用户名: 密码: 验证码:
煤矿深部近距低采高上保护层开采瓦斯灾害协同控制技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对中平能化集团平煤股份所属十二矿深部(埋深≥1000m)近距离(8~12m)、低采高(1.3m)和高瓦斯耦合作用下的上保护层瓦斯治理问题,以及上保护层开采巷道留设的保护煤柱造成的被保护层卸压空白带问题,利用弹性力学、岩体力学、损伤力学、渗流力学等相关理论,通过采用理论分析、相似模拟试验、数值模拟、现场试验等方法,系统地研究了煤矿深部近距低采高上保护层开采瓦斯灾害协同控制技术,取得了如下主要创新性成果:
     针对深部近距低采高上保护层开采面临的保护层工作面上隅角瓦斯超限和被保护层局部区域未卸压等问题,提出了大直径穿层递进埋管抽采和下被保护层局部未保护区域的定向水力压裂技术来协同控制瓦斯灾害的研究思路。实现了保护层工作面的安全快速推进和被保护层的全区域消突,为今后其他类似条件下的煤层群开采提供了治理思路。
     采用实验和数值模拟相结合的方法,首次研究了不同保护层开采高度、不同层间距、不同层间岩性对深部近距低采高上保护层开采条件下下伏煤岩体卸压影响。研究发现了保护层工作面开采高度越大,对被保护层的卸压保护效果越好;随着层间距离的增加,保护层的卸压效果越来越差;而由于层间坚硬岩层的控制,其存在不利于下方煤岩体的应力降低,且还遏制了下方岩体的膨胀变形,不利于下被保护层透气性的增加。
     首次提出了大直径穿层递进埋管抽采技术,既克服了采用传统的沿空留巷等措施造成的施工量大和维护困难问题,又避免了在本煤层采空区埋管抽放造成的巷道空间受限问题,在不影响保护层工作面开采的条件下,创造性的解决了深部近距低采高上保护层开采工作面上隅角瓦斯频繁超限问题。实践表明,该技术实施效果显著,抽放瓦斯纯量达到29.1~35.3m3/min,抽放瓦斯浓度平均为13.7%,上隅角瓦斯浓度平均维持在0.51%。
     针对平煤十二矿被保护层与保护层层间距小、存在被保护层局部区域未卸压、地应力相对集中区域的特点,提出采用定向水力压裂技术消除局部未保护区域的突出危险性,同时采用定向孔的导向作用,避免了单一水力压裂孔易造成应力集中、形成高压蓄能区的问题。采取该技术后突出判定指标q值和S值显著降低(q值降为1.0 L/min左右;S值降为2.0 kg/m左右),工作面危险性效检预测指标超标的比例大大减低,变化幅度降低;单孔抽放浓度平均增加了70%,瓦斯流量增加了382%。
     本文为煤矿深部近距低采高上保护层开采条件下瓦斯灾害的有效控制提供了理论和实践基础,课题研究期间,作者公开发表学术论文7篇,其中EI检索2篇,并获得各类科研奖励6项。
     该论文有图105幅,表10个,参考文献109篇。
This paper aimed at gas control in the condition of deep(depth≥1000m) close (8 ~ 12m), low mining height (1.2m), and high gas in 12th mine Pingdingshan Coalmine Group on the protective layer and the problem of the blank caused by coal pillar made by the roadway of protective layer. By the use of elastic mechanics, rock mechanics, damage mechanics, fluid mechanics, and other related theories, and by the use of theoretical analysis, physical modeling, numerical Simulation, field test and other methods, technology of Cooperative Control of Gas Disaster during Mining of Thin and Short Distance Upper Protective Coal Seam in Deep Coal Mine was given. The major creative achievements were presented as follows:
     Aiming at gas content over-limitation at the corner of the protective layer and the problem of pressure unrelief in local areas with the mining of thin and Short Distance Upper Protective Coal Seam in Deep Coal Mine, ideas were put forward which is gas disaster control cooperating the technology of progressive and large diameter buried drainage pipe by wearing layers and directional hydraulic fracturing technology. This idea achieved fast and safe mining of the protective layer and Outburst Control region-wide of the protectived layer and provided management ideas for other similar coal.
     By the use of experimental and numerical simulation, the pressure relief in the underlying coal with thin and short distance upper protective coal Seam was first researched in the conditions of different height, different spacing and different rock layers. By the research,it was found that the higher of the working face in protective layer , the greater pressure relief in the protected layer, with increase of the interlayer distance, the worse pressure relief, and that as the hard rock layer control, its presence is not conducive to reducing the stress below the coal and rock, curbing the expansion deformation of the rock below, and increasing permeability of the under protected layer.
