heat affected zone showed a decreasing trend. By comparison finite element numerical simulation and actual measurements show that the simulation and measured results have almost the same property of residual stresses in different regions. The stress change rules of simulation numerical conform better to measured values. The feasibility of numerical simulation was proved. Residual stress is251.1+60MPa (tensile stress) in the centre of coating surface,121.6MPa (compressive stress) in the interface,13.5MPa (compressive stress) in the substrate heat affect zone. It will contribute to prevent the new crack formation and improve the stability of coating in the use process. The reasonable difference of analysis results between numerical simulation and the ideal simulation conditions was more accordant with the actual situation. And this has instructional significance.
     The solidification characteristics of nickel-based alloy coating with mechanical vibration were analyzed by OM, SEM, EDS, XRD technology synthetically. The results reveal that mechanical vibration can improve the distributed uniformity of solidification structure and refine the grain size, the dendrite-to-equiaxed grains transition in matrix phase; and the quantity and size of carbides has increased significantly; the continuity of matrix phase and the integrity of crystal structure are improved under the separation of intercrystalline network phase in Ni60/TiC composite coating. The gross dendrites are converted into dendrite and equiaxed. hard phase uniform distribution, the pores is reduced in Ni60CuMoW alloy coating.
     The solidification process of laser cladding is affected by vibration energy from the mechanical vibration. The solidification mechanism of the coating liquid was affected. The ionized core is increased in the front of the solid-liquid interface; the advancing velocity slowed down and the cellular and equiaxed grains solidification mode. The flow of the molten pool impels the formation of "stratosphere". The primary dendrite was swept away that increases free core number in the front of the solid-liquid interface; the composition undercooling was alleviated on the front edge of crystallization; the transition of cellular to dendrites was inhibited; the floatation speed of nucleation particles with the solid-liquid interface was slow down; the concentration fluctuation of element in molten pool was alleviatied. The effects on the article size of hard phase and distribution was improved; the continuity of matrix phase was enhanced; the crack sensitivity of the Ni-based alloy coating was reduced.
     The "stratosphere" alleviates convective overturn in molten pool, the surface corrugation are replaced by smooth distribution on coating. The macroscopic crack distribution of Ni60CuMoW composite coating with mechanical vibration (limited amplitude) is investigated. The observations show that crack cross is reduced on surface coating, and the crack number of the unit length decreased from0.17crack/mm to0.08crack/mm. There is no crack appears in the alloy coating when the vibration of frequency150Hz and amplitude0.17mm. The cracking behavior of nickel-based alloy coating from interface cracks initiation and expands to the surface of coating by the transgranular and intergranular cracking ways, and crack cross exists in coating. However, the crack cross is instead of a single through cracks in coating with mechanical vibration, the disruptive impact of cracks was weakened.
     The corrosion potential of mechanical vibration Ni60CuMoW alloy coatings compared with no mechanical vibration coating moves about1134.9mVSCE, and corrosion current density dropped from0.076to0.008μm·cm-2, almost an order of magnitude. The corrosion resistant performance was improved significantly. The average microhardness value rose from720to835HV0.5on cladding zone, increased by nearly16%, and the microhardness value curve was slowed down. The microhardness value drops rapidly from468on heat affected zone to182HV0.5on substrate with no fluctuation. The average wear mass loss of alloy coating dropped from9.2to7.6mg in wear test, declined by17%; the average friction coefficient dropped from0.081to0.068, decreased by16%; the fluctuation of curve was weakened. The wear surface show a uniform distribution of shallow furrow shaped without deep ditch, but a small amount of adhesive wear; the bonding strength between matrix phase and particle was reinforced; the wearing resistance and stability of Ni60CuMoW alloy coating has been optimized with mechanical vibration.
引文
[1]刘瑞堂.机械零件失效分析.哈尔滨:哈尔滨工业大学出版社,2003
    [2]Maxton D, Morley C, Bearman R. A quantification of the benefits of high pressure rolls crushing in an operating environment. Minerals Engineering,2003, 16(9):827-838
    [3]Azevedo C R F, Neves das J C K, Sinatora A. Failure analysis of belt/roll tribo logical pair used for the production of eucalypt fiber panels. Engineering Failure Analysis,2008,15(1-2):165-181
    [4]张奔,王安强,邓晓涛,等.数控机床主轴磨损失效的MTBF预测及实验研究.机床与液压,2012,40(11):148-151
    [5]黄领才,谷岸,刘慧丛.海洋环境下服役飞机铝合金零件腐蚀失效分析.北京航空航天大学学报,2008,34(10):1217-1221
    [6]Bram M, Ahmad-Khanlou A, Buchkremer H P, et al. Vacuum plasma spraying of NiTi protection layers. Materials Letters,2002,57(3):647-651
    [7]Liu J J, Liu Z D. An experimental study on synthesizing TiC-TiB2-Ni composite coating using electro-thermal explosion ultra-high speed spraying method. Materials Letters,2010,64(6):684-687
    [8]Xu B S, Zhu Z X, Ma S N, et al. Sliding wear behavior of Fe-Al and Fe-Al/WC coatings prepared by high velocity arc spraying. Wear,2004,257(11):1089-1095
    [9]Kang K, Bae Q Kim B, et al. Electrical and mechanical properties of multi-walled carbon nanotube reinforced Al composite coatings fabricated by high velocity oxygen fuel spraying. Surface & Coatings Technology,2012, 206(19-20):4060-4067
    [10]Zhao L D, Lugscheider E. High velocity oxy-fuel spraying of a NiCoCrAlY and an intermetallic NiAl TaCr alloy. Surface & Coatings Technology,2002,149(2-3): 230-235
    [11]Li Z J, Hu Z F, Jiang L, et al. Synthesis and optical properties of three-dimensional nanowall ZnO film prepared by atmospheric pressure chemical vapor deposition. Applied Surface Science,2012,258(24):10175-10179
    [12]Nakaso K, Han B, Ahn K H, et al. Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method. Journal of Aerosol Science,2003,34(7):869-881
    [13]魏琪,张林伟,李辉,等.等离子喷涂NiCrCoAlY涂层氧化控制研究.稀有金属材料与工程,2010,39(12):2137-2141
    [14]Vencl A, Arostegui S, Favaro G, et al. Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-sections. Tribology International,2011,44(11):1281-1288
    [15]刘洪喜,蒋业华,周荣,等.TC4合金表面全方位离子注入Ag的耐摩擦磨损和抗腐蚀性能.稀有金属材料与工程,2009,38(12):2126-2130
    [16]Liu H X, Xu Q, Zhang X W, et al. Residual stress analysis of TiN film fabricated by plasma immersion ion implantation and deposition process. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2013,297(15):1-6
    [17]李相银,姚敏玉,李卓,等.激光原理技术及应用(第一版).哈尔滨:哈尔滨工业大学出版社,2004
    [18]Wu Q L, Li W G, Zhong N, et al. Micro structure and wear behavior of laser cladding VC-Cr7C3 ceramic coating on steel substrate. Materials & Design,2013, 49:10-18
    [19]Chen Z Y, Zhou G J, Chen Z H. Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching. Materials Science and Engineering:A, 2012,534(1):536-541
    [20]Sun G F, Zhou R, Li P, et al. Laser surface alloying of C-B-W-Cr powders on nodular cast iron rolls. Surface & Coatings Technology,2011,205:2747-2754
    [21]Hitesh D V, Ravi S R, Santhanakrishnan S, et al. Dilution of molybdenum on aluminum during laser surface alloying. Journal of Alloys and Compounds,2013, 570:133-143