     The technology of progressive and large diameter buried drainage pipe by wearing layers was put forward for the first time, not only to overcome the great construction and maintenance difficulties caused by the traditional measures such as gob-side entry retaining, but also to avoid the problem of limited roadway space caused by the drainage pipe in the current seam. Without affecting the mining of the protective laye, the problem, frequent gas content over-limitation at the corner of the thin and short distance upper protective coal seam, was solved creatively.Practice shows that the effect of this technology was significant. The pure gas drainage reached 29.1 ~ 35.3m3/min, drainage gas concentration was 13.7% on average, and gas concentration in the corner remained 0.51%.
     Aiming at characteristics of short distance between the protective and the protected layer, the existence of the local-area-unrelief in the protected layer and the area with stress concentration relative, directional hydraulic fracturing technology was put forward to release the danger of outburst in local unprotected areas. By using the guiding role making guiding function, it could be avoided that stress concentration caused by single hydraulic fracturing hole, resulting in high pressure storage.After taking the technology, the value of q and S was significantly lower (q reduced to 1.0 L / min and S decreased to 2.0 kg/m or so), the over standard of danger of outburst greatly reduced and amplitude decreased, and gas drainage density increased by 70% while drainage quantity increased by 382%.
     This dissertation provides theoretical and practical basis for cooperative control of gas disaster during mining of thin and short distance upper protective coal seam in deep coal mine. During the research, the authors published 7 papers, in which 2 were Search by EI; won 6 items of the prize of the ministerial-level scientific or other researches.
     There are 105 figures, 10 tables and 109 references in this dissertation.
引文
[1]林柏泉.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版社, 2010.6.
    [2]胡殿明,林柏泉等.煤层瓦斯赋存规律及防治技术[M].徐州:中国矿业大学出版社, 2006.11.
    [3]卫修君,林柏泉.煤岩瓦斯动力灾害发生机理及综合治理技术[M].北京:科学出版社, 2009.
    [4]中国煤炭信息网.2007年煤矿事故(矿难)一览[EB/OL]. http://price. coalcn. com /news /NewsHtml/45/091123/09112303084220068. html, 2009.11.23.
    [5]国家安全生产监督管理总局调度统计司. 2009年全国安全生产事故统计分析报告[R]. 2010.
    [6]郭勇义,何学秋,林柏泉主编.煤矿重大灾害防治战略研究与进展[M].徐州:中国矿业大学出版社, 2003.
    [7]窦林鸣,何学秋.冲击地压防治理论与技术[M].徐州:中国矿业大学出版社, 2001.10.
    [8]李雪青.阜矿集团五龙煤矿冲击地压事故分析与综合防治技术研究[D].阜新:辽宁工程技术大学硕士论文, 2005.
    [9]卫修君,林柏泉.煤岩瓦斯动力灾害发生机理及综合防治技术[M].北京:科学出版社, 2009.
    [10]周红星.煤与瓦斯突出危险煤层煤巷掘进应力分布与防突方法研究[D].徐州:中国矿业大学硕士论文, 2005.
    [11]王淑坤.冲击地压机理[J]岩石力学与工程学报. 1996(S1): 500~503.
    [12]曹承平.近距离上保护层开采的实践[J].煤炭科学技术, 2006, 34(4): 33~35.
    [13]张拥军,于广明,路世豹等.近距离上保护层开采瓦斯运移规律数值分析[J].岩土力学, 2010, 31(增刊1): 398~404.
    [14]林柏泉,何学秋.煤体透气性及其对煤和瓦斯突出的影响[J].煤炭科学技术, 1991, 4: 50~53.
    [15]刘蕴祥.永城矿区煤层底板裂隙灰岩突水特征及防治技术[J].中国煤炭,2004, 30(12): 37~39.
    [16]管恩太.突水系数与煤矿水害防治[J].煤炭工程,2011(1):46~48.
    [17]周楠,张强,安百富等.近距离煤层采空区下工作面矿压显现规律研究[J].中国煤炭, 2011, 37(2): 48~51.
    [18]马书明,吕文玉,孙丙玉.深部采场矿山压力理论研究现状及趋势[J].煤炭工程, 2010(10): 87~89.
    [19]缪协兴.采动岩体的力学行为研究与相关工程技术创新进展综述[J].岩石力学与工程学报, 2010, 29(10): 1988~1997.
    [20]李万军,杨家兵.“下三带”理论和“P-h”临界曲线法预测底板突水[J].煤矿开采, 2010, 15(5): 45~47.