    [22]Dutta Majumdar J, Galun R, Mordike B L, et al. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy. Materials Science and Engineering:A,2003,361(1-2):119-129
    [23]Guo D Y, Ito A, Goto T, et al. Effect of laser power on orientation and microstructure of TiO2 films prepared by laser chemical vapor deposition method. Materials Letters,2013,93:179-182
    [24]Montross C S, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys:a review. International Journal of Fatigue,2002,24(10):1021-1036
    [25]Luo K Y, Lu J Z, Zhang L F, et al. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing. Materials & Design, 2010,31(5):2599-2603
    [26]张庆茂,钟敏霖,杨森,等.送粉式激光熔覆层质量与工艺参数之间的关系.焊接学报,2001,22:51-54
    [27]罗耕星,吴晓雷,葛孝月,等.激光快速熔凝中的主要热物理问题.金属材料研究,1997,23(2):5-10
    [28]孟庆武,杨胜群,耿林,等.涡轮叶尖激光熔覆涂层技术探索.材料研究与应用,2009,3(2):123-126
    [29]黄尚猛.Crl2模具钢合金激光熔覆层的组织和性能研究.材料热处理学报,2009,30(1):161-165
    [30]张魁梧.国外激光熔覆应用和直接熔覆金属零件及梯度材料制造.金属热处理,2002,27(9):1-4
    [31]Guo C, Zhou J S, Chen J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings. Wear,2011,270(7-8): 492-498
    [32]Hemmati, Ocellik V, J. De Hosson Th M. Effects of the Alloy Composition on Phase Constitution and Properties of Laser Deposited Ni-Cr-B-Si Coatings. Physics Procedia,2013,41:302-311
    [33]Cui C Y, Guo Z X, Liu Y H, et al. Characteristics of cobalt-based alloy coating on tool steel prepared by powder feeding laser cladding. Optics and Laser Technology,2007,39(8):1544-1550
    [34]Xu G J, Kutsuna M, Liu Z J, et al. Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel. Surface & Coatings Technology,2006,201(3-4):1138-1144
    [35]Li M X, He Y Z, Yuan X M. Effect of nano-Y2O3 on microstructure of laser cladding cobalt-based alloy coatings. Applied Surface Science,2006,252(8): 2882-2887
    [36]Lusquinos F, Comesana R, Riveiro A, et al. Fibre laser micro-cladding of Co-based alloys on stainless steel. Surface & Coating Technology,2009,203(14): 1933-1940
    [37]Yao C W, Huang J, Zhang P L, et al. Toughening of Fe-based laser-clad alloy coating. Applied Surface Science,2011,257:2184-2192
    [38]敬晓定,晁明举,孙海勤,等.原位生长Cr3C2-CrB复合增强镍基激光熔覆层研究.中国激光,2009,36(1):231-237
    [39]舒玲玲,李文静,吴钱林,等.原位合成VC-Cr7C3复相陶瓷增强铁基激光涂层研究.热加工工艺,2011,40(22):126-129
    [40]Chen J M, Guo C, Zhou J S. Microstructure and tribo logical properties of laser cladding Fe-based coating on pure Ti substrate. Transactions of Nonferrous Metals Society of China,2012,22:2171-2178
    [41]王艳秋,吴昆,郑明毅.SiCW/AZ91镁基复合材料的微弧氧化行为及涂层的耐腐蚀性能.金属学报,2007,43(6):631-636
    [42]赵卫民,赫庆坤,韩彬,等.TiC-NiCrBSi复合材料的激光熔覆成形性分析.焊接学报,2010,31(6):25-28,32
    [43]DuttaMajumdar J, Li L. Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding. Materials Letters,2010,64(9): 1010-1012
    [44]Guo B G, Zhou J S, Zhang S T, et al. Microstructure and tribo logical properties of in situ synthesized TiN/Ti3Al intermetallic matrix composite coatings on titanium by laser cladding and laser nitriding. Materials Science and Engineering:A,2008. 480(1-2):404-410
    [45]李明喜,何宜柱,孙国雄.激光表面熔覆制备ODSNi基高温合金涂层的凝固组织.稀有金属材料与工程,2005,34(2):248-251
    [46]张三川,姚建铨,梁二军.激光熔覆进展与熔覆合金设计.激光技术,2002,26(3):204-207
    [47]李胜,胡乾午,曾晓雁.激光熔覆专用铁基合金粉末的研究进展.激光技术,2004,28(6):591-594
    [48]徐滨士,董世运,马云哲.渗碳类重载齿类件齿面激光熔覆粉末材料及修复方法.中国.发明专利,ZL200710119899.9,2008
    [49]丁刚,丁家伟,耿德英,等.一种激光熔覆镍基合金粉末及其制备方法.中国.发明专利,CN201210457379.X
    [50]丁刚,丁家伟,耿德英,等.激光熔覆钻基合金粉末及其制备方法.中国.发明专利,CN201210457464.6
    [51]丁刚,丁家伟,耿德英,等.激光熔覆高韧高硬镍基合金粉末及其制备方法.中国.发明专利,CN201210239900.2
    [52]李希勇,李伦实,周峰,等.一种激光熔覆用合金粉末.中国.发明专利,CN201210159336.3
    [53]曾维华,刘洪喜,王传琦,等.工艺参数对不锈钢表面激光熔覆Ni基涂层组织及耐腐蚀性能的影响.材料工程,2012,8:24-29
    [54]任振安,郭作兴,吴山力.工艺参数对铜基激光熔覆层组织及耐磨性的影响.焊接学报,2002,23(1):69-72,80
    [55]孙荣禄,杨德庄,郭立新,等.激光工艺参数对钛合金表面NiCrBSi合金熔覆层组织及硬度的影响.光学技术,2001,27(1):34-36,38
    [56]丁阳喜,柴柱.K1000型钢轨焊机推瘤刀激光熔覆修复研究.中国铁道科学,2012,33(2):71-75
    [57]张甲,石世宏,王永康,等.离焦量对环形光光内送粉单道熔覆质量的影响.苏州大学学报(工科版),2011,31(1):39-42
    [58]刘喜明,连建设,张庆茂.送粉激光熔覆界面特性及熔覆层稀释率.机械工程学报,2001,37(4):38-43
    [59]Lee H K. Effects of the cladding parameters on the deposition efficiency in pulsed Nd:YAG laser cladding. Journal of Materials Processing Technology,2008, 202(1-3):321-327
    [60]Hemmati I, Ocelik V, De Hosson J Th M. The effect of cladding speed on phase constitution and properties of AISI431 stainless steel laser deposited coatings. Surface & Coatings Technology,2011,205(21-22):5235-5239
    [61]Anandkumar R, Almeida A, Vilar R, et al. Influence of powder particle injection velocity on the microstructure of Al-12Si/SiCp coatings produced by laser cladding. Surface & Coatings Technology,2009,204(3):285-290
    [62]Emamian A, Corbin S F, Khajepour A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings. Surface & Coatings Technology,2010,205(7):2007-2015
    [63]Kim J D, Peng Y. Melt pool shape and dilution of laser cladding with wire feeding. Journal of Materials Processing Technology,2000,104(3):284-293
    [64]孔源,刘伟军,王越超,等.钛合金激光直接成形过程中热力耦合场的数值模拟.机械工程学报,2011,47(24):74-82
    [65]孔源,刘伟军,王越超,等.扫描方式对激光直接成形过程中热力耦合场与残余应力分布的影响.激光与光电子学进展,2012,(5):051405-1-051405-9
    [66]贾文鹏,林鑫,陈静,等.空心叶片激光快速成形过程的温度/应力场数值模拟.中国激光,2007,34(9):1308-1312
    [67]顾建强,骆芳,姚建华.激光熔覆过程残余应力的数值模拟.激光与光电子学进展,2010,(10):101401-1-101401-6
    [68]郝南海,陆伟,左铁钏.激光熔覆过程热力耦合有限元应力场分析.中国表面工程,2005,(1):20-23
    [69]程广萍,李明喜,何宜柱,等.激光熔覆层温度场和应力场的数值模拟.热处理,2009,24(4):49-54
    [70]姜秋月.多道激光熔覆应力场的模拟分析.热加工工艺,2011,40(6):124-127,129
    [71]Alimardani M, Fallah V, Khajepour A, et al. The effect of localized dynamic surface preheating in laser cladding of Stellite 1. Surface & Coatings Technology, 2010,204:3911-3919
    [72]Jendrzejewski R, Sliwiriski G, Krawczuk M, et al. Temperature and stress fields induced during laser cladding. Computers and Structures,2004,82:653-658
    [73]Jendrzejewski R, Sliwiriski G, Krawczuk M, et al. Temperature and stress during laser cladding of double-layer coatings. Surface & Coatings Technology,2006, 201:3328-3334
    [74]Suarez A, Amado J M, Tobar M J, et al. Study of residual stresses generated inside laser cladded plates using FEM and diffraction of synchrotron radiation. Surface & Coatings Technology,2010,204:1983-1988
    [75]栾景飞,胡建东,周振丰,等.激光熔覆参数对灰铸铁激光熔覆层裂纹的影 响.应用激光,2000,20(2):53-56,60