    [21]张文泉,李白英.“下三带”理论的发展和应用[J].矿井水文地质,2001.
    [22]葛亮涛等.中国煤田水文地质学[M].北京:煤炭工业出版社, 2000.
    [23]王作宇.煤层底板岩体移动的“零位破坏”理论[J].河北煤炭, 1988(4): 36~38.
    [24]王作宇.煤层底板岩体移动的“原位张裂”理论[J].河北煤炭, 1988(3):29~30.
    [25]刘鸿泉,王作宇.采场底板承压水运动[J].河北煤炭, 1992(4): 196~201.
    [26]刘天泉.矿山岩层和地表变形规律及其与地质因素的关系[J].煤炭地质与勘探, 1985(03): 32~35.
    [27]张金才,刘天泉.煤层底板突水影响因素的分析与研究[J].煤矿开采, 1993(04): 35~39.
    [28]施龙青,宋振骐.采场底板“四带”划分理论研究[J].焦作工学院学报, 2000, 19(4): 241~244.
    [29]施龙青,韩进.开采煤层底板“四带”划分理论与实践[J].中国矿业大学学报, 2005, 34(1): 16~23.
    [30]齐黎明,林柏泉.马家沟矿九西二石门附近煤层瓦斯赋存特征[J].矿业安全与环保, 2005, 32(1): 8~10.
    [31]陶振宇,沈小莹.库区应力场的耦合分析[J].武汉水利电力学院学报, 1988.1: 8-14.
    [32] Kelsall,P.C.,Case,J.B.,Chabames,C.R.,Evaluation1 of Excavation-induced Changes in Rock Permeability, Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,Vol.21, No.3,1984, 123-135.
    [33] Barton,N.,Bandis,S.,Bakhtar,K.,Strength,Deformation and Conductivity Coupling of Rock Joints,Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,Vol.22,No.3,1985,121-140.
    [34] Raven,K.G.,Gale,J.E.,Water Flow in a Nutured Rock Fracture as a;Function of Stress and Sample Size,Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,Vol.22,No.4,1985,p251-261.
    [35] Neuzll,C.E.,Flow Through Fractures,Water Resources Research,Vol.17,No.1,1981.
    [36] Long J.C.S.,Gilmour,P.,Witherspoon,P.A.,A Model for Steady Fliud in Random Three Dimensional Networks of Disc-shaped Fractures,Water Resources Res.Vol.21,No.8,1985.
    [37] Elsworth, D.&Goodman.R.E., Characterization of Rock Fissure Hydraulic Conductivity Using idealized Wall Roughness Profiles, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol.23, No.3, 233-243,1986(b).
    [38] Erban,P.J., Gell,K..用耦合的力学、水力学有限元法考虑大坝和基岩的相互作用[J].水电工程研究, 1990.2.
    [39]杨映涛.论岩石体积应变与孔隙中流体压力的关系及其应用途径[J].水文地质及工程地质, 1992.1: 29-34.
    [40]哈秋舲,刘国霖等.三峡工程永久船闸陡高边坡岩体卸荷非线性力学研究[C].国家自然科学基金会会议交流,中国长江三峡开发总公司,葛洲坝水电工程学院,重庆建筑大学, 1996.8.
    [41]哈秋舲,刘国霖.长江三峡工程岩石边坡卸荷岩体工程地质研究[M].北京:中国建筑工业出版社, 1997.9.
    [42]哈秋舲,张永兴.三峡船闸岩石陡高边坡稳定与控制研究[M].重庆:重庆大学出版社, 1997.12
    [43]哈秋舲.加载岩体力学与卸荷岩体力学[J].岩土工程学报, 1998.11: 114.
    [44]张有天.裂隙岩体中水的运动与水工建筑物相互作用[R].水利水电科学研究院, 1992.
    [45]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业大学学报, 1988(1).
    [46]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业大学学报, 1987(1): 21~28.
    [47]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业大学学报, 1986(3): 9~15.
    [48]余楚新,鲜学福,谭学术.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报(自然科学版), 1989 (05): 1~9.
    [49]俞启香.矿井瓦斯防治[M].中国矿业大学出版社, 1992..
    [50]钱鸣高,石平五编.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2003.
    [51]于不凡,王佑安.矿井瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社, 2000: 213~214.
    [52]李震寰.在突出区使用大直径超前钻孔方法及效果分析[J].煤矿安全, 1984(10): 22~24.
    [53]瞿涛宝.试论超前钻孔防止突出的有效性[J].煤矿安全, 1993(5): 29~34.