    [76]王东升,于志青,晁明举,等.V2O5和工艺参数对镍基合金激光熔覆层裂纹敏感性的影响.激光杂志,2005,26(6):81,82,84
    [77]钟敏霖,刘文今.Stellite和NiCrSiB合金激光送粉熔覆裂纹倾向的比较研究.中国激光,2002,29(11):1031-1036
    [78]Song W L, Zhu B D, Xie C S, et al. Cracking susceptibility of a laser-clad layer as related to the melting properties of the cladding alloy, Surface & Coatings Technology,1999,115(2-3):270-272
    [79]张维平,刘硕.激光熔覆Ni基金属陶瓷复合涂层的裂纹研究.复合材料学报,2005,22(3):98-102
    [80]Ghosh S K, Saha P. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process. Materials & Design,2011, (32):139-145
    [81]王忠柯,郑启光,王涛,等.激光表面熔覆层凝固组织特征形成过程.激光技术,2000,24(1):64-66
    [82]陈艳霞,钟敏霖,刘文今,等.激光送粉熔覆WC/Co硬质合金的气孔问题.材料热处理学报,2002,23(2):49-53
    [83]Fallah V, Alimardani M, Corbin S F, et al. Impact of localized surface preheating on the microstructure and crack formation in laser direct deposition of Stellite 1 on AISI 4340 steel. Applied Surface Science,2010,257:1716-1723
    [84]Aghasibeig M, Fredriksson H. Laser cladding of a featureless iron-based alloy. Surface & Coatings Technology,2012,209:32-37
    [85]晁明举,杨坤,袁斌,等.In2O3对Ni60激光熔覆层的影响.焊接学报,2005,26(8):27-30
    [86]王清波,窦新旺,晁明举,等.Mo对高硬度镍基合金激光熔覆层组织和耐磨性的影响.应用激光,2005,25(2):97-100
    [87]宋光明,吴钢,黄婉娟.单向送粉双向扫描激光熔覆工艺防止裂纹的试验研究.金属热处理,2005,30(5):26-28
    [88]宋武林,朱倍蒂,甘翠华,等.激光熔覆层结晶方向对覆层裂纹方向和开裂敏感性的影响.中国激光,1995,22(4):309-312
    [89]宋建丽.激光熔覆成形组织特征及裂纹控制技术研究[博士学位论文].上海: 上海交通大学,2006
    [90]Kovalenko, Volodymyr S. Gas-powder laser cladding with electro-magnetic agitation. Laser Institute of America, Proceedings,1997,83(2):F21-F26
    [91]武晓峰,张广安,周岐.机械振动对倾斜冷却板法制备亚共晶铝合金半固态组织的影响.铸造,2009,58(10):1002-1008
    [92]杨志杰,苍大强,李宇.机械振动对纯A1凝固组织的影响.铸造,2011,60(1):77-79,82
    [93]潘迪,樊自田,赵忠,等.机械振动对ZL101消失模铸造组织及性能的影响.特种铸造及有色合金,2009,29(3):290-292
    [94]田学锋,樊自田,黄乃瑜.机械振动对消失模铸造镁合金组织及力学性能的影响.中国有色金属学报,2006,16(11):1838-1844
    [95]胡赓祥,钱苗根.金属学.上海:上海科学技术出版社,1982
    [96]王庆国,张国福,管建军.低频机械振动焊接振动工艺参数的优化.热加工工艺,2010,39(3):141-143
    [97]赵忠民,张龙,杨润泽,等.机械振动对燃烧合成Al2O3/ZrO2(3Y)自增韧复合陶瓷的影响.稀有金属材料与工程,2007,36(Supplement,1):724-726
    [98]张国福,宋天民,尹成江,等.机械振动焊接对焊缝及热影响区金相组织的影响.焊接学报,2001,22(3):85-87
    [99]顾建强.激光熔覆残余应力场的数值模拟[硕士学位论文].浙江:浙江工业大学,2010
    [100]李尧.金属塑性成型原理.北京:机械工业出版社,2004
    [101]付壵.激光粉末沉积温度场和应力场的有限元数值模拟[硕士学位论文].北京:北京交通大学,2007
    [102]张朝辉.ANSYS12.0热分析工程应用实战手册(第1版).北京:中国铁道出版社,2010
    [103]王金龙,王清明,王伟章.AN SYS 12.0有限元分析与范例解析(第1版).北京:机械工业出版社,2011
    [104]朱润生.Ni60自熔合金粉末的研究.粉末冶金工业,2002,12(6):7-16
    [105]Pilloz M, Pelletier J M. Residual stress induced by laser coatings: phenomenological analysis and predictions. Journal of Materials Science,1992, 27:1240-1244
    [106]王倩,李青春,常国威.快速凝固技术的发展现状与展望.辽宁工学院学报,2003,23(5):40-44
    [107]Xie Y J, Wang M C, Huang D W. Comparative study of microstructural characteristics of electrospark and Nd:YAG laser epitaxially growing coatings. Applied Surface Science,2007,253:6149-6156
    [108]Demetriou M D, Ghoniem N M, Lavine A S. Kinetic modeling of phase selection during non-equilibrium solidification of a tungsten-carbon system. Acta Materialia,2002,50:1421-1432
    [109]闫毓禾,钟敏霖.高功率激光加工及其应用.天津:天津科学技术出版社,1994
    [110]杨坤.镍基合金激光熔覆层质量改善的研究及其应用[硕士学位论文].郑州:郑州大学,2005
    [111]费群星,张雁,谭永生,等.镍基合金激光熔覆成形的快速凝固组织特征研究.应用激光,2007,27(3):169-174
    [112]徐锦锋,魏炳波.急冷快速凝固过程中液相流动与组织形成的相关规律.物理学报,2004,53(6):1909-1915
    [113]杨院生,童文辉,陈晓明,等.金属快速凝固的非平衡超急速传热模型.金属学报,2003,39(3):249-253
    [114]Tiller W A, Jackson K A, Rutter J W, et al. The redistribution of solute atoms during the solidification of metals. Acta Metallurgica. 1953,1(4):428-437
    [115]Sekerka R F. Application of the time-dependent theory of interface stability to an isothermal phase transformation. Journal of Physics and Chemistry of Solids, 1967,28(6):983-994
    [116]Sekerka R F. Morphological stability. Journal of Crystal Growth,1968,3-4:71-81
    [117]Wood R F. Effect of growth rate dependent partition coefficient on the dendrtic growth in undercooled melts. Journal of Physics Review,1982,25:2786-2793
    [118]Liu W P, DuPont J N. Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-m elted superalloy single crystals. Mathematical modeling of single-crystal growth in a melt pool (Part II). Acta Materialia,2005,53(5):1545-1558
    [119]Zhang H, He Y Z, Pan Y, et al. Phase selection, microstructure and properties of laser rapidly solidified FeCoNiCrAl2Si coating. Intermetallics,2011,19: 1130-1135
    [120]Jacot A, Sumida M, Kurz W. Solute trapping-free massive transformation at absolute stability. Acta Materialia,2011,59(4):1716-1724
    [121]Zhang K B, Fu Z Y, Zhang J Y, et al. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. Journal of Alloys and Compounds,2010,502(2):295-299
    [122]李俊昌.激光的衍射及热作用计算.北京:科学出版社,2002
    [123]王传琦,刘洪喜,周荣,等.回火处理对多道Ni基熔覆涂层组织和耐蚀性能的影响.材料热处理学报,2011,32(7):145-150
    [124]Zhang H, Shi Y, Kutsuna M, et al. Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless. Nuclear Engineering and Design,2010,240(10): 2691-2696
    [125]Guo C, Zhou J S, Chen J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings. Wear,2011,270(7-8): 492-498
    [126]武晓雷,陈光南.激光形成原位TiC颗粒增强涂层的组织及性能.金属学报,1998,34(12):1284
    [127]Guo C, Zhou J S, Chen J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings. Wear,2011,270: 492-498
    [128]Li Q, Song G M, Zhang Y Z, et al. Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC. Wear,2003,254: 222-229
    [129]Huang Y J, Zeng X Y, Hu Q W, et al. Microstructure and interface interaction in laser induction hybrid cladding of Ni-based coating. Applied Surface Science, 2009,255:3940-3945
    [130]Conde A, Zubiri F, Damborenea y J de. Cladding of Ni-Cr-B-Si coatings with a high power diode laser. Materials Science and Engineering. A,2002,334: 233-238
    [131]Hou Q Y, Huang Z Y, Shi N, et al. Effects of molybdenum on the microstructure and wear resistance of nickel-based hardfacing alloy sinvestigated using Rietveld method. Journal of Materials Processing Technology,2009,209:2767-2772
    [132]Amadoa J M, Tobar M J, Yanfiez A, et al. Crack Free Tungsten Carbide Reinforced Ni(Cr) Layers obtained by Laser Cladding. Physics Procedia,2011,12:338-344
    [133]王传琦,刘洪喜,周荣,等.机械振动辅助激光熔覆NiCrBSi-TiC复合涂层中颗粒相行为特征.金属学报,2013,49(2):221-228
    [134]张国福,宋天民,尹成江,等.机械振动焊接对焊缝及热影响区金相组织的影响.焊接学报,2001,22(3):85-87