    [54]方伟.优化超前钻孔布置实现突出煤层快速掘进的探讨[J].煤矿安全, 2007(7): 62~64.
    [55]杨秀莉,马中飞,杭银建.“三软煤层”工作面煤壁中深孔动压注水技术[J].煤矿安全, 2006(2): 25~26.
    [56]郭启明,王根卿.突出危险采煤工作面煤壁深孔高压注水防突降尘的实践[J].煤矿安全, 2000(1): 20~22.
    [57] Bureau of Mines.Hydraulic flushing[R] Information Circular, United States.
    [58] Bukhgol'ts, V.P., Shchutskii, V.I.,Krylov, I.V.. Instrument for automatically checking flushing plant[J]. Izvestiya Vysshikh Uchebnykh Zavedenii, Gornyi Zhurnal, n3, 117-23,
    [59]刘明举,孔留安,郝富昌等.水力冲孔技术在严重突出煤层中的应用[J].煤炭学报,2005,30(4):451~454.
    [60]孔留安,郝富昌,刘明举等.水力冲孔快速掘进技术[J].煤矿安全,2005,36(12):46~47.
    [61] Li, De-Yu,Wu, Hai-Jin,Wang, Chun-Li. Numerical investigation of flow characteristics in hydraulic-cutting-seam nozzle[J]. Meitan Xuebao. April 2010: 686-690.
    [62] Feng, Zengchao, Zhao, Yangsheng,Duan, Kanglian. Experimental and numerical study oncoal and gas outburst of hydraulic-cutting seam[C]. Prog. Saf. Sci. Technol. Vol. Proc. Int. Symp. Saf. Sci. Technol.2004: 2091-2094.
    [63] Legoshin, G.M.. Cutting with high-pressure liquid jets (review)[J]. Glass Ceram, May 1991(5): 341-344.
    [64] El-Saie, A.. High pressure water-abrasive jet cutting for steel pipes of gas well casings[C]. Proceedings of the 5th American Water Jet Conference 1989: 465-472
    [65] Tazibt, A. ,Abriak, N.,Parsy, F. Prediction of abrasive particle velocity in a high pressure water jet and effect of air on acceleration process[J]. Eur. J. Mech. B, Fluids (France), 1996: 527-43.
    [66] Lin, Bai-quan,Wu, Hai-jin,Zhang, Lian-jun,et al. Integrative outburst prevention technique of high-pressure jet of abrasive drilling slotting[J]. Procedia Earth. Planet. Sci. 2009.9:27~34.
    [67]陈锐.深孔松动爆破在突出煤层煤巷掘进中的应用[J].煤矿安全, 1988(4): 33~34.
    [68] Guo, Dong-Ming,Yang, Ren-Shu,Hu, Kun-Lun, et al. Experimental research on long hole loose blasting mechanized kaolin mining[J]. Caikuang yu Anquan Gongcheng Xuebao, 2009(9): 428-432.
    [69] Sun Xin, Lin Bai-Quan, Dong Tao, et al.. Deep crossing-hole controlled hydraulic blasting and its application in outburst prevention[J]. Caikuang yu Anquan Gongcheng Xuebao, 2010.3:82~86.
    [70]宗琦,徐辉东.复杂环境下深孔松动控制爆破技术的应用[J].岩土工程学报, 2001, 23(3): 330~332.
    [71]袁亮.松软低透气性煤层瓦斯综合治理技术[M].北京:煤炭工业出版社, 2004.
    [72]刘林.煤层群多重保护层开采防突技术的研究[J].矿业安全与环保, 2001(5): 1-4.
    [73] Kozusnikova. A Changes of permeability of coal in the process of deformation. In:Frontiers of Rock Mechanics and sustainable development in the 21st century. Sijing, Binjun and Zhongkui(eds.). Swets&Zeitlinger and B.V.,Lisse, The Netherlands,2001:181-183.
    [74] C.Fairhurst,1997,Geomaterials and recent development in micro-mechanical numerical models,News Journal,Vol.4,No.2,pp.11-14.
    [75] Kunsoo Kim&Cunying Yao.Effects of micromechanical property variation on fracture processe sin simple tension[J]. Rock mechanics, Daemen & Schultz(eds), Balkema, Rotterdam, pp. 471-476.
    [76]Ю. H.马雷舍夫, A. T.艾鲁尼.煤与瓦斯突出预测方法和防治措施[M].魏风清,张建国.北京:煤炭工业出版社.
    [77]程远平,俞启香.煤层群煤与瓦斯安全高效共采体系及应用[J].中国矿业大学学报, 2003, 32(5): 471-475.
    [78]程远平,俞启香等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报, 2004, 33(2): 132-136.
    [79]马成民,曹玉春,沈玉波.采煤工作面上隅角瓦斯治理[J].煤矿安全, 2004(5): 33~34.
    [80]李树刚.综放面采空区矿压特征与漏风形态[J].焦作工学院学报. 1996.6: 6~10.
    [81]汪东升.影响采空区甲烷涌出量的主要因素[J].煤, 1995(5): 53~54.
    [82]肖高雄.上隅角瓦斯积聚处理系统的研究与实践[J].矿业安全与环保, 1999(增刊): 8~9.
    [83]林柏泉,张仁贵. U型通风工作面采空区瓦斯涌出及其治理.煤炭学报, 1998.2: 155~159.
    [84]刘新喜,王勇,赵云胜.回采工作面瓦斯涌出特征及灰色预测模型[J].中国安全科学学报, 2001(2): 11-16.
    [85]国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社, 2010.
    [86]蒋泽照.浅析上隅角大管径预留管治理瓦斯[J].矿业安全与环保. 2000(6): 139~140.
    [87]张永朋.采面回风隅角埋管抽放治理瓦斯[J].中州煤炭. 2006(4): 88~89
    [88]冯强.综采工作面上隅角充填材料和充填方式的改进[J].中小型企业管理与技术(下旬刊). 2009(8): 288
    [89]舒桂德,黄清根,赖世淡.回采工作面回采期间“三带”瓦斯抽放技术的实践[J].江西煤炭科技. 2004(2): 36~37.
    [90]缪协兴,刘卫群,陈占清等.采动岩体渗流理论[M].北京:科学出版社, 2004. 12.
    [91]胡殿明,林柏泉,吕有厂等.煤层瓦斯赋存规律及防治技术[M].江苏徐州:中国矿业大学出版社. 2006.11.
    [92]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报. 2009(2): 127~139
    [93] Keen TF.The simulation of methane flow in carboniferous strata. PhD thesis, University of Nottingham, 1977
    [94]缪协兴,刘卫群,陈占清等.采动岩体渗流理论[M].北京:科学出版社, 2004. 12.
    [95]张国华.本煤层水力压裂致裂机理及裂隙发展过程研究[D].辽宁:辽宁工程技术大学, 2004.
    [96]张国华,魏光平,侯凤才.穿层钻孔起裂注水压力与起裂位置理论[J].煤炭学报,2007, 32(1).
    [97]杜春志,茅献彪,卜万奎.水力压裂时煤层缝裂的扩展分析[J].采矿与安全工程学报, 2008. 06 (2).
    [98] Mohamed Soliman. Use of Oriented Perforation and New Gun System Optimizes Fracturing of High Permeability, Unconsolidated Formations [R]. SPE53793, 1999.
    [99] Stadulis L M. Development of Completion Design to Screenouts Caused by Multiple NearWellbore Fractures [R]. SPE29549, 1995.
    [100]李连崇,杨天鸿,唐春安等.岩石水压致裂过程的耦合分析[J].岩石力学与工程学报,2003,22(7):1060~1066.
    [101] Lehman L V. Etiology of Multiple Fractures [R]. SPE 37406, 1997.
    [102] D.Kenneth.Mahler.A review and perspective on far field hydraulic fracture geometry studies [J].Journal of Petroleum Science and Engineering, 1999, 24: 13-28.
    [103] Van Eekelen. Hydraulic fracture geometry: fracture containment in layered formation[J]. Society Petroleum Engineers Journal, 1982, 22: 341-349.
    [104]陈小奎.煤层水力压裂三相耦合数值模拟研究[D].安徽:安徽理工大学, 2008.
    [105]杨天鸿,唐春安,刘红元等.水压致裂过程分析的数值试验方法[J].力学与实践, 2001, 23(5): 51-54.
    [106]冷雪峰,唐春安,杨天鸿等.岩石水压致裂过程的数值模拟分析[J].东北大学学报(自然科学版), 2002, 23(11): 1104-1107.
    [107]于庆磊.岩石破坏与渗流耦合作用实验研究及数值模拟[D].东北大学, 2005.
    [108]孙守山,宁宇,葛钧.波兰煤矿坚硬顶板定向水力压裂技术[J].煤炭科学技术, 1999, 27(2): 51~52.
    [109]СубботинАИ等.构造和采矿技术条件对冲击地压和瓦斯动力现象的影响.Безопас.трудавпром-сти, 1996(06).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700