    [135]刘江龙,邹至荣,苏宝嫆.高能束热处理.北京:机械工业出版社,1997
    [136]Hoadley A F A, Rappaz M. A thermal model of laser cladding by powder injection. Metallurgical Transaction B,1992,23(5):631-642
    [137]Huang Y J, Zeng X Y. Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding. Applied Surface Science,2010,256(20): 5985-5992
    [138]Wang F J, Mao H D, Zhang D W, et al. The crack control during laser cladding by adding the stainless steel net in the coating. Applied Surface Science,2009, 255(21):8846-8854
    [139]Wang F J, Mao H D, Zhang D W, et al. Online study of cracks during laser cladding process based on acoustic emission technique and finite element analysis. Applied Surface Science,2008,255(5):3267-3275
    [140]熊惟皓.Ti(C,N)基金属陶瓷相界面层微晶结构的形成.金属学报,1997,33(5):473-478
    [141]Shaw L L, Ortiz A L, Villegas Juan C. Hall-Petch relationship in a nanotwinned nickel alloy. Scripta Materialia,2008,58:951-954
    [142]陈静,杨海欧,李延民,等.激光快速成形过程中熔覆层的两种开裂行为及其机理研究.应用激光,2002,22(3):300-304
    [143]钟敏霖,刘文今,任家烈.NiCrSiB合金高功率激光送粉熔覆裂纹形成的敏感因素.应用激光,2000,20(5):193-197
    [144]Kadolkar P B, Watkins T R, De Hosson J Th M, et al. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys. Acta Materialia, 2007,55(4):1203-1214
    [145]Martins J A, Cardoso L P, Fraymann J A, et al. Analyses of residual stresses on stamped valves by X-ray diffraction and finite elements method. Journal of Materials Processing Technology,2006,179:30-35
    [146]Javadi Y, Akhlaghi M, Najafabadi M A. Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates. Materials & Design,2013,45:628-642
    [147]蒋文春,WOO Wanchuck,王炳英,等.中子衍射和有限元法研究不锈钢复合板补焊残余应力.金属学报,2012,48(12):1525-1529
    [148]Kohler H, Partes K, Kommeier J R, et al. Residual stresses in steel specimens induced by laser cladding and their effect on fatigue strength. Physics Procedia, 2012, (39):354-361
    [149]姜传海,杨传铮.材料射线衍射和散射分析.北京:高等教育出版社,2010
    [150]Meisner L L, Lotkov A A, Ostapenko M G, et al. X-ray diffraction study of residua] elastic stress and microstructure of near-surface layers in nickel-titanium alloy irradiated with low-energy high-current electron beams. Applied Surface Science,2013,280:398-404
    [151]Kwok C T, Man H C, Cheng F T. Cavitation erosion-corrosion behavior of laser surface alloyed AIS1 1050 mild steel using NiCrSiB. Materials Science and Engineering A,2001,303(1-2):250-261
    [152]Cai L X, Wang H M, Wang C M. Corrosion resistance of laser clad Cr-alloyed Ni2Si/NiSi intermetallic coatings. Surface & Coatings Technology,2004, 182(2-3):294-299
    [153]Yu T, Deng Q L, Dong G, et al. Effects of Ta on microstructure and microhardness of Ni based laser clad coating. Applied Surface Science.2011,257:5098-5103
    [154]Zhou S F, Dai X G, Zeng X Y. Effects of processing parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cladding. Applied Surface Science,2009,255:8494-8500
    [155]Zhang Z Y, Lu X C, Han B L, et al. Rare earth effect on the microstructure and wear resistance of Ni-based coatings. Materials Science and Engineering A,2007, (454-455):194-202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700